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This paper presents a primitive solution with novel scheme and algorithm for Underwater geoMagnetic Navigation (UMN),
which now occurs as the hot-point in the research field of navigation. UMN as an independent or supplementary technique can
theoretically supply accurate locations for marine vehicles, but in practice there are plenty of restrictions for UMN’s application
(e.g., geomagnetic daily variation). After analysis of the theoretical model of geomagnetic positioning in the correlation-
matching mode from the viewpoint of pattern recognition, this paper proposed an appropriate matching scenario and a
combined positioning algorithm for UMN. The subalgorithm of Hausdorff-based Relative Correlation (RC) corresponding to
the pattern classification module implements the coarse positioning, and the subalgorithm of Isograms Equidistance-Segmenting
the Intersection Lines (IESILs) associated with the module of feature extraction continues the fine positioning. The experiments
based on the simulation platform and the real-surveyed data both validate the new algorithm, and its efficiency and accuracy are
also discussed. It can be concluded that the work introduced in this paper gives an initial and real validation of UMN’s potentiality.

1. Introduction

The technique of Underwater geoMagnetic Navigation
(UMN) [1] recently has become a hot-point in the research
area of navigation. This trend will develop further with
the unreliability of the Global Navigation Satellite System
(GNSS) increasing [2], and with the requirements growing
in some special conditions (e.g., submarine exploration) [3].
It even has been deduced that only the Geophysical Field of
Earth (GFE) referencing methods (UMN is a typical one) can
enable Unmanned Underwater Vehicles (UUV) to navigate
accurately over large areas [4, 5]. The sea turtles using
geomagnetic fields for navigation [6–9] seem to convince
people more to apply UMN. Moreover, as an important
supplementary means, UMN can also supply an aided
solution for rectifying Inertial Navigation System’s (INS’s)
errors which accumulate with time [10]. UMN also can be
integrated with other methods [11] to improve the accuracy
of marine navigation. Overall, all influences factors causing
voyage drift (such as water currents or sonar failure) are
taken for granted in a “black-box” in this paper, and UMN as

an independent methodology will be explored to supply the
accurate positioning information to rectify the whole “black-
box.”

After analysis of the positioning algorithms adapted or
established for UMN after the literature review, it can be
summarized that batch-correlation is one kind of fundamen-
tal schemes [12–14]. The basic idea is to match the real-
time sampling sequence with the picked-out geomagnetic
characteristic sequences from the presurveyed maps (called
for-matching sequences). The for-matching sequences are
often of total intensity, and one of them is corresponding
to the real-location sequence. The current locations of
vehicles can be determined inversely by seeking the extreme
of the correlation function, while the estimated “hunting
window” (e.g., according to INS’s parameters) can reduce
the traversal range for extracting the for-matching sequences
[15].

But the traditional positioning algorithms developed for
UMN cannot let Marine geoMagnetic Field (MMF) play its
full role as a good location-referencing source. Currently
the often—referred correlation—type algorithms include the
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Vector Searching algorithm (VS) [12] adapted from the TER-
rain COntour Matching (TERCOM) algorithm originating
from terrain-aided navigation [16], the improved ICP (i-
ICP) algorithm [13] transformed from the Iterative Closest
Point (ICP) algorithm initially for images registration [17],
and so on. But each of these algorithms applied on MMF
still suffers from some limitations. In the critical conditions
which allow only one-time matching, VS even cannot supply
the relatively accurate heading-angle. i-ICP is degraded by
its complex matrix transformation of shift and rotation.
Therefore, a more effective positioning algorithm should be
built with consideration of MMF’s inherent properties.

Simultaneously there are also plenty of practical restric-
tions hampering UMN’s application (e.g., the disturbances
caused by geomagnetic storm). The inherent magnetic fields
of marine vehicles sometimes can locally disturb MMF, and
this may make magnetometers sample the false informa-
tion which is supposed to reflect MMF’s real distribution.
Additionally, geomagnetic fields have daily, monthly, and
even annual variations. These are another kind of large
influence factors to UMN and sometimes even make UMN
unavailable. The improvements on hardware cannot solve
all these issues. So, the positioning algorithms need some
extra procedures to tolerate these undesirable factors, or even
some novel and robust algorithms shall be developed from
the beginning.

Consequently, from the viewpoint of pattern recognition,
the theoretical models of the positioning algorithms in the
matching mode are analyzed in an innovative way. Based on
these analyses, this paper proposed an appropriate matching
scheme and a combination positioning algorithm for UMN.
The subalgorithm of Hausdorff-based Relative Correlation
(RC) as the pattern classification module implements the
coarse positioning and can overcome the influences of
geomagnetic variations somehow. The subalgorithm of
Isograms Equidistance-Segmenting the Intersection Lines
(IESILs) related to the feature extraction module continues
the fine positioning, which is based on the accustomed
cruising-state. The state means that marine vehicles pass
through the designated MMF reference areas in the Uniform
Linear Motion mode (ULM) intentionally, to acquire more
reliable location-associated geomagnetic information.

This paper is organized as follows. After Section 1
introducing the UMN research background, the second
section makes premises analysis for a high-performance
algorithm, by reviewing the traditional algorithms, gener-
alizing UMN’s restrictions, and analogizing the scenario of
pattern recognition. Section 3 presents the new positioning
algorithm comprising Hausdorff-based RC and IESIL. After
the experimental validations in Section 4, Section 5 will go
on with some discussions about the algorithm’s accuracy and
efficiency. Then some conclusions are achieved.

2. Premises Analysis

To establish a positioning algorithm appropriate for UMN
with high performance, it is necessary to clarify the shortages
of the traditional algorithms and to grasp the specialties of
MMF. After these premises are made clear, they can work as

the cut-points for a new and suitable positioning algorithm.
Besides, a more proper scheme based on MMF’s properties
can be instructive to a more powerful algorithm. The
following work in fact is an expansion of three-aspect review
of traditional algorithms, analysis of MMF’s specialties, and
proposal for a new scheme.

2.1. Algorithms Review. From the Introduction, it can be
learnt that the two typical positioning algorithms for UMN
in batch-correlation mode are VS and i-ICP. Therefore, the
reviews on these two algorithms can representatively give the
shortages of the algorithms of this kind.

The brief idea of VS [12, 14] is based on the assumption
of the for-matching sequences parallel with the continuously
recorded trajectory (usually assuming the one indicated by
INS). This simplification will introduce some errors into the
matching results inherently, because INS’s output of heading
angle generally deviates from the real one. Continuous
matching may make over this fault to some extent, but in
the special conditions which urgently allow for only one-
time matching or suffer from large measurement errors, the
results after this method even cannot satisfy the requirement
of medium-level accuracy during navigation.

The scenario of i-ICP [13] is by transforming recursively
the temporary trajectory, which is connected by the projected
points on the corresponding isograms, to approximate
the real one. Its brief procedures contain large matrix
transformation, singular value decomposition, orthogonal
matrix calculation, and so on. These complex operations
as well as the distortion of isograms sometimes lead to the
embarrassment of solution loss. i-ICP is complicated and is
not desirable for UMN under the demanding of immediate
positioning, and the rasterized storage of MMF maps with
large grid spacing may add the difficulties more.

From the perspective of algorithm implementation, the
new algorithm for UMN needs to avoid the ill effects
of parallel assumption in VS and complex transformation
in i-ICP. The omission of the yawing errors in VS can
be overcome by choosing the for-matching sequences in
all possible directions, and the excess of the projecting
operations in i-ICP shall be reduced by restricting each for-
matching sequence into a line. The first and last isograms
in the “hunting window” can reduce the possible directions
into a reasonable extent, and marine vehicles generally can
keep cruising in a line. Hereupon, modifying the positioning
algorithms with some unused conditions such as cruise
pattern is possible to improve their performance.

2.2. Restrictions Analysis. The factors influencing UMN
remarkably include marine vehicles’ own magnetic fields, the
characteristic diversity of MMF maps, and the fluctuations of
geomagnetic fields. The first two issues can be solved by the
dragging-measurement mode and optimal-path planning
separately. But for the third issue, there has been no ideal
method to overcome it before.

Geomagnetic field itself has the short-time disturbances
(e.g., daily variation) and the long-term fluctuations (e.g.,
monthly variation and even annual variation). The daily
variation is illustrated in Figure 1, and long-term variation
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is exemplified in Figure 2 (a typical area with a larger
magnitude of fluctuations). The daily variation makes the
values of the real-time sampling sequence deviate from the
presurveyed geomagnetic maps (mostly after the process
of variation normalization already), with the maximum
difference value up to 40 nano-Telsa (nT) indicated in
Figure 1. The long-term variation makes the real-time sam-
pled intensity away from its presurveyed maps also, with an
accumulated deviation-value about 20 nT for half a year as
showed in Figure 2. Now neither can the daily variation be
modeled accurately, nor can the geomagnetic variations be
monitored effectively during voyage. All in all, this kind of
disturbing factors can affect the positioning results with large
errors and sometimes exerts the traditional correlation-based
positioning algorithms fail.

In terms of the premises that samplings are limited to a
certain number for each time matching, the aforementioned
deviations theoretically can be simplified into a constant
value. As alluded in Figure 1, the underlying basis of this sim-
plification can be basically proved by randomly extracting
time intervals with several tens of minutes, in which daily
variation almost keeps constant with a very little change.
Namely, the measurement sequence has a constant but value-
unknown deviation compared to the for-matching sequences
(also with other low-level noises). The simplification is
also available for monthly and annual variations. Then
the settlement is to search an effective matching criterion
to judge the coincidence of the measurement sequence
and the for-matching sequences, between which there is a
constant difference in priority but the value of the constant
is unknown. Actually, this constant-dominant difference
restricts the algorithms of recursive filtering kind [19, 20],
which have been also tried on MMFs, mostly still in the phase
of methods adaptation under relatively ideal experimental
environments with little noises now.

2.3. Scheme of Pattern Recognition. Sections 2.1 and 2.2
actually summarize the practical problems into two premises
for an effective positioning algorithm: Premise 1 is how to
assure the real-course-corresponded characteristic sequence
lying in the for-matching sequences; Premise 2 is about how
to choose the criterion function overcoming the influences of
geomagnetic fluctuations. Consequently these require us to
consider the matching process more synthetically and to seek
a new scheme as the theoretical basis for a more adaptive and
comprehensive algorithm.

As we know, the scheme of pattern recognition presents
an efficient frame for many judgment-oriented problems. In
fact, the positioning process by batch-correlation can also be
classified into the research area of pattern recognition, as in
how to approach the true objects (location here). Pattern
recognition generally contains two-module feature extrac-
tion and pattern classification, and positioning can also be
divided into these two stages. Feature extraction corresponds
to the process of searching all the for-matching sequences,
and pattern classification is related with the step of choosing
the optimal criterion function to determine the real location.

The theoretical framework, the functional operations,
and the concrete algorithms are listed in Figure 3, which
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Figure 1: Geomagnetic variation of one day recorded by Kakioka
Observatory, Japan.
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Figure 2: Geomagnetic long-term variation (for about three years)
recorded in [18].

gives an explicit scenario of the matching process for UMN
positioning algorithms. The mathematical expressions of
these two steps are generalized into

∃τ, τ ∈ {−→xi
}∩ τ −→ −→

p , i = 1, 2, . . . ,N , (1)

τ = min
{
C(τ) |τ=ti ,i=1,2,...,N

}
, (2)

where τ means the objective characteristic sequence, which
corresponds to the most accurate positioning results. Func-
tion (1) denotes the necessary condition for the optimal
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Matching

Feature extraction Pattern classification

Seeking for-matching
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Tercom and VS: for-matching sequences
parallel to INS-trajectory

ICP and i-ICP: for-matching sequences by
the closest points on isograms

. . .

MAD: maximum absolute difference

MSD: maximum squared difference
CC: correlation coefficient

entropy and improved hausdorff distance
. . .

Figure 3: Theoretical frame of the matching process in the viewpoint of pattern recognition.

positioning algorithm, and the real trajectory must be, or
close to, one of the for-matching sequences {−→xi} by τ → −→

p .
Equation (2) solves it with the goal function C(·).

After analysis based on this frame, it can be studied where
the restrictions of the traditional matching algorithms lie. VS
focuses on the module of pattern classification, while i-ICP
pays more attention on the function of feature extraction.
The scheme in pattern recognition gives a more effective
plan, which is to improve the two modules profoundly at the
same time.

Accordingly, with the scheme for matching from the
viewpoint of pattern recognition displayed in Figure 3, it
can be clarified that Premise 1 is involved with the module
of feature extraction and Premise 2 is associated with the
module of pattern classification. They are corresponding
to Sections 2.1 and 2.2, respectively, and the following
new algorithm is proposed by overcoming the problems
mentioned in Sections 2.1 and 2.2 separately.

3. Combination Algorithm

The novel combination algorithm comprises two kernel
subalgorithms: The subalgorithm of Hausdorff-based RC
corresponds to the pattern classification module, and the
subalgorithm of IESIL works as the feature extraction
module. IESIL is introduced firstly, as it can somehow avoid
the limitations embedded in the traditional correlation-type
algorithms.

3.1. IESIL. Given the course between the two end-points of
the measured sequence for positioning (named EE-course),
IESIL theoretically is to approximate the ideal operation
of equidistance-segmenting the EE-course. This is realized
by the isograms corresponding to the real-time samplings,
which are collected with equal-time intervals. Therewith,
the basic scheme is as follows. Firstly, in the “hunting win-
dow” estimated with INS’s parameters, the measurements-
corresponded isograms are extracted; secondly, searching the
intersection line with Minimum Standard Deviation (MSD)
about the lengths of its line segments, which are divided out
by the isograms. And then the accurate location and attitude

information can be obtained inversely. All the processes are
considered in the regular grid form for convenience of digital
processing, and this also fits the storage mode of most MMF
source data. The concrete steps are as follows.

Step 1 (Isograms extraction). As MMF maps are generally
stored in grid form, tracing isograms can basically be con-
sidered just within each grid cell. Suppos that the four points
(A,B,C,D) comprise one little cell, in which A serves as the
bottom-left vertex and the other three distribute clockwise
sequentially with ((x1, y1), (x2, y2), (x3, y3), (x4, y4)) as their
coordinates and (h1,h2,h3,h4) as the characteristic values
correspondingly. Then the value of any interior point G(x, y)
can be gained by the interpolation methods, such as bilinear
interpolation with

h
(
G
(
x, y

)) = (1− u)(1− v)h1

+ u(1− v)h2 + (1− u)vh4 + uvh3,
(3)

where u = (x − x3)/(x2 − x3) and v = (y − y1)/(y2 − y1).
Inversely, the contour relating to a given characteristic value
c in cells can be expressed by

(h1 + h3 − h2 − h4)uv + (h2 − h1)u

+ (h4 − h1)v + (h1 − c) = 0.
(4)

Equation (4) indicates that the isograms G(x, y) in the
cells are of hyperbolic form, which will consume a lot of
computation resources. So the point set {(xni , yni )} satisfying
h(G) = c on the four sides of each cell is alternatively
searched, and then the sought i points (called I-points) can
be connected to construct the nth isograms, respectively.
This simplification may introduce some little error into the
positioning results but can significantly reduce computation
time.

Step 2 (For-matching sequences determination]). The afore-
mentioned for-matching sequences actually need to satisfy
two conditions: (a) the whole length between the first and last
isograms is equivalent to the related EE-course DN ; (b) the
sequences must cross all the N isograms got in Step 1. If these
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two requirements are satisfied, the associated intersection-
line can be integrated into the for-matching sequences. The
detailed judgment includes two parts as follows.

Firstly, the first and last crossing-points of each
intersection-line are calculated. The first point assumes one
I-point of the first contour determined by Step 1. Then the
circle with the first point as center and DN as radius is
constructed, and the last point can be sought as the crossing
point (possibly one (x1

i , y1
i ) with several (xNik , yNik )) between

the circle and the last isogram. The process can be expressed
by (5). The first and last crossing points {(x1

i , y1
i ), (xNik , yNik )}

(named EE-points) are thus determined and added into the
chain list of EE-points. Then another I-point of the first
isogram is picked and the same process is iterated

∥
∥∥
∥
(
x1
i , y1

i

)T −
(
xNik , yNik

)T
∥
∥∥
∥ = DN ,

(
xNik − xNj

)
/
(
yNj − yNj+1

)
=
(
yNik − yNj

)
/
(
xNj − xNj+1

)
.

(5)

Secondly, based on each pair of EE-points obtained
above, the function of related intersection line can be
determined, and the crossing points with the remaining
isograms in middle (called M-points) can be acquired with
(6). If all the remaining isograms are crossed, the EE-points
and associated M-points will be joint into one for-matching
sequence. If one contour has no crossing point in the hunting
window, the calculation of M-points can be stopped for the
following contours, and the crossing points calculated before
on this possible intersection line must be abandoned. The
same operations are enforced iteratively for the whole chain
list of EE-points, and the set of M for-matching sequences
will be generated

(
xnik − x1

i

)
/
(
y1
i − yNik

)
=
(
ynik − y1

i

)
/
(
x1
i − xNik

)
,

(
xnik − xnj

)
/
(
ynj − ynj+1

)
=
(
ynik − ynj

)
/
(
xnj − xnj+1

)
.

(6)

Step 3 (Minimum MSD calculation]). Seeking the minimum
MSD about the lengths of the line segments, which is based
on (7), is the concrete mathematical implementation of the
isograms equidistance-segmenting the intersection lines. The
location (xNik , yNik ) relating to the minimum MSD will be the
most possible positioning result. The heading angle θ can
also be solved by tan θ = (yNik − y1

i )/(xNik − x1
i ), and θ will

be valued with 90◦ under the special condition xNik = x1
i

MSD
(
G
(
xni , yni

))

= min

⎧
⎨

⎩

N−1∑

n=1

(√(
xni+1−xni

)2 +
(
yni+1−yni

)2− DN

N − 1

)2
⎫
⎬

⎭
1≤i≤M

.

(7)

Step 4 (Recompare iteratively with half-spacing]). After the
intersection line with the minimum MSD is achieved, the
two points P and Q with distance of half grid interval to the
first point O on the same contour are picked out. Then Steps
2 and 3 are iterated on these two points. (A) If the minimum

MSD related with points P and Q is larger than O, the point
O can be determined as the real position. (B) Otherwise, P or
Q with less MSD replaces O, and the STEPs are iterated from
P or Q until the condition (A) is satisfied. The heading angle
can be resolved. In case of excessive iteration, the number of
times for approximating the new first point by P and Q is
restricted with a given threshold value.

The four steps depicted above can ultimately output
the solved location (xni , yni ) and heading angle θ of marine
vehicles.

3.2. Hausdorff-Based RC. IESIL can somehow diminish
the issues listed in Section 2.1. But for the restrictions in
Section 2.2, IESIL cannot overcome those problems just by
improving the feature extraction module. The deviation of
the positioning results caused by geomagnetic fluctuations
shall be reduced in the module of pattern classification by
exploring MMF’s properties.

This subsection explains RC with the traditional criteria,
such as Mean Absolute Difference (MAD) and Mean Square
Difference (MSD) in (8). It is theoretically proper for MMFs.
The idea of RC is to subtract the corresponding mean
values from all for-matching sequences and then calculate
the correlation degree between them and the measurement
sequence also with its average removed. With this preprocess,
the constant-like deviation of real-time samplings caused by
daily variation or other variations can be omitted during
the matching. As matching for each time takes just a certain
number of samplings, both averages removal can overcome
the influences of daily variation and so on

RCMAD = MAD(TR,DR)

= 1
V

∫ ∣
∣
∣
[
T
(
x, y, z

)− T
]
−
[
D
(
x, y, z

)−D
]∣∣
∣dv,

RCMSD = MSD(TR,DR)

= 1
V

∫ {[
T
(
x, y, z

)− T
]
−
[
D
(
x, y, z

)−D
]}2

dv,

(8)

where TR and DR are the measurement sequence and for-
matching sequence with their averages T and D removed.
The minimum correlation results give the real trajectory, and
the new judging function with the improved criterion of
Hausdorff distance is formulated into

RCHausdorff = H(TR,DR)

= max
(

max d
(
Ti − T

)
, max d′

(
Di −D

)
,
)

,

(9)

where H(A,B) = max(max da∈A(a), max d′b∈B(b), ) with the
extreme-searching subfunctions of d(x) = minb∈B‖x − b‖
and d′(x) = mina∈A‖x − a‖.

Hausdorff distance reveals the mismatch degree between
the characteristic sets A and B. Namely, a larger Hausdorff
distance denotes the greater difference between two char-
acteristic sequences. Its advantage is insensitive to low-level
noises. Thus, with the improvements of Hausdorff distance
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Removal of constant deviations from measurement
and for-matching sequences (M for-matchings)

Hausdorff-based RC coarse positioning

Isogram’s extraction (N samplings)

Crossing points on nth isogram

Exist?

MSD of intervals (Di)

Di < Dmin

Recompare iteratively by half-spacing

Location and orientation

Procedure 1

Procedure 2

Procedure 3

n = n + 1

i = i + 1

Dmin = Di

Yes

i =M

n = N

YesNo

i = i + 1

Figure 4: Workflow of the combination algorithm for UMN.

to overcome the measurement random noises and RC to
reduce the whole deviation produced by geomagnetic fluc-
tuations, the subalgorithm of Hausdorff-based RC supplies a
good settlement to MMF’s own disturbances.

3.3. Procedures. Based on the two subalgorithms established
above, this subsection presents a full scenario of the proposed
positioning algorithm. Hausdorff-based RC is carried out
for coarse positioning, and then IESIL is deployed for
further fine positioning. The procedures of the combination
algorithm in Figure 4 are depicted in detail as follows.

Procedure 1. The set of for-matching sequences parallel to
the trajectory indicated by INS are extracted, and Hausdorff-
based RC is run based on this sequence set for coarse
positioning.

Procedure 2. With the results of coarse positioning, the
constant-in-priority deviations caused by the influences
(e.g., daily variation) can be rectified from the measurement
sequences.

Procedure 3. Based on the results of the coarse positioning
and the measurement sequences after rectification, IESIL
completes the fine positioning. The process takes the coarse
location as the center of the hunting window, and the real
location can be achieved iteratively.

4. Experiments

The experiments are firstly conducted on our simulation
platform to testify the new algorithm’s applicability to the
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Figure 5: Results of simulation experiments: (a) RC coarse-
positioning, (b) IESIL fine-positioning.

diversity of the geomagnetic reference maps, and some
experiments are also tried on the real-surveyed MMF data
to validate the algorithm in real environments.

4.1. Simulation Experiments. The simulation experiments
were executed on some local geomagnetic maps. The posi-
tioning results in Figure 5 give an illustration of the posi-
tioning accuracy of the combination algorithm. The related
MMF map is stored in grid form with 60 × 60 points and is
collected in geomagnetic total intensity. The compositional
anomaly intensity is between 1.4 and 265.2 nT. The display
module assumes the grid spacing as the coordinate unit
(named grid-interval).
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The experimental conditions were configured as follows.
The initial location indicated by INS is (12, 12), and the
yawing angle is 45◦ to north. The distance between two
samplings is 5.7 grid-intervals, and the sampling number
accumulates to 10 then to comprise a for-matching sequence.
The real start point lies in the circle with radius of 2 grid-
intervals and with center at the start location indicated by
INS. The real heading angle is 50◦ to north, and the sampling
interval is equal to INS’s one. The errors of samplings are
yielded randomly as Gaussian white noises with the standard
deviation of 5 nT. The daily variation is simulated with a
deviation of 20 nT, which is added to the measurement
sequence.

The result of coarse positioning with Hausdorff-based
RC is showed in Figure 5(a). It indicates that the resulted
trajectory is still parallel with the output one by INS. And the
yawing error remains nonignorable. Next, the measurement
sequence is modified by setting its initial value equal with the
first one of the resulted sequence after coarse positioning.
Then IESIL is executed and the result of fine positioning is
demonstrated in Figure 5(b), and it approximates the real
trajectory with deviation less than 1 grid interval. The results
of Hausdorff-based RC and IESIL both lie in the “hunting
window”. From Figure 5(a) to Figure 5(b), the validity of
the combination algorithm can be explicitly judged by the
spatial relationships between the coarsely resulted track,
fine-resulted track, INS track, and real track. IESIL-resulted
fine track is more close to the real track than to RC-
resulted coarse track, and both are better than the INS
track. The rectifying effect for INS’s drift is very obvious.
The comparison basically confirms the anticipation that the
combination algorithm can supply a more effective method
for UMN.

4.2. Real Data Validation. The disturbances in practical envi-
ronments are more complex than the assumptions of noises
in the simulation platform. To validate the combination
algorithm, the postprocessing experiments based on the real
MMF data are executed. The surveying of the MMF data
was accomplished with recording of INS and GPS data
synchronously at Bo Sea from June 23, 2008 to August 17,
2008.

4.2.1. Real-Surveyed Data. The surveying conditions at Bo
Sea were planed as such the region occupies 10 kilometers in
the west-east direction and 5 kilometers in the north-south
direction. The range of geomagnetic total intensity is (53476,
53642) nT. The location on Google-Earth is indicated in
Figure 6.

The magnetometer assumed is Ocean G882 of cesium
optical-pump type. Its sampling frequency is set with 5 Hz,
and its measurement resolution is adapted to 0.001 nT. INS
uses the Laser INS with the moderate drift of 0.01◦/h.
GPS applies the Trimble-type Difference GPS (DGPS) with
precision of 0.1 m. The ship’s velocity is 5–8 knots (1
knot = 1.852 kilometers/hour). The distance between the
measurement lines is 200 m, and the sampling points on each
line have the average interval of 0.1 m. The boat is mainly of
wood as displayed in Figure 7, but it still has about 4 tons

Figure 6: The area at Bo Sea for geomagnetic surveying.

Figure 7: The wood-dominant ship for geomagnetic surveying.

of iron materials. So the dragging-measurement mode with
cable length of 50 m is utilized, and the magnetometer floats
between the sea-surface and 2 m below. If a metal-dominant
boat uses UMN, maybe a longer cable and a more precise
dragging-model are needed.

The local MMF map constructed from the surveyed data
is presented with isograms in Figure 8. A certain number of
samplings from the diagonal course, which is designed for
testing, were picked out as the measurement sequence. The
voyage direction is from south-east to north-west. The GPS-
indicated and INS-indicated trajectories are drawn also in
Figure 8, and they are chosen on purpose to represent the
situation with great INS’s drift. Under the relative reference
coordinates with (North, East) as the variable, the initial
point of GPS-indicated trajectory lies in (32.3088, 58.3222),
and the initial point of INS-indicated trajectory lies in
(38.5096, 42.4688). Their last points have locations (43.1052,
37.2662) and (49.3948, 21.6530) individually.

4.2.2. Data Analysis. The statistical analysis of this MMF
area manifests that the range of the geomagnetic intensity
is (53476, 53642) nT, and its standard deviation is 43.49.
The standard deviation suggests that this area statistically
has ample geomagnetic fluctuations suitable for UMN, but
the distribution trend of geomagnetic intensity is declining
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Figure 8: Geomagnetic map in local reference coordinates and the
trajectories recorded by INS and GPS.
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Figure 9: Daily variation corresponding to the real-measurement
sequence.

south-to-north in a relatively smooth mode. This indicates
that the area is not an ideal region with rich spatial
referencing characteristics, but for validating the positioning
algorithm it can supply a stringent environment.

As showed in Figure 8, the heading bias between INS-
trajectory and GPS-trajectory is small, but the location
deviation is large. The distance is 851 m from the last location
output by INS to the one indicated by DGPS. This indicates
that INS has a great drift and it needs the rectification by
UMN. The location sequence from DGPS, which delegates
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Figure 10: Comparison between the real-measurement sequence
and the processed sequence with a constant difference removed for
cross-validation.
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Figure 11: Results after the combination algorithm and the
traditional algorithm.

the track of the vehicle, is linear on the whole, and this
means that the boat cruises in a line. As a result, the real-
surveyed data can be used as the references for validating of
the combination algorithm.

The geomagnetic reference map is the result after
normalization of daily variation, while the real-time mea-
surement sequence during navigation still keeps this influ-
ence factor. The daily variation corresponding to the
real-measurement is segmented out and demonstrated in
Figure 9. The normalization value is related with the dotted
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Figure 12: Performance comparisons: (a) positioning deviation, (b) orientating deviation, and (c) positioning run-time.

line. Besides the low-level noises during the surveying, there
is a nearly constant difference about 15 nT. So, this condition
with great deviation is the typical one for experiments,
and this presents a more difficult testing to the new
algorithm.

To test the combination algorithm’s applicability to the
diversity of sampling noises, the constant part of daily
variation is subtracted from the measurement sequence for
comparison. The resulted situation can be used to testify the
algorithm in case of nonwhite noises in lowlevel. Upon that,
the postprocessing experimental conditions will be separated
into two cases for consideration: Status 1, the measurement
sequence removed of the large constant deviation serves as
the real sequence close to the normalization reference, as
the instances at about 0 o’clock nearby in Figure 9; Status

2, the measurement sequence keeping the large constant
deviation works as the unstable sequence in reality. The
respective distributions are demonstrated in Figure 10, and
the following work will be expanded on these two cases.

4.2.3. Positioning Results. In fact the new combination algo-
rithm can overcome the influences of the large deviation, and
the results of Status 1 and 2 are equivalent. The positioning
results are showed in Figure 11. The deviation between the
last locations output initially by INS and DGPS is 851.15 m.
The location deviation is rectified to 672.35 m by VS, while it
is reduced to 393.63 m after the combination algorithm. The
latter result satisfies the requirement posed in the supporting
project concerning initial exploration of UMN. Based on the
postprocessing on the local MMF data, INS data and GPS
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data, Hausdorff-based RC and IESIL combined algorithm
have been basically validated.

The rectified deviation of 393.63 m is still not ideal
and needs further improvements. Combined with Figure 10,
it can be learnt that the distribution trend of the left
sequence (Status 1) is similar with the real sequence, but
obviously there are still some differences. Hence, it is not
enough to just relying on algorithms to overcome the in-
coincidence between the sampled and real sequences, and
the real solution for positioning in UMN is still to model the
geomagnetic variations accurately.

5. Discussions

5.1. Performance Comparison. The performance comparison
is based on the conditions which are identical to the
simulation experiments in Section 4.1. Hausdorff-based RC
is the expansion of the traditional VS algorithm without
much difference in run-time, while IESIL and i-ICP both
based on the isograms generate the results with almost
the same accuracy. Thereupon, performance comparison
can focus on some special aspects. As the producer of the
combination algorithm’s last results, IESIL will be assessed by
comparing it with VS mainly for the accuracy of positioning
and orientating. As the main time-consumer, IESIL will be
compared with i-ICP briefly for the perspective of efficiency.

Different level of sampling errors commonly corresponds
to different positioning accuracy, and so the positioning
accuracy of the algorithm is considered along with the
fault tolerance. With the noises increasing, the comparison
between IESIL and VS is charted in Figures 12(a) and 12(b).
Under the low-level measurement errors, positioning and
orientating by IESIL have better accuracy than by VS. But
with the noises increasing, IESIL’s performance will get worse
due to the reduction of the for-matching sequences, which
is caused by the crossing-lost between the isograms and the
intersection lines. VS keeps more stable both in positioning
and orientating, although the results are not very satisfactory.

As indicated in Figure 12(c) IESIL is better than i-
ICP on run-time, although it is worse than VS. It can be
concluded that IESIL is a good compromise scheme, which
balances both positioning accuracy and run-time. All in all,
the combination algorithm is a better navigation technique
compared to the traditional correlation-type algorithms and
fits for the specialties of UMN.

5.2. Further Improvements. (A) The recomparison in Step 4
of IESIL can be expanded to the four vertexes of the subcell,
which is determined by quartering the grid cell of previous
step and takes the EE-point (solved in Step 3) on the first
contour as center. Then the same recomparison process is
carried out iteratively, and this can increase the algorithm’s
fault-tolerance.

(B) IESIL may encounter the failure of searching the
intersection lines in case of large measurement errors.
If IESIL finds no matching points finally, VS, which is
relatively more robust under big errors shall be assumed
as the alternative. Actually, IESIL, VS and i-ICP shall be
programmed in parallel for cross-referencing.

(C) IESIL’s performance will decrease with noises
increasing, so some good noises-reducing methods are
necessary. Additionally, the great discrete degree of sam-
plings occasionally existed will increase the difficulty of
noises recognition. Wavelet-based noises removal methods
accompanied with multiscale analysis can be applied on
the measurement sequence to ensure the new algorithm
producing better results.

(D) The geomagnetic gradient measurement can reduce
the influences of the daily variation and reflect the real
distribution of the geomagnetic field more accurately.
Hausdorff-based RC with gradients as variables will have
higher accuracy.

6. Conclusions

This paper proposes an appropriate matching scheme and a
combined positioning algorithm for UMN. Hausdorff-based
RC preliminarily gives a solution for the most confusing
issue caused by the geomagnetic fluctuations, such as daily
variation. IESIL overcomes not only VS’s inherent low
accuracy caused by the assumption ofno heading error but
also i-ICP’s time-consuming which sources from the iterative
rotation and shifting operations. The experiments based on
the simulation platform and the real-surveyed data both
validate the new algorithm, and the efficiency and accuracy
of the combination algorithm are also relatively satisfactory.
In view that the research of UMN is just in the beginning
phase, the aforementioned work has given a basic verification
of UMN’s potentiality.
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