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A review of time-frequency analysis and some aspects of its applications in digital watermarking are presented. The main
advantages and drawbacks of various time-frequency distributions are first discussed. The aim of this theoretical overview is
to facilitate an appropriate distribution selection in a specific application. Different aspects of the time-frequency analysis when
applied to digital watermarking are then presented. In particular, the method that maps time-frequency characteristics of a host
signal to the pseudo noise watermark sequence is thoroughly discussed. This approach is presented in the multidimensional
form and then applied to digital audio, digital image, and digital video watermarking. Finally, the theoretical considerations are

illustrated by various numerical and real-life examples.

1. Introduction

Theoretical aspects of time-frequency analysis have been
intensively studied over the last two decades [1-27]. In par-
allel, their various applications have been exploited as well.
Namely, for an efficient analysis of nonstationary signals,
such are radar, sonar, biomedical, seismic, and multimedia
signals, time-frequency representations are required. Time-
frequency distributions are most commonly used for this
purpose. Many of the researchers have made significant
efforts in defining a distribution that is optimal for a wide
class of frequency-modulated signals [8—11]. As a result, a
number of time-frequency distributions have been proposed.
However, the efficiency of each of them is more or less
limited to a specific class of signals and, consequently, to
a specific application. One of the goals of this paper is to
highlight the most important features of some popular time-
frequency distributions and to give an idea of how to choose
the most appropriate distribution depending on the signal
form. The linear, quadratic, higher-order, and multiwindow
time-frequency distributions are considered. The short-
time Fourier transform, as the most commonly used linear
transform, is firstly discussed. Next, the Wigner distribution,
as the best known quadratic distribution, is presented. Also,
the Cohen class and some specific distributions belonging

to this class are considered [1, 5-7]. It is shown that the
quadratic distributions are optimal for a linear frequency-
modulated signal. However, if the instantaneous frequency
variation within the analysis window is faster, multiwindow,
or higher order distributions should be used, [14-16, 19-27].
The Hermite functions-based multiwindow approach is also
discussed. Finally, highly concentrated distributions with
complex-lag argument are presented. To facilitate in better
understanding of the presented theoretical considerations,
numerous illustrative examples have been provided.

The second part of the paper considers time-frequency-
based watermarking techniques. The watermarking of digital
audio, digital image, and digital video is discussed [28-37]. A
short overview of some existing approaches is first given and
they are related to digital audio and digital image [28-50].
Watermarking using time-frequency techniques is usually
employed in either of the following two ways. The first one
uses the time/space domain of the host signal to embed
the watermark with specific time-frequency characteristics.
The time-frequency analysis is then used for detection. The
second way uses time-frequency distributions to create or
embed watermark in the time-frequency domain. A flexible
procedure that can be used for different kinds of signals
is discussed more extensively. Therein, the watermark is
shaped according to the time-frequency characteristics of
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F1GURE 1: Nonstationary signals. (a) Time domain representations. (b) Fourier domain representations. (c) Spectral components’ variations

along the time axes.

the host signal. The detection is performed in the time-
frequency domain. This particular approach is presented
in the multidimensional form, and it is applied to digital
audio, digital image, and digital video. It provides a high
degree of robustness and imperceptibility. Hence, even when
the watermark is very weak, a reliably detection can still be
achieved. Also, the watermark gets completely hidden by the
time-frequency characteristics of the host signal.

2. Time-Frequency Analysis

The Fourier transform provides spectral content of a signal.
It has been a valuable tool in various applications. However,
for nonstationary signals the Fourier transform cannot give
satisfactory results since the information about frequency
components variations in time is required.

Furthermore, it can happen that two different signals
have the same spectral contents, as illustrated in Figures 1(a)
and 1(b). Based on Figure 1(c), however, we can conclude

that the time-frequency representations of the two signals
are quite different. This example is a simple illustration of
the importance of time-frequency analysis for signals whose
spectral contents vary with time. Various time-frequency
distributions are used for this purpose. The ideal time-
frequency representation can be described as [19-21]

ITE(t, w) = 2mA*8(w — D' (1)), (1)
where a signal of the form x(t) = Ae/®® is considered. This
representation provides the signal local energy distribution,
as well.

A question that naturally arises at this point is whether
there exist a single representation that would be ideal for any
signal at hand. The answer is no, hence a number of time-
frequency distributions have been introduced.

2.1. The Short-Time Fourier Transform. The simplest and
most commonly used time-frequency representation is
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FiGure 2: [llustration of the STFT calculation.

obtained by using the short-time Fourier transform (STFT)
defined as [2]

)

STFI(t, w) = J x(t+ T)w(r)e 1o dr. 2)

Thus, it is a windowed version of the Fourier transform.
The sliding window function is denoted by w(r), where 7 is
the lag coordinate. An illustration of the STFT calculation is
shown in Figure 2.

Note that the spectral content is calculated for each
windowed part of the signal. The central point of the
sliding window is the time instant for which the spectrum
is calculated. The influence of the window size is critical, as it
will be discussed later.

The energetic version of the STFT is known as the
spectrogram. It can be written as

SPEC(t, w) = |STFT(t, w)|*

(3)
= 2mAYW (w — @' () SFT{e/ Q0]

where W(w) is the Fourier transform of the time domain
window w(t), ®'(t) is the first derivative of the phase
function, the frequency convolution is denoted by *w, while
Q(t,7) = D (1)(%/2)) + @O (3/31) + - - - + OW(¢"/nl) is
the spread factor which depends on the second and higher
order phase derivatives. Note that an ideal representation will
be obtained if the signal is constant frequency modulated
(®O(t) =0, for i =2)andif W(w—D'(t)) — S(w—D' (1)),
that is, for a large time domain window. However, if the
signal is not constant frequency modulated, a large window
size can produce a low time resolution and vice versa. In
general, there is a trade-off between the time and frequency
resolution, and it is best described with the uncertainty
principle, as

MM, > =, (4)

[\S)

where,

L w)Pdr

@ W () de
5 Iw(n)Pdr -

5 IW(0)Pdw
(5)

are the measures of duration in time and frequency, respec-
tively. The signal should satisfy w(t)/f — 0 ast — =*oo.

An illustration of the window size influence on the spec-
trogram resolution is given in Figure 3. A four-component
signal is considered. In order to achieve a good time resolu-
tion, two short sinusoidal components should be analyzed
by using a narrow window. However, to obtain a good
frequency resolution the third component (a sinusoid with
a long duration) should be analyzed by using a wide window.
In Figure 3(a), a narrow window is used, and it results in
a good time resolution, while the frequency resolution is
low. However, when a large window size is used, a low
time resolution is obtained. Hence, the two short sinusoids
have almost merged into one (see Figure 3(b)). Due to the
presence of a linear frequency-modulated component (chirp
signal), the spread factors are present in both cases.

The spectrogram satisfies the marginal properties

Mr

w

JSPEC(t,w)dt ~ X)),

. (6)
o [spEC(H 0)de - Ix(0)
2m
The total energy is obtained as
Bx = 5| [spEC(t @)t do. (7)
2
tw

An important property of the STFT is its linearity. Namely,
the STFT of a multicomponent signal x(t) = Zf\il xi(t) is
STFT,(t,w) = M STFT, (f,w). Consequently, if the signal
components do not intersect in the time-frequency plane the
spectrogram will be equal to the sum of spectrograms of each
of the signal components. This is evident from Figure 3.

2.2. Quadratic Time-Frequency Distributions. Quadratic
time-frequency distributions have been introduced in order
to improve the time-frequency resolution. Namely, they
remove the spread factors for linear frequency-modulated
signals. Among them, the Wigner distribution is the most
commonly used. It has also been used as a base to define
several interesting time-frequency distributions.

The windowed version of the Wigner distribution is
called the pseudo-Wigner distribution. It is defined as [1, 2]

WD(t, w)
e (e

The spread factor in this case is Q(t, 7) = ®®)(t)73/(223!) +
OO T2/(245)) + - - -
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FIGURE 3: STFT of the four-component signal calculated by: (a) narrow window, (b) large window.
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FIGURE 4: Wigner distribution of a four-component signal.

The Wigner distribution satisfies the marginal condi-
tions. Note that it is always real, while the numerical
realization requires oversampling with factor 2. However, the
Wigner distribution is not linear. Namely, for a multicompo-
nent signal x(¢) = Zf\il xi(t), the Wigner distribution is of
the form

M M

> > WDy, (£, ).

i=lk=1
i#k

M
WD(t,w) = > WD, (£, @) + (9)

i=1

Thus, beside the autoterms, the interactions between dif-
ferent signal components (WD, (f,w)), called cross-terms,
appear. This is a major drawback of this distribution. The
Wigner distribution of the four-component signal, from the
previous example, is given in Figure 4.

In this case, the auto components are well concentrated.
However, the cross-terms presence is significant. Namely, the
time-frequency representation contains frequency compo-
nents that do not exist within the signal itself. It could lead to
a wrong analysis result.

The cross-terms could be reduced by using a filter
function in the ambiguity domain. The ambiguity function
is the two dimensional Fourier transform of the Wigner
distribution, that is,

A(T, 9) = FTZD {WD(f, (0)} (10)

In the ambiguity domain, the auto-terms are located around

the origin. Thus, a two-dimensional filter, called the kernel

function, is used to filter out the cross-terms (that are

generally located away from the origin) [1, 5-7]:

Ag(1,0) = A(7,0)c(7, 0), (11)

where A(1,0) = [% x(t + 1/2)x*(t — 1/2)e /%dt is the

ambiguity function, and ¢(7, 0) is the kernel function. The

time-frequency distribution based on the filtered function is
obtained as

CD(t,w) = IFT{A(7,0)c(7,0)}

LI oo e(e-5) 0o

X e 19e=i0Teif g0 dy dr.

This is the definition of the Cohen class of distributions. By
choosing the corresponding kernel functions, some specific
distributions belonging to the Cohen class can be obtained.
They satisfy the marginal properties if ¢(0,0) = ¢(7,0) =
1 holds. For example, the Choi-Williams distribution [5] is
obtained for the kernel function ¢(z,0) = e~ (7'¢/7") where o
is a scaling factor to control its attenuation rate. The kernels
for some distributions are defined in Table 1, [7].

The four-component signal analyzed by the Choi-
Williams and Born-Jordan distribution is shown in Figure 5.
The Choi-Williams distribution with two values of its kernel
parameter ¢ is used. The parameter o 27 results in
a wider width of the kernel assuring good auto-terms
concentration, but a significant amount of cross-terms is
still present (Figure 5(a)). The Born-Jordan distribution
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FIGURE 5: Time-frequency representations by: (a) Choi-Williams distribution (¢ = 27), (b) Born-Jordan distribution, and (c) Choi-Williams

distribution (o = 0.5).

TaBLE 1: Some distributions from the Cohen class.

Distribution Kernel
Choi-Williams e~0*7/0?
Born-Jordan (sin(07/2))/07/2
Zao-Atlas-Marks |7|(sin(07/2)/07/2)w(T)
Sinc distribution rect(07/«)
Wigner distribution w?(1/2)

producing almost the same auto-terms concentration is
shown in Figure 5(b). Note that the side-lobes and cross-
terms are more emphasized than in the Choi-Williams
distribution with ¢ = 27 [7]. However, if the Choi-Williams
distribution with the attenuation parameter ¢ = 0.5 is
used (Figure 5(c)), the cross-terms get suppressed, while the
auto-term concentration becomes reduced (for the chirp
component).

Note that there is a trade-off between the cross-terms
reduction and auto-term concentration (it depends on
parameters of the kernel function). Obviously, distributions
belonging to the Cohen class lie in between the two extreme
cases: the spectrogram that eliminates the cross-terms with
a low auto-term concentration and the Wigner distribution
that provides high resolution, but with emphatic cross-terms.
It is possible to obtain an ideal time-frequency concentration
only if signal dependent kernels are used [8, 10].

Next, we can ask the following question. Is there a
distribution that provides the auto-terms concentration
as good as in the Wigner distribution, while eliminating
the cross-terms like the spectrogram does? In order to
define a distribution with these properties, let us start with
the following relationship between the short-time Fourier
transform and the Wigner distribution:

WD(t ) = % J STFT(t, w + 0)STET* (£, — 0)d6. (13)

Clearly, the convolution along the frequency axis improves
the auto-terms concentration, but it introduces the cross-
terms. Thus, the convolution should be performed only over
the same auto-terms, avoiding different signal components
being convolved. It can be performed by introducing a
frequency domain window (see Figure 6).

-0 -6 +6 +0 -6 -6 +0 +0
1= P "
NN
ro : ,’:l PA
! h 1 |
1 1NV 11‘2 1 ! STFT(w + 0)
;wl : :wz w
| |
$0 40 16 -0 1 40 +6 1 -6 -6
A . P
1 ! n | |
A N B
1 —
/R i /N STFTe-9
w1 W) w

FiGure 6: Illustration of the STFTs convolution.

A distribution that allows for such convolution is called
the S-method [17]. It is defined as

SM(t, @) = % J_ P(O)STFT(t w + )STFT* (£, w — 6)d6.
(14)

The frequency domain finite window is denoted by
P(@) (P(6) = Ofor|6] > L). Observe that for P(6) =
76(0) and P(8) = 1 the spectrogram and the Wigner
distribution are obtained, respectively.

The discrete version of the S-method is

L
SM(n,k) = > STFT(n, k +i)STFT*(n,k — i)

i=—L

= SPEC(n, k)

i=1

L
+2 Re{ZSTFT(n, k+i)STFT* (n, k — i)]».
(15)

The discrete window width is 2L + 1. It determines the
number of summation terms in (15). Note that they improve
the spectrogram concentration toward that of the Wigner
distribution. An illustration of the S-method calculation is
shown in Figure 7.

The calculation of the S-method is illustrated for the
central point of an auto-term as well as for the point located
in between the two auto components (Figures 7(a) and
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FiGgure 7: llustration of the S-method calculation for a given time instant #.

7(b)). It is important to observe that the summation has to
be performed only over the auto-terms. If the other terms
are included, the concentration will not be improved. In
addition, the noise could be also picked up. The window
has to be narrower than the minimal distance between the
auto-terms. If this is not the case, the interactions between
the auto-terms will produce the cross-terms. Namely, as
illustrated in Figure 7(b), the cross-terms appear if the
window includes the summation terms marked by red color.

The adaptive S-method with a variable window adjusted
to the auto-terms is introduced in [18]. However, in many
applications the fixed window size of L = 3 has been shown
to provide very good results, since the convergence within
the window is fast, and it is mostly achieved after a few
summation terms.

The S-method of the four-component signal is given in
Figure 8.

Note that all signal components (with constant and linear
frequency modulations) are well concentrated even for L =
3. By increasing L, for L > 5 the cross-terms start to appear
(the minimal distance between the auto-terms becomes less
than 2L + 1).

The spectrogram and the S-method (L = 3) of a real
speech signal are shown in Figure 9.

The speech signal time-frequency resolution is improved
by using the S-method.

Observe that the spread factor in the quadratic dis-
tributions will be present if the instantaneous frequency
contains third and higher order phase derivatives. Hence,
further concentration improvement can be obtained by using
the multiwindow approach or by using higher order time-
frequency distributions, as discussed below.

2.3. Multiwindow Time-Frequency Distributions. The con-
cept of multiwindow time-frequency distributions has been

developed by using optimally concentrated orthogonal win-
dows [25-27]. The Hermite functions that are localized in
both time and frequency domain can be used as orthogonal
windows. The multiwindow spectrogram is defined as a
weighted sum of the spectrograms:

K-1
SPECmw(t,w) = > ¢y(t)SPEC,(t, w)
p=0
| K _ 2
= — Z cp(t) ‘ Jx(T)WP(T —te T .
2m o
(16)
The total number of the spectrograms and Hermite functions

is K, while ¢, () are the weighting coefficients. The pth order
Hermite function is defined as

(—1)Pet/2 dP (e*fz)

WY, (t) = 17
»(1) s dtr (17)
This function can be obtained by using a recursive realization
as follow
2
Y1) =t ;\Pp_l(t)
(18)
_ et Y,(t), Vp=2,
while:
| V2t e
7 — =, (t2) 7 _ MEr /2)' 1
o() %e ) 1(1) R e (19)
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FiGURre 8: The S-method of the multicomponent signal (various window sizes L are used).
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The weighting coefficients are calculated by

fori=0

(20)

ZCP()

[AX(t+ 7)Y (1)7'dr 1,
[A2(t+ 1)V (r)dr 0, fori>0,

where A(f) is the signal amplitude. The weighting coeffi-
cients for a signal with a constant amplitude are given in
Table 2.

It is important to emphasize that the spread factor is
reduced proportionally to the highest order of Hermite
functions used in the multiwindow spectrogram:

K+2

q)(K+1)(t) K+ 2)'

+ @) ()L

T
Q(t, 1) = m
(21)

Thus, the first term in the spread factor comes from the
(K + 1)th phase derivative. An additional concentration
improvement can be achieved by introducing the multiwin-
dow S-method [51]. It can be written in the discrete domain
as

SMmw (1, k)

K-1
= Z cp(n)SPECmw (1, k)
e (22)

K-1
+ ZZRe{Zcp(n)STPTp(n k+i)STFT, (n, k — 1)}

i=1

In this case the spread factor is

K+
Q(t, 1) = q)(KH)(t)m
+ q)(K+3)(t)L
2K+2(K +3)!
+---, forevenK,
(23)
Qt,1) = q)(K+2)(t)L
2K+1(K +2)!
+ CD(KH)(t)L
2K+3 (K +4)!
+---, foroddK.

An example, where the multiwindow spectrogram and the
multiwindow S-method are used is shown in Figure 10 (the
components are with constant amplitude and each of them
is treated separately).

From Figure 10 it is obvious that the multiwindow
versions of distributions outperform their standard coun-
terparts. The multiwindow approach reduces the noise
influence as well [27].

This multiwindow approach can also be interpreted by
using the Cohen class of distributions, where it can be written
as a two-dimensional convolution of the Wigner distribution
and the kernel function: WD(¢, ), ®@(t,w). The kernel
function producing the multiwindow Wigner distribution is
obtained as

K-1
Z cp(t, w)Ly(t, w),

p=0

O(t,w) = (24)

where L, is the pth order Laguerre function, and it is the

Wigner distribution of the pth order Hermite function.
According to the previous consideration, the spread

factor can be gradually reduced by increasing the number
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TaBLE 2: The weighting coefficients for K = 1,2,...,11.
Co C1 %] C3 Cy Cs Co C7 Cg Cy C10
K=1 1
K=2 1.5 -0.5
K=3 1.75 -1 0.25
K=4 1.875 -1.375 0.625 -0.125
K=5 1.937 -1.625 1 —0.375 0.062
K=6 1.968 -1.781 1.312 —-0.687 0.219 —-0.031
K=7 1.984 -1.875 1.546 -1 0.453 -0.125 0.016
K=38 1.992 -1.929 1.710 -1.273 0.727 -0.289 0.070 —0.008
K=9 1.996 -1.961 1.820 —1.492 1 -0.507 0.179 -0.039 0.003
K =10 1.998 -1.978 1.890 -1.656 1.246 —0.754 0.344 -0.109 0.021 —0.002
K=11 1.900 —1.561 0.955 -0.223 —0.357 0.573 —0.460 0.237 -0.079 0.016 —0.001
of Hermite functions, that is, by increasing the number  The term with the complex-lag argument is calculated by
of spectrograms in (16) and (22). Similar resolution . .
improvements can be obtained by using polynomial time- x I (t+ jr)xd (t = j7)
frequency distributions, where each additional order of the (28)

distribution results in a removal of one more term within
the spread factor [3].

2.4. Distributions with Complex-Lag Argument. A significant
components concentration improvement can be achieved by
introducing higher order distributions with the complex-lag
argument [19, 21]. A general form of these distributions is
(22]

GCD(t, w)

-l (%)

X N:IEIII [xwfﬂ'bx) (t + 7N(a,~i ) ) (25)
x x~(atib) (t S — )]ej“”d‘r.
N(a; + jb;)
A special case follows for [19]
a; + jbi = SN,
fori=1,2,...,%—l, (26)
k=1,2,...,N—1.

The fourth-order distribution (N = 4) is obtained for i = 1,
thatis, +(a; + jb;) = *e/™? = +j. Thus, it has the form

_ (" L P
GCDy(t,w) = J_oox(t+ 4)x (t 4)
- -I) j< _ -I) -jor
X X <t+]4 x|\t y)e dr.

(27)

_ ej In| [, STFT(t,w)e/*t~ 10 dw/ [, STFT(t,w)e/*i7) dw|

For a multicomponent signal, it is calculated for each
component separately, where the STFT is used to separate
them [20]. This procedure can be generalized for an arbitrary
distribution order [24].

For i 1,2 and N = 6 we have =(a; +
jbi) = +e/™3, +ei?3 Tt defines the sixth-order distribution.
Observe that, regarding the spread factor reduction, each
distribution order is related to the previous one in the same
way the Wigner distribution is related to the spectrogram.
Namely, the spread factors for the fourth- and the sixth-order
distributions are

Qu(t,7) = (t)5,44 <D<9><t)9,48

(29)

Qs(t, 1) = (t)— +@13)(¢)

7166 3'612 o

The complex-lag distributions are in particular useful when
the instantaneous frequency variation within the window
is very fast. The examples where the distribution order is
increased in order to improve time-frequency resolution are
shown in Figure 11.

Note that the Wigner distribution produces poor results
for both signals, since it cannot follow the instantaneous
frequency variations.

3. Digital Watermarking

Digital watermarking has been used to protect multimedia
data. Demands in this area increase proportionally with the
number of internet applications. Namely, these applications
are associated with a need for copyright protection of
digital audio, digital image, and digital video. Note that
the cryptographic methods could be used for this purpose.
However, once the data are decoded they can be unlimitedly
copied. This has been one of the primary reasons for
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FiGure 10: Time-frequency representations by using: (a) spectrogram, (b) S-method, (¢) multiwindow spectrogram and (d) multiwindow

S-method.

developing the watermarking techniques. The watermarking,
in general, consists of embedding a secret information that
can be reliably detected within the host signal. Obviously,
this information should be imperceptible within the host
data. Depending on the application type, the watermarking
can be robust, fragile, or semifragile. The robust watermark
should be resistant to various nonmalicious or malicious
attacks. Nonmalicious attacks are commonly used signal
processing techniques such as compression algorithms, fil-
tering, and so forth, while the malicious attacks are the
signal processing techniques that are intentionally used to
remove the watermark. The fragile watermark is used to
prove data authenticity. Thus, if the content of a signal has
been changed, the watermark should no longer exist. The
semifragile watermark should be robust to a slight modifi-
cation, such as for example a certain degree of compression.

Depending on the type of host signal (speech/audio
signals, image, video, etc.) various watermarking approaches
are developed. Also, different domains have been used:

the time domain (or the space domain), the spectral
domains such as DFT, DWT, and DCT domain, and a joint
time/space-frequency domain. The existing watermarking
techniques are mainly based on either the time or frequency
domain. However, in both cases, the time-frequency charac-
teristics of the watermark do not correspond to the time-
frequency characteristics of the host signal. It may result in
the watermark being not imperceptible, because it is present
in the time-frequency regions where the signal components
do not exist.

3.1. An Overview of Some Time-Frequency-Based Water-
marking Techniques. The time-frequency domain can be
very efficient regarding the watermark imperceptibility and
robustness. This section presents some key time-frequency-
based watermarking procedures with the aim to inspire more
contributions on this topic.

Here, we will classify the time-frequency-based water-
marking techniques into two categories. The first one is
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FiGure 11: Time-frequency representation of signals with fast instantaneous frequency variation obtained by using: the Wigner distribution,
the fourth-order complex-lag distribution, and the sixth-order complex-lag distribution.

the approaches based on watermarks with specific time-
frequency characteristics, where the detection procedure is
performed within the time-frequency domain. The second
one uses the time-frequency domain to embed or to shape
the watermark.

(A) Image Watermark with Specific
Time-Frequency Characteristics.

(A.1) Among the first time-frequency-based image
watermarking procedures is the approach introduced in
[38]. Although the watermark is embedded in the space
domain it is chosen to have a specific space/spatial-frequency
characteristic. Namely, a two-dimensional chirp signal is
used as watermark:

W (x,y) = 2A cos(ax® + by?)
(30)
_ A(ej(ax2+by2) + e—j(axz-#byz))‘

Observe that the Wigner distribution provides an ideal
representation for this signal.

The watermark is embedded within the entire image:
Ly(x,y) =1(x,y) + W(x, y).

The watermark detection is performed by using

P(wx,wy;Wv>
= | FTap {Lu (x, y) W (x, )} | (31)
- Uf wmlw (% Y)Wy (x, y) e/ dxdy :
where
w, (x,y) _ e—j(avszrbvyZJrC.,xy). (32)

The variable parameters a,, b,, and ¢, are used. Different
values of those parameters (a,, b,, and ¢,) produce a set of
projections. The additional term c¢,xy can be used to detect
some geometrical transformations, as well. Note that the
detector has the form of the Radon-Wigner distribution,
which ensures that the energy of the watermark is distributed
over the hyper plane defined by (ws,w,) VO(x,y)
(O(x, y) is the phase function of the watermark). In order to
make a decision weather the watermark exists in the image
or not, the maxima of the Radon Wigner distribution

M(ay, by, c,) = maxP(wx, Wy WV) (33)

Wy, Wy

are compared with an assumed reference threshold. Also,
multiple chirp watermarks with small and randomly chosen
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amplitude are used to increase flexibility of the proposed
procedure. The parameters of the chirp signal as well as the
random sequence that defines the amplitudes of chirp signals
serve as the watermark key. Since the watermark is embedded
within the entire image in the space domain, a proper
masking that provides imperceptibility should be applied.
An analysis of the performances giving an estimation of
the detectable watermark amplitude level is provided in
[38]. The robustness is tested on various attack, some being
a median filter, geometrical transformations (translation,
rotation and cropping simultaneously applied), a high-pass
filter, local notch filter, and Gaussian noise.

(A.2) Mobasseri et al. [44] have proposed a scheme for
robust watermarking based on the polynomial phase. The
algorithm combines the approach in [45] (where p bits are
embedded in the image) with the 2D chirp-based methods.
Here, the image of size N X N is partitioned into M blocks. A
2D chirp of the form

W(x,y) = ejﬂ(ﬁxx2+/3},y2)+j2n(fxx+fyy) (34)

is used, where 8, = B, = fand fi = f, = f are taken.
The watermark is embedded in the block located at the pixel
(m, n) according to

L,(m,n,x,y) = L,(m,n,x,y) + kRe[d(m,n) W (x, y)].
(35)

The constant that controls the watermark strength is k,
and the integer part is denoted by “[]”, while d(m,n) are
watermark bits taken from B = {bo,b1,...,b, 1}. The
knowledge of the pair (S, fy) is required in order to recover

B. It can be obtained by using the chirp transform

C(m,n,B, f)
M-1M-1
= I(m,n,x,y)U*(x, 9,8, f)

x=0 y=0
M-1M-1

+ kRe[d(m,n)W (x, y) [U*(x, v, 3, f)»
x=0 y=0

(36)
where:

U(x, y,ﬁ,f) = ejﬂﬁ(x2+y2)+j2ﬂf(x+y). (37)

Finally, the total detection over all blocks can be obtained by
CB.f) =22 [ClmnB,f)]. (38)

This provides a possibility to use the watermark that cannot
be detected by considering a single block only. Thus, in such
case it would be necessary to integrate all of them over the
entire image. Note that it is also possible to generate different
chirps for different blocks instead of using the same chirp for
all blocks. It would make the detection even more difficult
for unauthorized users.
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The embedded bits are recovered by

for C(m,n,B, f) =0,

1,
d,(m,n) = { (39)
0, for C(m,n,pB,f)<0.

The proposed method is adapted to be robust to the
JPEG compression algorithm. The watermark is embedded
within the 8 x 8 blocks by using the quantization matrix
Q. Namely, the DCT coefficients and the 2D chirp are
quantized by this matrix. However, choosing an appropriate
pair (3, f) is necessary to ensure that the watermark survives
this quantization. The watermark survival degree can be
quantified by

1M—l
e = MZ‘
i=0

where I*(i,j) is the unmarked compressed block. The
watermark is completely removed by compression if e = 0 is
obtained. The quality of the proposed technique is tested
on the image Lena, and it is proven that, for this case, it
outperforms the standard spread spectrum technique.

(A.3) The watermarking in the fractional Fourier domain
belongs to the time-frequency-based algorithm as well. This
approach is defined in [39], and it uses a combination of the
space and spatial-frequency domain. Namely, the image is
transformed in the fractional Fourier domain for the angles

(o, ay):

M-1
DL g) = 1 ( ) |, (40)
j=0

Savay (> t1y) = FRETY, " JERFTS " (I(x, 7))}, (41)
where FRFT denotes the one-dimensional fractional Fourier
transform. The FRFT can be treated as a rotation in the time-
frequency plane for an angle «, while the inverse transform
can be considered as a rotation for the angle —a. Thus, the
FRFT domain is a combination of the time and frequency
domain (the Fourier transform is a special case for a = 7/2).
Depending on the angle «, the FRFT assures that the time
or the frequency domain is dominant. For « close to 71/2
the frequency domain is dominant, while for small a the
FRFT is dominantly in the time domain.The watermark is
embedded in the FRFT coefficients reordered into a non-
increasing sequence S;. By analogy with the watermarking in
the DCT domain, the first L coefficients are omitted, while
the next M coefficients are used. The watermark is embedded
as

S,‘W = S,‘ + w{lRe{Si}I +jw['|Im{S,~}|. (42)

A real valued watermark key composed of w; and w;’ is used.
The detection is performed by

L+M
Det = > [Si+wj|Re{Si}| + jw; [Im{S;}](w] — jw]").
i=L+1

(43)

The performance analysis providing the detection threshold
is done, the threshold being chosen as

0_2 L+M
— > [Re{Si}| + [Im{S;}1, (44)

T, =
2 .
i=L+1



EURASIP Journal on Advances in Signal Processing

where the watermark is a Gaussian white noise with the
variance o2. The watermark key consists of the watermark
sequence and the angles (a;, a;). Thus, the algorithm
provides two more degrees of freedom, and it offers more
possibility to generate watermarks. The watermarking pro-
cedure is tested on various images and attacks.

(A.4) Barkat and Sattar have proposed a fragile water-
marking procedure for image authentication [43]. The
watermark with a particular time-frequency signature is
inserted in the image pixels. Although, in general, N; X
N, pixels (according to the image size) exist, a significantly
lower number of them is used. The pixels location can be
chosen arbitrarily. The authors have used diagonal pixels,
modulated by a pseudonoise sequence as a secret key.
Various frequency-modulated nonstationary signals can be
a watermark, as well. However, the features that could be
easily identified should be used. Consequently, different
time-frequency distributions should be used for watermark
detection. Barkat and Sattar have used a quadratic frequency-
modulated signal. It is detected by using the Wigner distribu-
tion. The proposed scheme is tested on the following attacks:
cropping, translation, JPEG compression, and scaling. Very
week and imperceptible attacks were applied (e.g., JPEG with
99% quality is used). It is shown that the watermark cannot
be identified after these attacks.

(B) Watermark Created in the Time-Frequency Domain.
(B.1) An image watermarking approach is proposed by Al-
khassaweneh and Aviyente in [49]. The image rows are
used to create a set of one-dimensional signals. Then, the
Wigner distribution is calculated for each of them. Also, the
watermark sequence is transformed to the time-frequency
domain by using the Wigner distribution. Finally, the Wigner
distribution of the watermark sequence is embedded in the
Wigner distribution of each image row as follows:

WD, (y, wy) = WDx<y, wy) +A<y, wy)WDW(y, w),>,
(45)

where A(y,w,) is a set of the time-frequency dependent
weighting coefficients. The watermarked image is obtained
by using the inverse transform. Having in mind that we deal
with a real and positive signal, it is defined as

Li(x,y) = \ ZWDxW (y, a)y)

Wy

(46)

= \12 (x, y) + (ZA(% wy))wz(y)-

However, the previous equation holds only if the two-
dimensional function (45) is a valid Wigner distribution.
Namely, it is well known that any two-dimensional function
cannot be the Wigner distribution. It introduces a very
restrictive condition on the function A(y,w,). In the pro-
posed method it is determined by using the time-frequency
representation of the corresponding row and taking the
middle frequency region.
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Al-khassaweneh and Aviyente have suggested a nonblind
detection procedure. Namely, the second part of the function
in (46) that depends on the watermark is selected. The
detection is performed by using the standard correlation
detection. A threshold that provides a minimal probability of
error is derived. The proposed method is tested on different
images and under various attacks. The average probability of
error was found to be 0.03.

(B.2) Foo etal. in [48] have defined a method for digital
audio watermarking based on the time-frequency domain.
Here the audio frames are changed, so that the logical
value of 1 is assigned. If the original frame is lengthened
or shortened, the logical value 1 is assigned, otherwise the
“normal frames” correspond to the logical value 0. The
watermark is a sequence obtained as a binary code of the
alphabet letters, converted to the ASCII code (the example
with the binary code 010001100101001101010111 for the
letters FSW is used). The crucial part of this method is the
selection of frames that will be lengthened or shortened
(the frame size of 1024 samples is used). The frames with
signal energy level above the masking threshold are selected
(the psychoacoustic model is used to determine the masking
threshold in each subband). The frames length is changed
by adding or removing samples with amplitudes that do not
exceed the masking threshold. Four samples are added or
removed within the frame of 1024 samples. It ensures that
a perceptual distortion will not appear. In order to preserve
the total length of the watermarked audio signal, the same
number of the lengthened and shortened frames is used. The
pair of frames called Diamond frames is used to represent
the binary 1, while the logical values 0 are assigned to the
unaltered frames.

The detection procedure is nonblind, that is, the original
signal is required. A significant difference between the
watermarked and the original signals will appear only if a
pair of changed frames exists. Thus, it is used for logical
values detection. The proposed watermarking scheme has
been tested on various musical signals, as well as on a speech
signal, and a set of different attacks has been applied (fil-
tering, resampling, noise, cropping, and MP3 compression).
Although the results vary for different signals and attacks,
in general they are good. The worst results are obtained
for the rock and pop music signals with MP3 compression.
However, in all cases the owner can be identified.

(B.3) Esmaili et al. have proposed a spread spectrum
based watermarking in the time-frequency domain [46]. This
technique is used for watermarking of music signals. The
watermark is created as

wi(n) = a(n)m;(n) pni(n) cos(wo(n)n), (47)

where m;(n) is the watermark before spreading, pn;(n) is the
spreading code or the pseudonoise sequence, while wy is the
time-varying carrier frequency. The parameter a(n) controls
the watermark strength. The masking properties of the
human auditory system are used to shape an imperceptible
watermark. The pseudonoise sequence is low pass filtered
according to the signal characteristics (the Butterwort filter
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is used). Two different scenarios of masking have been con-
sidered. The tone- or noise-like characteristic are determined
by using the entropy

Wmax

H(X) = — > P(x)log,P(x;). (48)
i=1

The probability of energy for each frequency (within a
window used for the spectrogram calculation) is denoted
by P(xi), while wmax is the maximum frequency. A half of
the maximum entropy Hpyax(x) = log,wmax is taken as a
threshold between noise-like and tone-like characteristics. If
the entropy is lower than Hy,y it is considered as a tone-like,

otherwise it is a noise-like characteristic.
The time-varying carrier frequency is obtained as the
instantaneous mean frequency of the host signal, calculated

by

S oo @TED(n, )
SY  TED(n,w)

Finally, after the watermark is modulated and shaped, it is
embedded in the time domain as sy, (1) = s;(n) + w;(n).

A simple watermark detection procedure is applied. First,
demodulation is performed by using the time-varying car-
rier, and then the watermark is detected by using the standard
correlation procedure with the pseudonoise sequence.

The proposed method has been tested on several music
files. It has been shown that, under various attacks, the bit
error rates are mostly between 0.02 and 0.08.

(B.4) An interesting audio watermarking approach based
on linear chirps has been proposed in [47]. The watermark
is created as a chirp signal, which is perceptually shaped
according to the host signal samples. Different chirp rates,
each representing a unique watermark message, produce
different slopes in the time-frequency domain. The efficient
time-frequency representation is obtained by using the
Wigner distribution. The extracted chirps are postprocessed
in the time-frequency plane by an optimal line detection
method based on the Hough-Radon transform. It can
correctly estimate the slope of the watermark signal despite
the broken lines caused by attacks. The simulation results
show that the Hough-Radon transform applied to a time-
frequency distribution can detect the watermark message
correctly at bit error rates up to 20%.

wi(n) = (49)

3.2. Watermaking Approach Based on the Time-Frequency-
Shaped Watermark. The approach that will be presented can
be used either for audio signals or images [41, 42]. Thus,
the embedding and detection procedures for both kinds of
signals will be defined and discussed simultaneously, by using
the multidimensional notation.

In order to ensure imperceptibility constraints, the
watermark should be modeled according to the time-
frequency characteristics of the signal components. The
concept of nonstationary multidimensional filtering [52] is
adapted and used to create a watermark with time-frequency
characteristics that correspond to the characteristics of the
host signal. The corresponding algorithm consists of the
following steps:
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(1) selection of the nonstationary parts of signal suitable
for watermark embedding;

(2) watermark modeling according to the multidimen-
sional time-frequency characteristics of the host
signal;

(3) watermark embedding and watermark detection pro-
cedure within the multidimensional time-frequency
domain.

Multidimensional  time-frequency  distributions  are
employed in order to determine the nonstationary regions.
As it will be shown later, the S-method can be efficiently used
to analyze dynamics of the regions of speech signals and
images. Although the cross-terms are usually undesirable in
the time-frequency analysis, they have found to be useful in
watermarking. Namely, they may increase performances of a
speech watermark detector, and also, increase the efficiency
of dynamic regions selection within an image.

The watermark is obtained at the output of a nonstation-
ary filter as follows:

Wiey (7) = > Ly (7, @)STFT, (7, @), (50)

where STFT, is the short-time Fourier transform of a
multidimensional random sequence p. The function Ly
contains the information about the components within the
region D!, It is used to create the watermark that will be
adjusted to these components. Thus, we may start with
an arbitrary random multidimensional sequence p(7') and,
by using Ly(7, @), its multidimensional time-frequency
characteristic is modeled.

The region D}, will be used for watermarking if a time-

frequency distribution TFDp: (7, w) contains a sufficient
number of components whose energy is above a floor value:

No{ | TEDp, (7, @) | > $} > Noge;. (51)

The function No{} returns a number of components that
satisfy the condition within the parenthesis, while Nog. s is
the reference number of points used to make the decision
about the region nonstationary. The parameter S is an energy
floor that can be determined as a portion of the TFD
maximum:

S = Alo}»logm(max(TFDDgn(7,1}'))). (52)

A value of A between 0 and 1 is taken.
The components’ positions within D?, are identified by
using the support function:

1, for (7¥,w) € D",

Ly (7,@) ={ (53)

0, otherwise.

An additional function is defined in order to consider the
significant components only:

o 1, for (7,w): ‘TFDD;L"(_r’,@’)’ > &,
L, (7, @) = - -
0, for(r,w):’TFDDyn(r,w))sf.

(54)
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The energy threshold is denoted by &. Thus, the resulting
support function is defined as

Lu(7,®) =Ly, (7, @) N Ly, (7, @). (55)

The watermark embedding is done according to

—

STFT,, (7, w) = STFT.(7, @) + STFT,, (7, @), (56)

where STFT,, STFT, and STFT,,,, are the short-time Fourier
transforms of the multidimensional watermarked data, the
host data, and the watermark, respectively.

Note that when compared to the signal domain, in the
multidimensional time-frequency domain the number of
coefficients that contain the information about the water-
mark is significantly increased. Consequently, the detector
response will be enhanced. The standard correlation detector
in the multidimensional time-frequency domain is defined as

Det = > > STFTy, (7, @)STFTy,, (7, ®@). (57)

roow

The multidimensional time-frequency domain-based detec-
tor provides a low probability of error, even when the
number of watermarked samples in the signal domain is
small.

3.2.1. Digital Audio Signal. Let us consider the voiced part of
a speech signal. The region

D = {(t,a)) it e (t1,f2),a) S (w],wz)} (58)

is determined by the start and the end instances #; and t,
of the voiced speech, as well as by the interval w € (w;, w)
that contains the strongest formants. The S-method is used
to define the support function [41, 53]:

for (t,w) € D, SM(t,w) > &,

1,
Ly(t,w) = { (59)
0, for (t,w)¢& D or SM(t,w) < &.

The region appropriate for watermarking is shown
in Figure 12(a). The corresponding support function
(Figure 12(b)) is created by using the value & =
A10Mog0(max(SME@)) yith ) = 0.7.

The watermark is embedded in the time domain: x,,(n) =
x(n) + w(n). The time-frequency representation of the
watermark is shown in Figure 12(c).

As expected, the time-frequency characteristics of the
watermark follow those components of the speech signal.
Consequently, the watermark is inaudible within the speech
signal.

Next, a music signal of the flute is considered,
Figure 13(a).

In this case, the fourth-order complex-lag distribution is
more appropriate for the region selection than the S-method,
because it better follows the frequency variations in the signal
(Figures 13(a) and 13(b)). Thus, by using this distribution an
inaudible watermark is created.

Note that an important improvement in the watermark
detection is obtained if the cross-terms are included [41].

15

Namely, the watermark is present within the cross-terms, as
well. A standard correlation detector in the time-frequency
domain that includes the cross-terms can be written in the
form

N N o o
D = > SMj1, SMy + > SMy SMa). (60)
i=1 ij=1
i#j

The second term in (60) is the result of cross-terms.

Note that this form of detector can be used in other
existing detector structures.

The following measure of the detection quality

Dwr - wa
VOuwr® + Oww?

is used. The mean value and standard deviation of the
detector response are denoted by D and o?. Indices wr and
ww indicate the right and the wrong keys, respectively.

Efficiency of the proposed procedure is demonstrated on
various examples. The results for speech signals with max-
imum frequencies of 4kHz and 11,025kHz are presented
n [41]. This approach provides a reliable detection for a
high SNR (SNR = 32 dB has been used) and under various
attacks. The watermark sequence was created by using a
pseudorandom Gaussian sequence of 1000 samples.

The probability of error was of order 1077 for: MP3
(constant bit rate 8 kbps and variable bit rate 75-120 kbps are
considered), delay monolight echo (180 ms, mixing 20%),
echo 200 ms, deep flutter (deep 10, sweeping rate 5kHz),
amplitude (normalize 100%), and additive Gaussian noise
(SNR = —35dB). The worst case is obtained for pitch scaling
+5% and it is of order 107>, The results for other attacks
(time stretch +15%, wow delay 20%, wow delay 10% and
bright flutter, MP3 variable bit rate 40-50 kbps) are of order
107,

R= (61)

3.2.2. Digital Image. The space-spatial-frequency analysis
(two-dimensional time-frequency analysis) is used to select
pixels that belong to the image nonstationary regions [42].
The two-dimensional S-method is used as a space-spatial
frequency distribution [54]:

sM(nl) ny, kl) kZ)
= SPEC(l’ll, nyp, k1,k2)

L L
+ 2Re<| > > STFT(ny, o, ky + in, ko + i)

i1=01=1

XSTFT* (ny, na, ky — i1, ky — iz)]’ (62)

L L
+ ZRC‘[ Z Z STFT(I’Z], I’lz,kl + il,kz + 12)

i1=1i=0

XSTFT*(I’ll,Vlz, k1 - i], k2 - 12)]’
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FIGURE 12: (a) Region selected for watermarking. (b) Support function. (c) Time-frequency representation of the watermark. The S-method

is used.
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FIGURE 14: (a) Dynamic region. (b) Stationary region (the spectrogram—based characterization-the second column; the S-method-based

characterization—the third column).

By increasing the size L of a two-dimensional window,
the cross-terms start to appear. Thus, when compared to
the spectrogram, the number of frequency components
increases, hence making the region characterization easier. A
pixel that belongs to the dynamic region can be selected by
using the following procedure.

(1) The S-method is calculated for a N X N window
(windows of size 9 X 9 up to 16 X 16 are used).
The middle frequency range D?, = {(w;,w2) : 11 <
w1, wy < 17} 1s used.

(2) The energy floor S is obtained by using the experi-
mentally determined A = 0.7.

(3) The region is considered as nonstationary if:
No{ | SMpy (m1,m, @1, 02)| > S} > Nowey,  (63)

where Nog. f = An, while # is the total number of the
points within the region DZ,.

The examples where the pixels belong to the dynamic and
stationary regions, respectively, are shown in Figures 14(a)
and 14(b).

The procedure for watermark embedding is just a
two-dimensional case of the presented multidimensional
approach. Namely, a two-dimensional support function is
used:

L(ny, np, w1, w2)
L

= .

The S-method as a two-dimensional time-frequency distri-
bution is applied, while the energy threshold is & = .

The watermark is shaped by the space-spatial frequency
characteristic of the image components:

for (w1, w2) : ISM(n1, np, wy, wy)| > S, (64)

for (w1, wy) : [SM(n1, 12, w1, w2)| < S.

Wiey(11,12) = > > STFT (11, 12, w1, w2) L(11, 12, w1, @3).

w] w2

(65)

A two-dimensional pseudorandom sequence STFT, is used.
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The watermark embedding and detection are performed
in the space-spatial frequency domain:

Ly(ni,my) = Z ZSTFTI(”h 2, W1, W3)

w) @2

+ STFTWkCY(nla ny, Wi, wZ)a
(66)
Det =Z ZSTFTIW(nl, Ny, W1, W)

W) W2

X STFT,, (11, n2, w1, @3).

This procedure is tested on several images (Lena, Peppers,
Boat, F16, and Barbara), under various attacks (JPEG80-
JPEG40, Median 3 X 3, Median 5 X 5, Average 3 X 3,
Impulse noise, Gaussian noise, Lightening, and Darkening).
The PSNR was around 50 dB. The number of the selected
pixels varied from 3304 for F16 to 7833 for Barbara. The
probability of error was compared with the standard DCT-
based procedure (with different detector forms), where
22050 coefficients are used. It was shown that the proposed
procedure significantly outperforms the standard DCT pro-
cedures.

3.2.3. Digital Video. Observe that the proposed approach
can be also used for video signal watermarking. The two-
dimensional and one-dimensional time-frequency distribu-
tions are combined in this case. Namely, the stationary pixels
and stationary regions around them are selected by using the
two-dimensional analysis, as it was described in the previous
subsection. Then, the time dependent sequence I;(x,y) =
[L(x,¥), L(x, ¥),...,Ix(x, y)] is produced by taking the
stationary pixels at the position (x, y), along K consecutive
frames. Based on I;(x, y) the frequency modulated signal is
created as

2(t) = elHIny)~L(xy)) (67)

where I;(x,y) = mean(I;(x,y)), while g is a constant.
The stationarity of the selected pixels, along the time axis,
is examined by using the one-dimensional S-method. The
experiments show that the minimal number of pixels for
reliable watermark detection is about 600. This can be
easily achieved, even for a very short video sequence (note
that more than 2500 stationary pixels are obtained for a
signal of duration of 2s in the example provided in [42]).
This approach was tested under the presence of MPEG4
compression. The obtained probabilities of errors were
found to be within the range 10#-107>.

4. Conclusion

An overview of most important time-frequency analysis
techniques is presented. An appropriate distribution selec-
tion procedure for a specific type of signal is discussed.
Time-frequency-based watermarking algorithms for digital
audio, digital image, and video are reviewed, as well. The
watermark is either a signal with specific time-frequency
characteristics or a pseudonoise sequence shaped according

EURASIP Journal on Advances in Signal Processing

to the time-frequency characteristics of the host signal. The
main advantages of the time-frequency domain over the
Fourier, DCT, and signal domain are emphasized. Finally,
the presented theory could be used to generalize the existing
watermarking approaches defined in either the Fourier or the
DCT domain.
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