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Region covariance descriptor recently proposed has been approved robust and elegant to describe a region of interest, which
has been applied to visual tracking. We develop a geometric method for visual tracking, in which region covariance is used
to model objects appearance; then tracking is led by implementing the particle filter with the constraint that the system state
lies in a low dimensional manifold: affine Lie group. The sequential Bayesian updating consists of drawing state samples while
moving on the manifold geodesics; the region covariance is updated using a novel approach in a Riemannian space. Our main
contribution is developing a general particle filtering-based racking algorithm that explicitly take the geometry of affine Lie groups
into consideration in deriving the state equation on Lie groups. Theoretic analysis and experimental evaluations demonstrate the

promise and effectiveness of the proposed tracking method.

1. Introduction

Visual tracking in an image sequence, which is now an active
area of research in computer vision, is widely applied to
vision guidance, surveillance, robotic navigation, human-
computer interaction, and so forth. Dynamic deformation of
object is a distinct problem in image-based tracking.
Conventional correlation-based trackers [1, 2] use either
a region’s gray information or edges and other features
as the target signatures, but it is difficult to solve the
problem of object region deformation in the tracking.
Over the last 10 years, numerous approaches [3-10] have
been proposed to address this problem. The main idea of
them is molding geometric parameter models for the image
motions of points within a target region. The parameter
models including affine model, projective model, or other
nonlinear models. The classic Lucas-Kanade tracker [3,
4] and Meanshift tracker [5] get the model parameters
through gradient descent which minimizes the difference
between the template and the current region of the image.
These methods are computationally efficient. However, the
methods may converge to a local maximum, they are

sensitive to background clutter, occlusion, and quick moving
objects. These problems can be mitigated by stochastic
methods which maintain multiple hypotheses in the state
space and in this way, achieve more robustness to the
local maximum. Among various stochastic methods, particle
filters [5-10] are very successful. Particle filters provide
a robust tracking framework as they are neither limited
to linear systems nor require the noise to be Gaussian.
Particle filters simultaneously track multiple hypotheses and
recursively approximate the posterior probability density
function in the state space with a set of random sampled
particles.

Many papers, such as [5-10] utilize particle filter method
to track deformable target. They use affine transform as
parameter model, and the six affine parameters were treated
as a vector. However, the affine parameters belong to spaces
which are not vector spaces, but instead a curved Lie group.
In general, the system state of the particle filter lies in
a constrained subspace whose dimension is much lower
than the whole space dimension. Only a few recent papers
have tried to use the geometry of the manifold to design
Bayesian filtering algorithms [11, 12]. However, there is little



discussion in the literature using the intrinsic geometry of
manifold to develop particle filter-based tracking algorithms.

Object representation is one of major components for a
typical visual tracker. Extensive researches have been done
on this topic. Recently Tuzel et al. [13, 14] proposed an
elegant and simple solution to integrate multiple features. In
this method, covariance matrix was employed to represent
the target. Using a covariance matrix to represent the target
(region covariance descriptor) has many advantages: (1)
it embodies both spatial and statistical properties of the
objects; (2) it provides an elegant solution to fuse multiple
features and modalities; (3) it has a very low-dimensionality;
(4) it is capable of comparing regions without being
restricted to a constant window size; and (5) the estimation
of the covariance matrix can be easily implemented.

In this paper, we integrate covariance descriptor into
Mont Carlo technique for visual tracking, study the geometry
structure of affine Lie groups, and propose a tracking
algorithm through particle filtering on manifolds, which
implement the particle filter with the constraint that the
system state lies in a low dimensional manifold, The
sequential Bayesian updating consists drawing state samples
while moving on the manifold geodesics; this provides
a smooth prior for the state space change. The regions
covariance matrices are updated using a novel approach in
a Riemannian space. Theoretic analysis and experimental
results shows the promise and effectiveness of the approach
proposed.

The paper is organized as follows. In Section 2, The
mathematical background is described. Section 3 shows the
object regions descriptor and the new update solution for
those descriptors. Section 4 describes the tracking algorithm
using geometric particle filtering. Results on real image
sequences for evaluating algorithm performance are dis-
cussed in Section 5.Section 6 concludes this paper.

2. Manifold and Lie Group

The tools used here come primarily from differential geom-
etry. For more information on these subjects, the reader is
referred to [15, 16].

A manifold is a topological space that is locally similar to
an Euclidean space. Intuitively, we can think of a manifold as
a continuous surface lying in a higher dimensional Euclidean
space. Analytic manifolds satisfy some further conditions of
smoothness [16]. From now onwards, we restrict ourselves
to analytic manifolds and by manifold we mean analytic
manifold.

The tangent space, Ty at x, is the plane tangent to the
surface of the manifold at that point. The tangent space can
be thought of as the set of allowable velocities for a point
constrained to move on the manifold. For d-dimensional
manifolds, the tangent space is a d-dimensional vector space.
An example of a two-dimensional manifold embedded in
R® with the tangent space T is shown in Figure 1. The
solid arrow A is a tangent at x. The distance between two
points on the manifold is given in terms of the lengths of
curves between them. The length of any curve is defined
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FIGURE 1: Riemannian Exponential Mapping.

by an integral over norms of tangents [17]. The curve
with minimum length is known as the geodesic and the
length of the geodesic is the intrinsic distance. Parameter
spaces occurring in computer vision problems usually have
well-studied geometries and closed form formulae for the
intrinsic distance are available. Tangents and geodesics are
closely related. For each tangent A € Ty, there is a unique
geodesic starting at x with initial velocity A. The exponential
map, exp, maps A to the point on the manifold reached by
this geodesic.

A Lie group is a group with the structure of an analytic
manifold such that the group operations are analytic, that is
the maps

GxG—G (X,Y)— XY,

G—G X—X1, W

are analytic [15]. The local neighborhood of any group
element G can be adequately described by its tangent-space.
The tangent-space at the identity element forms its Lie
algebra.

The set of nonsingular n X n square matrices forms a
Lie group where the group product is modeled by matrix
multiplication, usually denoted by GL(n,R) for the general
linear group of the order n. Lie groups are differentiable
manifolds on which we can do calculus.

In our task, we use affine transformation as parameter
model. The set of all affine transformation forms a matrix
Lie group.

3. Region Covariance Descriptor

Let I be the observed image with size of W X H, and F be
W X H x d dimensional feature image extracted from I

E(x,y) = ¢(I,x,), (2)

where ¢ can be any mapping such as color, gradients, filter
responses, and so forth. Let {zx}x—;..., be the d-dimensional
feature points inside a given rectangular region. The region
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is represented by the d X d covariance matrix of the feature
points

Cr =

S |~

S o)z ) 3
k=1

where # is the number of pixels in the region. y is the mean
of the feature points.
In our task, we define ¢ as

[x » I L 1, LL] (4)

where x and y are the pixel location in R; I is the gray value;
I and I, are first derivatives of I; In this way, the region R is
mapped into a 6 X 6 covariance matrix.

In a tracking process, the objects appearance changes
over time. This dynamic behavior requires a robust temporal
update of the region covariance descriptors and the defini-
tion of dissimilarity metric for the region covariance. The
important question here is how to measure the dissimilarity
between two region covariance matrices and how to update
the regions covariance matrix in the next time slot. Note that
the covariance matrices do not lie on Euclidean space. For
example, the space is not closed under multiplication with
negative scalars. So, it is necessary to get the dissimilarity
between two covariance matrices in a different space. To
overcome this problem a Riemannian Manifold is used.

3.1. Dissimilarity Metric. The dissimilarity between two
regions covariance matrices can be given by the distance
between two points of the manifold M, considering that
those points are the two regions.

The covariance matrix, which is symmetric positive
definite matrix, forms a Riemannian manifold. According to
[14], we define a Riemannian metric like that

(9,2) :tr<X71/2yXflzX71/2). (5)

The exponential map associated to the above Riemannian
metric is

expy () = XM exp (X V2yx 1) X2 (6)
By (6), we can obtain the logarithm map
y =logy(Y) = X2 log(X2YX2)x"2,  (7)
Submit (7) to (5)
P = [ylly = (2«
= (logy(Y),logy(Y)) . 8)
= tr(log’ (X 2YX - 1/2)).

Furthermore, (8) is equivalent to

d
> log' (X, Y), (9)
k=1

dX,Y) =

where Aj are the generalized eigenvalues of X and Y.

3.2. Covariance Update. A solution for the covariance matri-
ces update was proposed in [14], that is based on the
estimation of the points mean on a Riemannian Manifold,
where each point corresponds to a covariance matrix.
This mean estimation is obtained using a gradient descent
approach. In this paper, we propose a novel solution for the
covariance matrix update, that is based on the mean of the
new covariance matrix and the last covariance updated. If y
is the velocity that takes us from X to Y, y/2 will be the half
distance to point C. Using (6) and (7), we have

6 — Xl/2 exp<Xfl/2 (%y)xfl/2>xl/2
_x2 exp(% log<X‘V2YX‘V2))XV2 (10)

_ (X1/2YX1/2) 1/2,

where C is the average distance between two points on a
Riemannian Manifold (the updated covariance matrix). This
update means that the present covariance is more important
than the previous covariances. Since we are tracking objects
that can change over time, the last information about them
is more reliable.

4. Tracking Model

The visual tracking problem is cast as an inference task in a
Markov model with hidden state variables. The state variable
St describes the affine parameters of the target at time t.
Given a set of observed images I,y = {Ii,...,I;}, we aim
to estimate the value of the hidden state variable S;. Using
Bayesian theorem, we have the familiar result

P8t | Iiemy) = JP(St | St—l)p(st—l | Ii4-1)dSi-1, (11)

P(It | St)P(St | In¢-1)
pUy | Tny—1) '

p(Se | Iiy) = (12)

Equation (11) is called the prediction equation and (12) is
called the update equation. The tracking process is governed
by the observation model p(I; | S;), where we estimate
the likelihood of S; observing I;, and the dynamical model
between two states p(S; | S¢—1).

4.1. Dynamical Model. Dynamical model, also known as
state transition model, can describe transition of object
state in tracking process. In visual tracking problems, it is
ideal to have an exact state transition model. In practice,
however approximations models are used. The deformation
and location of a target object in an image can be represented
by affine transform. In this work, the state at time ¢ consists
of the six parameters of an affine transformation. 2-D affine
transformation of the image can be written as

AR | ]
y r3 ra ||y Te



where (x,y) and (x"y") denote the location of the corre-
sponding points between two images, [ 1 ;2 | isa 2X2 nonsin-
gular matrix and translation vector [ |, (r1, 72,73, 74,73,76)
denotes affine transformation parameters. The transforma-
tion can be expressed in homogeneous coordinates as

r. 1 rs
r3 14 T6|. (14)
0 0 1

A(r) =

A(r) specify the displacement between S;—; and S;, we define
Vi as velocities between S;—; and S;, which specify the
motion. These defines are analogous to the vector space case
in that the velocities are determined by the tangent vectors
along geodesics connecting the observed points (S¢). Then
the state transition model is of the following form:

St =81 EXP(Vt—l)» (15)
Vi= Vi1 + i, (16)

where Sy is a discrete-time trajectory on a six-dimensional
affine Lie group, Vi, is a velocity on the corresponding
Lie algebra, u;, are Gaussian white zero-mean stochastic
processes.

The tracking algorithm will not require the explicit
functional form of the prior density; it will be dependent on
the samples generated from the prior density. In a Markovian
time-series analysis, often there is a standard characterization
of a time-varying posterior density, in a convenient recursive
form. This characterization relates an underlying Markov
process to its observations at each observation time via a
pair of state transition equations. The following algorithm
specifies a procedure to sample from the conditional prior
p(Se | Si-1):

Algotithm 1. For some t = 2,3,..., we are given the values
for S;_, and V/_,. Fori=1,2,...M:

(1) Generate a sample of V/_;, given V{_,, according to
(16).

(2) For each sample of Vi_,, calculate S} according to S} =
L1 exp(Viop).

The Algorithm 1 consists in drawing state samples while
moving on the manifold geodesics. This geodesics sample
give a dynamics-based smoothing prior on the state transi-
tion space. Figure 2 is an illustration of this geodesics sample
process.

4.2. Observation Model. Next, we specify the probability
model for the observed images. p(I; | S;) is the likelihood
through the observation I; under the state S¢

pUL 18,) o< exp(=Al|d? (Csr Cs,) ), (17)

where C, be covariance features of the template image, and
Cs, denote covariance features at the transformation S;.
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FIGURE 2: Drawing state samples moving on the geodesics.

4.3. Sequential Monte Carlo Approach. The Monte Carlo
idea is to approximate the posterior density of S; by a
large number of samples drawn from it. Having obtained
the samples, any estimate of S; (MMSE, MAP, etc.) can be
approximated using sample averages.

A recursive formulation, which takes samples from
p(Se—1 | ILiy—1) and generates the samples from p(S; |
I1.¢) in an efficient fashion, is desirable. We accomplish this
task using ideas from sequential methods and importance
sampling. Assume that, at the observation time t — 1, we
have a set of M samples from the posterior, {Si_, : i =
1,2,...,M} £8i_| o< p(S;—1 | L1.—1). Following are the steps
to generate the set (St:i=1,2,...,M}.

Prediction. The first step is to sample from p(S; | Ijy-1)
given the samples from p(S;—1 | I14—1). According to (11),
(St | Ii—1) is the integral of the product of a marginal and a
conditional density. This implies that, for each element Si_,,
by generating a sample from the conditional, p(S; | Si_;) we
can generate a sample from p(S; | I1-1). In our case, this
is accomplished using Algorithm 1. Now we have samples
{ﬁ} from p(S¢ | I1—1); these samples are called predictions,
but we have used a geodesics prediction different to classic
particle filter on vector space.

Resampling. Given these predictions, the next step is to
generate samples from the posterior p(S; | I ;). For this,
we utilize importance sampling as follows. The samples from
the prior p(S; | I4—1) are resampled according to the
probabilities that are proportional to the likelihoods p(I; |
Si). Form a discrete probability mass function on the set
(Sii=1,2,...,M}

i p<It | §1f)
wy = Z?;P(It|§{>. (18)

Then, resample M values from the set {§}, g?, AU g{”}
according to probability wi. These values are desired samples
from the posterior p(S; | Ii;). Denote the resampled set by
{Si:i=1,2,...,M}, S oc p(S; | Iy).
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Averaging on the Lie Group. Now that we have M samples
from the posterior p(S; | I4), we can average them
appropriately to approximate the posterior mean of S;.

It may be recalled that for a vector space, the sample
mean or average of a set {S',$%,...,SM} is given by S =
1/M S, S\, However, such a notion cannot be applied
directly to elements of a group manifold. There are at least
two ways of define a mean value on a manifold: extrinsic
means and intrinsic means. The extrinsic mean depends on
the geometry of the ambient space and the embedding. The
intrinsic mean is defined using only the intrinsic geometry
of the manifold. In general, the intrinsic average is preferable
over the extrinsic average but is often hard to compute due
to the nonlinearity of the Riemannian distance function
and the need to parameterize the group manifold. However,
as we will see here, for matrix Lie groups the intrinsic
average can be computed efficiently. In several applications,
the Lie algebra is used for computing intrinsic means of
points having Lie group structure [17-19]. We adopt the
similar idea to obtain the intrinsic mean of the affine lie
group.

The “true” intrinsic sample mean is given by

M
S =arg minZdz(Si,S> SeG. (19)

i=1

It will be recalled that for matrix groups, the Riemannian
distance is defined by the matrix logarithm operation, that
is for matrix group elements X and Y we have

d(X,Y) = [[log(YX1)]|. (20)

4.4. Detail of Tracking Algorithm

Algorithm 2. (1) Initialize:

Generate samples {Sf),i = 1,2,...,M} from the prior
distribution p(Sp). Set initial weights w) = 1/M.

(2) Prediction:

Draw {gi,i = 1,2,...,M} from the conditional prior
according to Algorithml.

(3) Importance Weights:

Compute the probability w},i = 1,2,..., M according to
(18).

(4) Resampling:

Generate M samples from the set (8,i = 1,2,...,M}
with the associated probabilities {wi,i=1,2,...,M}.Denote
these samples by {Si, i=1,2,...,M}.

(5) MMSE Averaging:

Calculate the sample average according to (19) which is
the target state. Set t = t + 1 and go to step 2.

5. Experimental Results

In order to evaluate the performance of the proposed
tracking algorithm based on geometric particle filtering and
the new update method. We start by comparing proposed
algorithm (referred as GPF) with the tracking algorithm
based on Particle filtering on vector space (VPF) [5-10] with

the same real image sequences. After that, we evaluated the
proposed update method with the one previously proposed
in the literature. We also tested the proposed algorithm
under varying illumination conditions. These algorithms are
implemented in C++ running on an Intel Core-2 2.5GHz
processor with 2 GB memory.

5.1. Compared with VPF. Two typical image sequences where
the objects undergo large changes in pose and scale were
tested using GPF and V PF. Thus, the performance of the two
algorithms has been compare with the same experimental
setup.

The first sequence contains 150 frames of images, the
size of each frame is 768 X 576 and the size of template
is 51 x 42. The target to track undergo large scale change
in the sequence. For the particle filtering in the visual
tracking, the number of particles is set to 60. The Standard
Deviations of the six affine parameters in 16 are assigned
as (0.04,0.003,0.003,0.04,4,4). The final tracking results of
GPF and VPF are shown in Figure 3. For a better visualiza-
tion, we just show the tracking results of four representative
frames 52, 87, 135 and 148. The frame number is shown
on the top left corner of each image. The value below each
image is the likelihood of the matching, the smaller the
matching error, the larger the likelihood. Figure 4(a) shows
the likelihood curves.

From Figure 3, we see that the proposed tracking algo-
rithm exhibits a robust tracking result and the tracking
window adapt with the scale change of the target. While VPF
tracker begin to drift away form the target form frame 135.
This due to the fact that the VPF treats the parameter space
as a whole. There is not enough observations to provide
a reliable estimate. While GPF consider the geometry of
the parameter space, this prior of smooth changes of the
parameter space. From Figure 4(a), we see that likelihoods of
GPF tracker are always larger than VPF tracker. The second
sequence contains 370 frames of images, the size of each
frame is 352 x 420 and the size of template is 60 X 40.
The target to track experiences large rotation change and
shear change in the sequence. The number of particles is set
to 60. The Standard Deviation of the six affine parameters
in (16) are assigned as (0.04, 0.0003, 0.003, 0.04,4,4). The
final tracking results of GPF and VPF are shown in Figure 5.
Like sequence 1, we just show the tracking results of four
representative frames 165, 281, 337 and 364. We see that the
proposed tracking algorithm exhibits a robust tracking result
and the tracking window adapt with the deformation of the
target. While the tracking window of VPF can not enclose
the target well. So, the likelihoods are smaller than GPF.
Figure 4(b) shows the likelihood curves. we see that in the
first 150 frames the likelihoods of the two tracker is similar,
but from 150th frame the likelihood of GPF is always larger
than VPF. This is due to the fact that the target does not
experience rotation and shear changes before 150th frame,
just translation.

In summary, we observe that the GPF tracker outper-
forms VPF in the scenarios of scale, rotation, and shear
changes of target.
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0.4606 0.4407
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135

148

0.3964 0.3665

135 148

0.497 0.4782

(b)

0.4532 0.4557

F1GURk 3: Tracking results of sequence 1: (a) tracking using VPF; (b)tracking using GPF.

Likelihood

50 100 150

Frame

--- VPF
— GPF

(a)

Likelihood

400

--- VPF
— GPF

(®)

FIGURE 4: Performance comparison between VPF and GPF: (a) sequence 1; (b) sequence 2.

5.2. Update Method. To evaluate the effectiveness of the
proposed update solution, we compare the result of it with
the ones obtained by the Porikli update proposed in [14].
We compare the likelihood curves between above two image
sequences; the results were obtained by just changing the
update method.

Figure 6 shows the likelihood curves of the two update
methods. From Figure 6, we see that likelihoods curves are
similar; this means the two updates are equivalent.

However, the distinct advantage of this new update
method is the time execution. In Table 1, we show the

results in milliseconds of the two updates methods. The
Porikli update time execution was measured considering a
stack of five regions covariance matrices. The new update is
much faster than the one proposed in [14], with an average
performance of 0.6 ms.

5.3. lumination Changes. To analyze the robustness against
the illumination changes using the covariance descriptor,
we have used the algorithm on several sequences with
illumination changes. One of which is a vehicle driving at
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0.4031 0.3067

0.2891 0.2996

(a)

0.4637 0.3927 0.3758 0.3665

(b)

F1GURE 5: Tracking results of sequence 2: (a) tracking using VPF; (b) tracking using GPF.

0.65

0.6

Likelihood

0.5

0.45 |

0.4

Frame

- -~ Porikli update
—— New update

(a)

Likelihood

0' 2 1 1 1
0 100 200 300 400
Frame
- -~ Porikli update
—— New update

(®)

FIGURE 6: Performance comparison between two update methods: (a) sequence 1; (b) sequence 2.

TasBLE 1: Execution time of two update methods size.

Method Execution time (ms)
Porikli update 129.6
New update 0.6

night, shown in Figure 7(a). Despite the difficult illumina-
tion conditions, our algorithm is able to track the vehicle
well. We also test the same image sequence using the image
grayscale values. Tracking results are shown in Figure 7(b).
we can see that from 280th frame, the tracking window drift
away from the target, the red dashed window is the real

target. So the tracking algorithm using covariance descriptor
outperformed gray-based tracking algorithm under illumi-
nation changes.

5.4. Experimental Analyses. The algorithm described in the
paper consists of three components.

(1) We develop a general particle filtering based tracking
algorithm that explicitly take the geometry of affine
Lie groups into consideration in deriving the state
equation on Lie groups. This one is our main
contribution and the dominating factor in improving
the tracking performance.
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0.5448 0.4326

0.3294 0.2438

(a) Tracking using image grayscale

0.5448

0.4429

0.4281 0.4355

(b) Tracking using covariance descriptor

FIGURE 7: Vehicle moving in the night time with large illumination changes.

(2) We use region covariance descriptor to model objects
appearance, the edge-like information more robust
to the illumination changes than the image grayscale
can be simultaneously considered with the image
grayscale information and pixel spatial information,
and the consequence is the quite robust tracking
results as seen in Figure 7.

(3) We updated region covariance using a novel approach
in a Riemannian space. The new update method has
improved the real-time performance.

So the order of importance to the performance among
these components is 1, 2, 3.

6. Conclusion

In this paper, we have proposed a visual tracking method,
which integrate covariance descriptor into Mont Carlo
tracking technique for visual tracking. The distinct advantage
of this new approach is carrying Sequential Monte Carlo
method over the affine Lie group, which consider the
geometry prior of the parameter space. Theoretic analysis
and experimental results shows the promise and effectiveness
of the approach proposed.

This paper highlights the role of Monte Carlo methods in
statistical inferences over affine lie group for visual tracking
problem. There are several directions for extending the
new idea. One is to consider more general differentiable
manifolds beyond the affine lie group. In addition, we can
deepen and broaden this research to other image processing
problems.
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