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This paper overviews basic principles and applications of the robust DFT (RDFT) approach, which is used for robust processing
of frequency-modulated (FM) signals embedded in non-Gaussian heavy-tailed noise. In particular, we concentrate on the spectral
analysis and filtering of signals corrupted by impulsive distortions using adaptive and nonadaptive robust estimators. Several
adaptive estimators of location parameter are considered, and it is shown that their application is preferable with respect to non-
adaptive counterparts. This fact is demonstrated by efficiency comparison of adaptive and nonadaptive RDFT methods for different
noise environments.

1. Introduction

Using Gaussian distributions, noise and other phenomena
have been described over time in various applications
such as communications, radars, sonars, and acoustics [1].
However, recent studies have shown that heavier-tailed prob-
ability density functions (PDFs) provide a more adequate
description of noise in many practical environments [2–
4]. In particular, Spaulding and Middleton [2] initiated
this development of various complex noise models. For
example, variants of contaminated [5], generalized Gaussian
distributions [6] and a family of symmetric α-stable (SαS)
PDFs [3, 6] are models widely used to describe non-
Gaussian noise environments. These realistic noise models
have stimulated the development of robust estimators for
nonlinear signal and image filtering [3, 5–7].

Theoretical developments behind linear filters have been
concurrently performed in both temporal and spectral
(Fourier transform) domains over the years [8]. Meanwhile,
the theory of nonlinear filtering mainly focused on signal
processing in the temporal domain. Typical robust filters
include median, L-filters, and α-trimmed mean filters [7]
while recent contributions include more sophisticated filters
such as FIR-hybrid median, weighted median, and some
other nonlinear filters [7]. Although classification and

terminology used for linear filters can be hardly applied to
nonlinear filters [9], they are generally regarded as low-pass
filters and cannot be used as pass-band, stop-band, and/or
high-pass filters. Arce and his coworkers recently introduced
a class of weighted median and myriad filters admitting
negative weights [9–11]. These filters can be used to design
nonlinear filters of all types (low-pass, high-pass, stop-band,
and band-pass), while simultaneously removing impulsive
noise. This development has renewed interests for the design
and analysis of robust filters [12].

Practically at the same time, an alternative way to cope
with non-Gaussian noise has been proposed by Katkovnik
[13]. His contribution was followed by several other papers
[14–17] where various robust periodogram and DFT forms
were proposed. In particular, these so-called robust DFT
(RDFT) methods estimate real (RE) and imaginary (IM)
components of signal Fourier spectrum in a robust manner.
The standard set of the robust estimators can be used for
this task including M-, L-, and R-estimators [5]. In addition,
the adaptive RDFT forms have been proposed as well [14–
20]. These transforms are further generalized in various
applications including the time-frequency analysis [21, 22],
radars [23, 24], filtering of frequency-modulated (FM) and
pulse-like signals [20, 25], and the estimation of signal
parameters [21, 26].
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Figure 1: Block diagram for signal processing approach based on RDFT.

The goal of this paper is to analyze and recommend
proper RDFT forms for various signal-noise scenarios.
Therefore, the paper is organized as follows: we discuss
design challenges in Section 2 while various adaptive and
non-adaptive robust estimators are described in Section 3.
The results of a numerical analysis of non-adaptive and
adaptive RDFT methods are covered in Section 4.

2. RDFT Framework and Requirements to
Robust Estimators

Consider a one-dimensional (1D) discrete signal s(n) cor-
rupted by non-Gaussian noise ν(n)

x(n) = s(n) + ν(n) (1)

where n ∈ [1,N]. To filter x(n) using the RDFT-based
approach we implement the following steps [13, 14, 16–20]:

(1) calculate the RDFT for the analyzed signal;

(2) multiply the obtained spectrum estimate, X̂rob(p)
(p ∈ [0,N−1] is the frequency index), with specified
frequency characteristic K(p);

(3) calculate the standard inverse DFT.

The block diagram of the RDFT-based signal processing
approach is shown in Figure 1. The RDFT can be used in all
applications where the standard DFT is commonly applied.
For example, the RDFT is used for the time-frequency
analysis in [27].

The complex-valued spectrum obtained by RDFT
method can be written as

X̂rob
(
p
) = Rrob

(
p
)

+ jIrob
(
p
)

(2)

where Rrob(p) and Irob(p) are the robust estimates of RE
and IM components of the DFT. The index p corresponds
to frequencies fp as fp = pΔ f , Δ f = 1/NTS; Rrob(p) =
Rrob( fp), Irob(p) = Irob( fp), where TS represents the sam-
pling period.

The optimal DFT method for Gaussian noise averages
x(n) exp(− j2π fpnTS) = x(n) exp(− j2πpn/N) for each
frequency (i.e., the standard DFT):

X̂ST
(
p
) = X̂ST

(
fp
)
= 1

N

N∑
n=1

x(n) exp
(− j2πpn

N

)

= mean
{
x(n) exp

(− j2πpn
N

)}

= mean
{

Re
[
x(n) exp

(− j2πpn
N

)]}

+ jmean
{

Im
[
x(n) exp

(− j2πpn
N

)]}
,

(3)

where Re and Im denote real and imaginary parts of
a complex-valued number. Generally, the RDFT can be
described as

Rrob
(
p
) = T

{
Re
[
x(n) exp

(− j2πpn
N

)]}
,

Irob
(
p
) = T

{
Im
[
x(n) exp

(− j2πpn
N

)]}
,

(4)

where T{·} denotes applied robust estimator. It should be
mentioned that there are many different robust estimators.
Hence, such an estimator, T{·}, should be carefully chosen
since the resulting properties of the corresponding RDFT
methods depend on T{·}.

The RDFT-based signal processing methods should
provide accurate results in the following cases.

(1) A signal, s(n), can be either “smooth” or “high-
frequency” (note that in the latter case the standard
low-pass nonlinear filters cause signal degradation
[9]).

(2) Noise can resemble the Gaussian case or it might have
heavy-tailed PDF [28]. Furthermore, limited a priori
information about noise statistics may exist, but not
necessarily.

By applying the robust operators in (4), we obtain sig-
nificant improvements in comparison to the mean operators
for heavy-tailed noise environments [13, 14]. The presence of
only one or a few samples corrupted by impulse(s) can lead
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Figure 2: Amplitude spectrum estimates of noise-free signal s1(n) obtained by standard DFT (a) and RDFT method based on MED (b);
RMED(p) (c) and IMED(p) (d).

to considerable deterioration of X̂ST(p). The RDFT methods
suppress these outliers and achieve more accurate estimates
of the nonnoisy signal spectrum. Therefore, the major task is
to obtain X̂rob(p) = Rrob(p) + jIrob(p) as close to

S
(
p
) = mean

{
Re
[
s(n) exp

(− j2πpn
N

)]}

+ jmean
{

Im
[
s(n) exp

(− j2πpn
N

)]}

= RS
(
p
)

+ jIS
(
p
)

(5)

as possible for each fp.
However, it is not an easy task. To illustrate this

problem, consider a simple case of a real-valued harmonic
signal s1(n) = s1(nTS) = A sin(2πFnTS) where F =
50 Hz, A = 5, corrupted by zero-mean Gaussian noise
ν(n). Figure 2 represents the amplitude spectrum |S(p)|
obtained by the standard DFT and its estimates |ŜMED(p)|,
RMED(p), and IMED(p) evaluated by the RDFT method,
where T{. . .} is the sample median (MED). It can be
clearly seen that the estimate |ŜMED(p)| differs from the
conventional spectrum |S(p)| due to distortions introduced
in IMED(p) (for a test signal A cos(2πFnTS) distortions
appear in RMED(p)). To further understand the appearance of
these undesirable disturbances, we consider the histograms

of the samples R(p,n) = {x(n) cos(2πpn/N)} and I(p,n) =
{−x(n) sin(2πpn/N)} for two frequencies: fp = F where
there are no distortions introduced by RDFT method and
fp = 3F = 150 Hz where |S(p)| is considerably distorted
(see Figure 2(b)). Values of the corresponding estimators
RS(p), IS(p), RMED(p), and IMED(p) are marked at histograms
by solid and dashed lines, respectively. For each histogram
we have determined the percentile coefficient of kurtosis
(PCK) [29] (for mathematical definition see Table 5). This
parameter characterizes the distribution tail heaviness. For
Gaussian PDF it is equal to 0.26 while for distributions with
heavier tails, PCK is smaller. For SαS processes, the PCK
value decreases when α value becomes smaller.

In parallel, the median of absolute deviations (MADs)
from the sample median has been calculated to characterize
the data scale (see Table 5). MAD is used instead of the
standard deviation since considered distributions might have
heavy tails. This will be demonstrated later.

Let us analyze the histograms for fp = F shown in
Figures 3(a) and 3(b). Both represented histograms are
symmetric with respect to their location parameter (LP).
Then, RMED(p) = RS(p) and IMED(p) = IS(p). Consider the
second case with fp = 3F. The corresponding histograms
represented in Figures 3(c) and 3(d) show that the R(p,n)
distribution is again symmetric with respect to its LP whereas
the histogram of I(p,n) is asymmetric. Then IS(p) and
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Figure 3: Histograms of R(p,n) (left column) and I(p,n) (right column) for fp = F ((a) and (b)) PCKRE = PCKIM = 0.37, MADRE =
MADIM = 1.77 ((a) and (b)); for fp = 3F ((c) and (d)), PCKRE = 0.19, MADRE = 1.47 (c), PCKIM = 0.28, and MADIM = 1.71 (d).

IMED(p) differ as in the cases of other asymmetric PDFs like
Rayleigh distribution [30]. Contrary to the previous case, the
values of PCK and MAD are also different for PDFs of RE and
IM components.

The fact that IMED(p) /= IS(p) for some frequencies
introduces distortions in a signal spectrum estimate. Then,
the spectrum estimate distortions lead to the distortions of
the filtered signal in temporal domain. Recall that the filtered
signal is obtained by using the inverse standard DFT of the
robust estimate Ŝrob(p).

Aforementioned problem is common for some other
robust estimators. For example, if one uses α-trimmed
mean estimator (ATM), distortions in the output (filtered)
signal are observed as well. They are clearly demonstrated in
Figure 4. This spectral distortion effect is undesirable, and
the main goal is its minimization in the RDFT-based signal
processing methods.

Now consider the case of a signal corrupted by Gaussian
noise for two different values of the standard deviation, σG =
1 and σG = 10. The histograms for two frequencies fp = F
and fp = 3F for σG = 1 are presented in Figures 5(a)–
5(d). As it can be seen, the distributions in Figures 5(a) and
5(b) are light tailed but not symmetric; RMED(p) /=RS(p),
IMED(p) /= IS(p). The PDFs depicted in Figures 5(c) and 5(d)
are also asymmetric but with heavier tails. Distribution scales
are in both cases approximately the same.

The histograms for fp = F and fp = 3F for σG = 10
are presented in Figures 5(e)–5(h), respectively. MAD values
have considerably increased in comparison to previous cases
(σG = 1). All distributions are almost symmetric, and
they have heavy tails. Thus, the presence of input noise has
considerably changed PDF properties of the considered data
samples in comparison to the earlier considered case of noise
absence. Since the distributions are heavy tailed, the use of
robust estimators can give us some benefits.

Now, we analyze the accuracy of the RDFT methods and
compare with the standard DFT. The MSE of the spectrum
estimate is calculated as

MSEi = 1
M

M∑
m=1

MSEi(m), (6)

MSEi(m) = 1
N

N−1∑
p=0

∣∣∣X̂m
i (p)− S(p)

∣∣∣2
, (7)

where X̂m
i (p) is the estimate of the spectrum obtained by

the ith method for the mth signal realization; i denotes the
investigated method where the standard DFT and the RDFT
method based on MED are considered; M = 100 is the
number of realizations.

The results are presented in Table 1. As expected, the
MSE for the standard DFT (MSEST) increases proportionally
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Table 1: MSE for signal s1(n) spectrum estimates obtained by standard DFT and RDFT method based on MED for the case of Gaussian
noise with different values of σG.

σG

0 0.5 1 2 4 8 10

MSEST 0 0.0005 0.0020 0.0078 0.0313 0.1240 0.1949

MSEMED 0.0055 0.0052 0.0052 0.0061 0.0123 0.0350 0.0547
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Figure 4: Example of distortions introduced by ATM method of RDFT: the noise-free harmonic signal (F = 10 Hz) (a) and its estimate
obtained using inverse DFT of ŜATM(p) (b).

to σ2
G. For RDFT method based on MED, MSEMED is

not equal to zero even for σG = 0. This is due to the
previously described distortions. However, for large σG (see,
for instance, σG = 4), the value of MSEMED, is considerably
smaller than MSEST, that is, the median RDFT form gives
better estimation of the DFT. Thus, advantages of the RDFT
based processing become apparent for rather important
practical case of low input SNR even for the Gaussian input
noise.

Next, consider another marginal case where the input
sample is equal to noise without signal. This scenario is
particularly important when dealing with signal detection
where it is desirable to decrease noise level at the output.

Figure 6 represents a realization of heavy-tailed noise
(modeled as a product of two independent zero-mean white
Gaussian variables with σG = 1) and its estimate obtained
as the inverse DFT of X̂MED(p). Clearly, impulses have been
removed, and noise has become less intensive. Here, we
would like to emphasize that the distribution of modulated
noise ν(n) sin(2π fpTSn/N) is not equal to the distribution of
ν(n) [31].

Consider now a more complicated case of an FM
signal. As a case study, let us analyze signal s2(n) =
A sin(2πF(n)nTS) where A = 5, F(n) = anTS, for n = 0, F =
0, for nTS = 1 sec., F = 50 Hz (a = 25). Figures 7(a)–7(c)
represent |S(p)|, RS(p) and IS(p) for the considered noise-
free signal. There is a range of frequencies (over 100 Hz) for
which |S(p)|, RS(p), and IS(p) are practically equal to zero.
The estimates |ŜMED(p)|, RMED(p), and IMED(p), evaluated
by RDFT method based on the MED, are demonstrated

in Figures 7(d)–7(f). Again, the RDFT method introduces
distortions.

Consider the histograms of R(p,n) and I(p,n) for two
frequencies. Let us first analyze the histograms for the
frequency fp = 32 Hz which is inside the signal spectrum
band. Just for this frequency, the spectrum distortions are
quite large. As demonstrated in Figures 8(a)–8(b), we obtain
asymmetric distributions, inducing a lack of overlap between
the mean and MED values. Note that these distributions for
the FM signal s2(n) considerably differ from those ones for
the harmonic signal s1(n) shown in Figure 3.

Next, let us analyze the case when Gaussian noise is
present. Histograms for fp = 32 Hz are shown in Figures 8(c)
and 8(d) (σG = 10). The distributions have become heavy
tailed with wider limits in comparison to the distributions
shown in Figures 8(a) and 8(b). The obtained MSEs of
spectrum estimates for noise-free and noisy signal s2(n)
are presented in Table 2. For the standard DFT, the MSE
increases proportionally to σG as in the previous case. For the
MED method of RDFT, MSEMED is not equal to zero even
for σG = 0 due to introduced distortions. For large σG (e.g.,
σG = 10), the MSEMED value is almost four times smaller
than the MSEST value, that is, the RDFT approach achieves a
more accurate estimate of the spectrum for low values of the
input SNR.

Concluding the analysis, we can state the following.
First, there are practical cases when even the simplest RDFT
method yields more accurate results than the standard DFT.
However, there are also cases when RDFT introduces consid-
erable distortions. Taking into account the above-mentioned
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Figure 5: Histograms of R(p,n) (left column) and I(p,n) (right column) for: fp = F, σG = 1; PCKRE = 0.330, MADRE = 1.65, PCKIM = 0.341,
MADIM = 1.73 ((a) and (b)); fp = 3F, σG = 1; PCKRE = 0.243, MADRE = 1.67, PCKIM = 0.252, MADIM = 1.68 ((c) and (d)); fp = F,
σG = 10; PCKRE = 0.209, MADRE = 3.77, PCKIM = 0.231, MADIM = 3.94 ((e) and (f)); fp = 3F, σG = 10; PCKRE = 0.186, MADRE = 3.46,
PCKIM = 0.237, MADIM = 3.92 ((g) and (h)).
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Table 2: MSE for signal s2(n) spectrum estimates obtained by standard DFT and RDFT method based on MED for the case of Gaussian
noise with different values of σG.

σG

0 0.5 1 2 4 8 10

MSEST 0 0.00039 0.00163 0.00671 0.0270 0.1077 0.1725

MSEMED 0.00543 0.00555 0.00610 0.00845 0.0154 0.0317 0.0459
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Figure 6: The realization of the original heavy-tailed noise (σG = 1) and its estimate obtained after inverse DFT of X̂MED(p).

properties, the spectrum estimate obtained by RDFT meth-
ods can be represented as

X̂rob
(
p
) = Rrob

(
p
)

+ jIrob
(
p
)

= [RS
(
p
)

+ ΔR
(
p
)]

+ j
[
IS
(
p
)

+ ΔI
(
p
)] (8)

where the requirement for estimators is to provide∣∣ΔR(p)∣∣ −→ min,
∣∣ΔI(p)∣∣ −→ min (9)

for each p. Note that if (9) is satisfied, noise is suppressed
in the temporal domain after the inverse DFT. Therefore, we
analyze the estimators meeting these criteria in Section 3.

3. Adaptive Robust Estimators and
their Properties

There is a profound theory of LP estimation for data samples
with symmetric distributions [5, 29]. It allows obtaining
optimal maximum likelihood (ML) and L-estimators for
data realizations with a priori known PDFs. However, dis-
tributions of modulated signal samples for each considered
frequency in RDFT data processing approach are unknown
in advance.

There are also methods for robust mode finding based
on adaptive myriad or interquantile estimators [31, 32].
However, RS(p) and IS(p) can be considerably different from
modes of the corresponding distributions (see examples
in Figure 5). There are also other adaptive estimators, for
example, [33], that are mainly intended on processing data
samples with heavy-tailed PDFs.

In Section 2, we analyzed histograms R(p,n) and I(p,n)
for particular frequencies. To gain further understanding of
the desirable properties of the RDFT estimators we analyze
scale and tail heaviness for these data samples for all spectral
frequencies of FM signal s2(n) corrupted by non-Gaussian
noise (Figure 9). As a practical example, consider noise mod-
eled as the SαS process with α = 1.5 and γ = 1. Note that such
a value of α is typical for atmospheric noise [33]. As it is seen
in Figure 9(b), the signal is corrupted with several impulses.

The plots of MADRE(p), MADIM(p), PCKRE(p) and
PCKIM(p) for α = 1.5 and γ = 1 are given in Figure 10. Each
value of PCK and MAD obtained for each pth frequency is
averaged over 10 realizations to get more consistent values.
Practically for all frequencies (except the 256th), MADRE(p)
and MADIM(p) are approximately equal. The values of
PCKRE(p) and PCKIM(p) (except p = N/2 = 256) are
approximately equal as well. They do not significantly differ
from value 0.267 typical for a Gaussian PDF. This indicates
that the distribution for all these frequencies is approximately
equal to Gaussian.

A special case is the distributions for the p = N/4 which
equals fp = 128 Hz for the considered example. Both MAD
and PCK are close to zero in this case. The reason is that for
this frequency there are many values of x(n) cos(2πpn/N)
and x(n) sin(2πpn/N) that are equal to zero. If p = N/4,
then 2πNn/4N = πn/2, and for each odd n, the values of
cos(2πpn/N) are equal to 0. The same holds for all even n for
sin(2πpn/N).

Now consider the case when α = 1.5 and γ = 4,
that is, stronger intensity noise. The plots of MADRE(p),
MADIM(p), PCKRE(p), and PCKIM(p) are given in Figure 11.
For all frequencies (except the 256th), MADRE(p) and
MADIM(p) are approximately equal but they have slightly
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Figure 7: Amplitude spectrum of noise-free FM signal s2(n) (left column), and its RE (central column) and IM (right column) components
obtained by standard DFT ((a)–(c)) and MED-form of RDFT ((d)–(f)).

increased in comparison to those presented in Figure 10. The
values PCKRE(p) and PCKIM(p) (except p = N/2 = 256)
are approximately equal, but have decreased compared to
Figure 10. They are now approximately equal to 0.2, that is,
the PDF sufficiently differs from the Gaussian distribution
and has heavy tails. This implies that even when noise tail
heaviness is known in advance, the characteristics of noise
in R(p,n) and I(p,n) described by PCKRE(p) and PCKIM(p)
can vary depending upon SNR. Then, one has to adapt to
distribution characteristics of R(p,n) and I(p,n) in order to
provide accurate spectral estimation and denoising.

As it follows from the analysis, the estimator should be
robust to outliers but also close to the sample mean for PDFs
without heavy tails (see Figures 3 and 5).

Two examples of such estimators are Wilcoxon (WE) and
Hodges-Lehmann (HL) estimators [34, 35] (for details see
Table 5). Their statistical properties are quite similar, but
the latter one requires less computations especially for a
large sample size N. Therefore, we consider the HL estimator
below. Note that these robust estimators produce the LP
estimates close to the sample mean [36] for the Gaussian
PDF.
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Figure 8: Histograms of R(p,n) (left column) and I(p,n) (right column) for noise-free ((a) and (b)) and noisy ((c) and (d)) FM signal s2(n)
for fp = 32 Hz, PCKRE = 0.250, MADRE = 1.838, PCKIM = 0.261, MADIM = 1.84 (noise-free case), PCKRE = 0.219, MADRE = 3.75,
PCKIM = 0.211, and MADIM = 3.74 (noisy case).
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Figure 9: The test noise-free FM signal s2(n) (a) and its realization corrupted by SαS noise with α = 1.5 and γ = 1 (b).

Another estimator obeying the desired property is the
ATM [5, 7, 29] with the trimming parameter β = Nβ/N
where Nβ defines the number of outer trimmed elements for
a data sample of size N (see Table 5). A well-known property
of ATM is to be equal to the MED if β → 0.5 and to the
sample mean if β → 0 [7].

A third estimator capable of producing an estimate close
to the mean for nonnoisy signals is the sample myriad
(MYR) under the condition that its tunable parameter K
is considerably larger than the standard deviation of the

data sample [37]. In practice, it is sufficient to set K greater
than the data sample standard deviation multiplied by 3
[38, 39]. The definition of the MYR is represented in Table 5.
Main properties of the MYR estimator can significantly vary
depending on the value of K. In particular, for a relatively
small K, MYR is able to perform as an efficient mode finder
for both symmetric and asymmetric distributions [6, 30].

Therefore, we conclude that there are several robust
estimators which under certain conditions are capable of
producing a desired behavior for data samples. However,
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Figure 10: The plots of PCKRE(p) (a) and PCKIM(p) (c), MADRE(p) (b) and MADIM(p) (d) for FM signal s2(n) corrupted by SαS noise with
α = 1.5 and γ = 1.

for modulated signal samples we have different statistics for
R(p,n) and I(p,n) for each frequency (see Figures 5 and 8).
Then, a question is how an estimator can adapt to such
situations of a priori unknown or changing properties of
underlying distributions? Obviously, we need some sort of
adaptive RDFT estimators.

One of these solutions is Taguchi’s adaptive alpha-
trimmed mean estimator (AATME) [40]. A second solution
[17] is the adaptive estimator that presumes simple hard
switching (ADHS) between the MED (applied if an estimated
PCK for a data sample is smaller than a preset threshold ψ)
and HL estimator (used otherwise). The recommended value
of ψ is about 0.2 (for details see Table 5).

The PCK is used also in the censored mean adaptive
estimator (CENS) [20]. However, it also exploits a robust
estimate of data scale, namely, MAD for a considered data
sample. The estimator CENS exploits the facts that the
PCK for Gaussian distribution is approximately equal to
0.26 and the standard deviation equals σG = 1.483 MAD.
Then, the formed neighborhood D in case of Gaussian noise
approximately corresponds to 3σG neigborhood of the mean
(for details see Table 5).

In order to understand how distortions are reduced or
removed in the CENS-based RDFT method, let us consider
the following example. According to the plots in Figure 10,
the values of MAD are approximately equal to 2, PCK is

about 0.25, and then one obtains D ≈ 9 (see expression for
D in Table 5). Taking into account that med{R(p,n)} and
med{I(p,n)} are about 0 (see Figure 8), the neighborhood
limits are from about −9 till about +9. The values belonging
to this neighborhood are averaged. Thus, the estimator
performs similarly to the sample mean with respect to the
values that approximately fit to reasonably narrow limits
(see Figure 8). It can be shown that all values R(p,n) and
I(p,n) participate in averaging for the histograms presented
in Figures 3, 5(a)–5(d), and 8(a) and 8(b). At the same time,
there are outer trimmed values for the histograms in Figures
5 and 8, that is, for situations when noise is non-Gaussian
and/or intensive. This is desired for a robust estimator to be
used in the RDFT framework.

There are also two adaptive myriad estimators (AM1
and AM2) that have been developed recently [38, 39]. The
first one estimates γ and α supposing that an underlying
distribution is SαS. Estimations of γ and α are based on
calculations of MAD and PCK. Then the optimal K is
calculated for given estimates α̂ and γ̂ using established
dependences [38, 39]. The second adaptive myriad estimator
AM2 directly calculates the optimal K using evaluated values
of MAD and PCK for the data sample at hand (for details
concerning AM1 and AM2 see Table 5).

Next, we determine the performance of these estimators.
To partly address this problem, consider SαS distributions.
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Figure 11: The plots of PCKRE(p), MADRE(p) (left column) and PCKIM(p), MADIM(p) (right column) for FM signal s2(n) corrupted by SαS
noise with α = 1.5 (upper string) and α = 1 (bottom string) (γ = 4).

There is an approach that allows determining an asymptotic
variance of the optimal M-estimator of LP for each distribu-
tion from SαS family [41]. Variance of the myriad estimator
with optimally set K can be analytically determined as well.

Moreover, it is possible to determine optimal weights for
the L-estimator. They are presented in Figure 12(a) for data
sample of size N = 64. For α = 2 that corresponds to
Gaussian PDF, the sample mean is the optimal L-estimator
(all order statistics have the same weights equal to 1/N). For
small α, order statistics with n ≈ N/2 have considerably
larger weights than others, that is, MED is the quasi optimal
L-estimator. These results serve as good explanations of
operation principles for the AATME and CENS estimators.

Now, we analyze the variances of the considered esti-
mators for the LP estimation. They are presented as depen-
dences on α for γ = 1 and N = 512 in Figure 12(b). As it can
be seen, all adaptive estimators perform well. In the worst
cases, variances for them are only 30% larger than for the
optimal M-estimator. Adaptive myriad estimators provide
the best performance for small α. If the data sample size
N decreases, relative performance of all adaptive estimators
becomes poorer. The reason is due to the fact that obtained
values of the MAD and PCK are less accurate for smaller N.

The main conclusion that follows from this analysis is
that the adaptive robust estimators seem to be able to provide
improvement if they are used in RDFT framework instead of
non-adaptive estimators such as the MED or ATM.

4. Use of the Proposed Estimators in
RDFT-Based Signal Processing

Let us consider the efficiency of the proposed adaptive robust
estimators within the RDFT framework of signal processing.
Consider MSE of spectral estimates for test signals (TS) s1(n)
and s2(n) determined by (6) and (7).

The following RDFT methods have been analyzed:

(1) method based on MED estimator (X̂MED);

(2) method based on ATM estimator with fixed β = 0.25
(X̂ATM);

(3) method based on WE estimator (X̂WE);

(4) method based on HL estimator (X̂HL);

(5) method based on AATME estimator (X̂AATME);

(6) method based on ADHS estimator (X̂ADHS);

(7) method based on CENS estimator (X̂CENS);

(8) method based on adaptive myriad estimator (X̂AM).

The estimators 1–4 are non-adaptive, and the estimators
5–8 are adaptive. The estimators 5 and 7 are, in fact, special
kinds of adaptive alpha-trimmed mean estimators.

The results of the numerical analysis of the considered
methods for harmonic TS s1(n) corrupted by zero-mean
white additive Gaussian noise are summarized in Table 3.
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Figure 12: Optimal weights for L-estimator (N = 64) (a) and
variance values of LP estimation for the considered adaptive and
optimal estimators (N = 512) (b) for the SαS processes (γ = 1).

Let us start with the analysis of the noise-free case. All
non-adaptive estimators introduce certain distortions. How-
ever, for the WE and HL estimators these distortions are
considerably smaller than for the standard MED. Adaptive
estimators except the CENS also introduce distortions.
The performance of other adaptive estimators deteriorates;
however, they still achieve more accurate results than the
MED.

If the input SNR is large enough (consider σG =
1), the results for the standard DFT and RDFT methods
based on the WE and the proposed adaptive estimators
are comparable. For other estimators, the negative effect of
introduced distortions is larger than the positive effect of
noise suppression.

If the input SNR is small (see data for σG = 10),
MSE values for all robust forms of DFT (except Taguchi’s
estimator) are smaller than for the standard DFT. The best
results are provided by the MED method; among adaptive
estimators the ADHS produces the smallest MSE. Thus,
there is no estimator that allows obtaining a minimal MSE
for all considered situations. The main advantage of the

adaptive robust estimators is that they produce MSE close to
minimally reachable for wide ranges of input SNR.

Another set of experiments has been carried out for the
FM signal s2(n) corrupted by heavy-tailed noise. Noise has
been simulated as a process with SαS PDF with α from 0.5
till 2 and fixed γ = 1. The simulation data are collected in
Table 4.

Let us start analysis from Gaussian noise case (α = 2).
An MED form of DFT produces considerable distortions
that result in MSE almost three times larger than for
standard DFT. Other RDFT methods provide a smaller
MSE, especially the methods based on W, HL, and ADHS
estimators.

For α = 1.5, the influence of heavy-tailed noise on the
standard DFT becomes significant. All RDFT forms estimate
the signal spectrum more accurately than the standard DFT.
Again, the RDFT methods based on the WE, HL and ADHS
estimators provide the best results. Other adaptive estimators
have a slightly worse accuracy. The standard DFT fails for
noise with Cauchy PDF (α = 1). All adaptive methods are
almost as accurate as the non-adaptive methods.

Finally, if α = 0.5, the standard DFT fails, and the MED
method of RDFT achieves the best performance among non-
adaptive forms. The best adaptive methods are based on
Taguchi’s adaptive estimator or CENS in this case. Other
adaptive methods perform reasonably well.

Thus, when statistical properties of noise are unknown,
the main advantage of adaptive estimators used in RDFT
framework is that they produce accuracy close to reachable
best values.

To demonstrate this advantage, consider two exam-
ples. Figure 13(a) shows the amplitude spectrum estimate
obtained by the standard DFT. As depicted, noise masks
the spectrum of the signal and this estimate resembles an
estimate of the white noise spectrum. The spectrum estimate
obtained by the MED method of RDFT is demonstrated in
Figure 13(b). Here the signal spectrum in the frequency band
F ≤ 50 Hz is clearly seen but it is distorted (the thin line
shows the RDFT spectrum estimate, and the thick solid line
relates to the true spectrum of FM signal s2(n)). Amplitudes
of spectrum estimates for F > 50 Hz have sufficiently
decreased due to applying the robust estimator. Finally,
the adaptive CENS estimator estimates more accurately the
signal component spectrum for F ≤ 50 Hz (see the plot
in Figure 13(c)). This simple example demonstrates two
advantages of the RDFT methods. First, these methods
achieve higher noise suppression in the frequency range
where noise-free signal spectrum is practically equal to
zero. Second, they also achieve more accurate estimates in
the frequency range where the noise-free signal spectrum
essentially differs from zero.

Then, if a signal spectrum is estimated based on the
RDFT, it becomes possible to carry out denoising with using
ideal low-pass filter in spectral domain that has K(p) = 1 if
fp ≤ fupper and 0 otherwise. Let us set the upper frequency
fupper equals 100 Hz for the considered TS s2(n). The input
signal corrupted by noise with Cauchy PDF and γ = 1 is
presented in Figure 14(a). The output signal is obtained by
the application of RDFT method based on CENS estimator,
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Table 3: MSE values of spectrum estimation for TS s1(n) corrupted by additive Gaussian noise.

σG 0 0.5 1 2 4 8 10

X̂ST 0 0.00049 0.00192 0.00782 0.0309 0.249 0.194

X̂MED 0.00545 0.00537 0.00545 0.00613 0.0115 0.0370 0.058

X̂ATM 0.00362 0.00390 0.00478 0.00896 0.0250 0.0862 0.133

X̂WE 0.00058 0.00090 0.00197 0.00626 0.0218 0.0844 0.132

X̂HL 0.00199 0.00211 0.00284 0.00690 0.0237 0.0913 0.142

X̂AATME 0.00498 0.00559 0.00610 0.00864 0.0309 0.1250 0.194

X̂ADHS 0.00199 0.00212 0.00285 0.00685 0.0174 0.0592 0.097

X̂CENS 0 0.00051 0.00199 0.00913 0.0301 0.1033 0.156

X̂AM 8.81·10−7 0.00048 0.00207 0.00809 0.0239 0.0829 0.127

Table 4: MSE values of spectrum estimation for FM signal s2(n) corrupted by noise (γ = 1).

(a)

α 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

X̂ST ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1.11

X̂MED 0.0177 0.0152 0.0133 0.0117 0.0112 0.0102 0.0095 0.0090

X̂ATM 0.0352 0.0270 0.0207 0.0168 0.0143 0.0117 0.0102 0.0088

X̂WE 0.0452 0.0325 0.0236 0.0181 0.0147 0.0114 0.0095 0.0077

X̂HL 0.0504 0.0366 0.0264 0.0204 0.0165 0.0127 0.0105 0.0084

X̂AATME 0.0133 0.0116 0.0111 0.0101 0.0094 0.0089 0.0085 0.0133

X̂ADHS 0.0230 0.0197 0.0162 0.0127 0.0104 0.0084 0.0071 0.0230

X̂CENS 0.0179 0.0151 0.0131 0.0111 0.0096 0.0082 0.0073 0.0179

X̂AM 0.0211 0.0182 0.0161 0.0149 0.0121 0.0092 0.0081 0.0211

(b)

α 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

X̂ST 0.2929 0.0978 0.36609 0.03078 0.00927 0.00822 0.00797 0.00249

X̂MED 0.0087 0.0080 0.00773 0.00752 0.00726 0.00714 0.00557 0.00653

X̂ATM 0.0077 0.0067 0.00597 0.00550 0.00498 0.00447 0.00660 0.00367

X̂WE 0.0066 0.0053 0.00443 0.00396 0.00338 0.00285 0.00393 0.00209

X̂HL 0.0071 0.0057 0.00472 0.00418 0.00359 0.00300 0.00462 0.00215

X̂AATME 0.0116 0.0077 0.00714 0.00667 0.00616 0.00561 0.00726 0.00481

X̂ADHS 0.0197 0.0057 0.00474 0.00420 0.00360 0.00300 0.00462 0.00216

X̂CENS 0.0151 0.0062 0.00535 0.00480 0.00419 0.00361 0.00497 0.00274

X̂AM 0.0182 0.0072 0.00585 0.00502 0.00425 0.00373 0.00493 0.00277

ideal low-pass filter, and standard inverse DFT. It is shown
in Figure 14(b). Obviously, excellent denoising is provided.
The impulse noise is removed, but also we achieved the
suppression of non-impulsive noise components. This can be
confirmed by MAE values

MAE = 1
N

N∑
n=1

∣∣x̂(n)− x(n)
∣∣, (10)

where x̂(n) denotes the reconstructed signal obtained by
RDFT filtering approach. MAE = 5.505 for the noisy signal
shown in Figure 14(a) while for the denoised signal MAE =
2.147 without low-pass filtering, and MAE = 1.417 with low-
pass filtering.

5. Conclusions, Other RelatedWork,
and Perspectives

The general overview of the RDFT-based signal processing
approach is presented, and the requirements for robust esti-
mators are formulated. Several non-adaptive and adaptive
estimators are considered. It has been shown that the main
advantage of adaptive estimators is the robustness in wide
sense. They also provide a possibility to improve efficiency of
signal processing (spectrum estimation, denoising) methods
to potentially reachable limits for wide range of noise
parameters. In particular, the RDFT-based on adaptive
estimators can be useful for low input SNRs even if noise is
Gaussian. Their application becomes even more practical if
noise is non-Gaussian and heavy tailed. Adaptive estimators
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Figure 13: Amplitude spectrum estimates for FM signal s2(n) corrupted by noise with Cauchy PDF (γ = 1) obtained by the standard DFT
(a), MED-method of RDFT (b) and RDFT method based on CENS (c).
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Figure 14: The TS s2(n) corrupted by noise with Cauchy PDF (γ = 1) (a) and its estimate obtained by RDFT filtering approach based on
CENS-method (b).

CENS and ADHS seem to be the best practical choice. All
presented analysis was done for harmonic and FM real-
valued signals. However, the same steps are also valid for
complex-valued input data.

In this overview, we have concentrated on RDFT
applications for spectral analysis and filtering. However,
it is worth stressing that the RDFT methods can also
be applied in other spectral analysis tasks such as the
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Table 5

Estimator Expression

x(n) is the input sample, n ∈ [1,N]; X (q) denotes the q-th order statistic for data sample x(n)

Sample mean TMEAN =
∑N

n=1 x(n)

Sample median TMED = median{x(n)} =
⎧⎨
⎩X

([N+1]/2), if N is odd

(X (N/2) + X (N/2+1))/2, if N is even

Alpha-trimmed
mean

TATM = 1/(N −Nβ1 −Nβ2)
∑N−Nβ2

i=Nβ1+1 X
(i), Nβ1 = Nβ2 = βN , 0 ≤ β ≤ 1

Wilcoxon
estimator

TWE = median{(x(1) + x(1))/2; (x(1) + x(2))/2; . . . ; (x(1) + x(N))/2; (x(2) + x(2))/2;

(x(2) + x(2))/2; . . . ; (x(N − 1) + x(N))/2; (x(N) + x(N))/2}
median value of the enlarged sample of size N(N + 1)/2

Hodges-
Lehmann
Estimator

THL = median{x(1); x(2); . . . ; x(N); (x(1) + x(N))/2; (x(2) + x(N − 1))/2;

. . . ; (x(N/2) + x(N + 2))/2}
median value of the enlarged sample of size N + N/2

Myriad
estimator

TMYR = myriad{K ; x(1), . . . , x(N)} = arg min
θ∈Θ

∑N
n=1 ln{K2 + [x(n)− θ]2}, where K > 0 denotes

the linearization (tuning) parameter

Adaptive
alpha-trimmed
mean estimator-
proposed by A.
Taguchi

Alpha-trimmed mean estimator with Nβ = [|1− β|(N − 1)/2] where [. . .] denotes the rounding
to the nearest integer value; β is evaluated for each data sample according to the expressions

β = σ2/(σ2 + σ2
D), σ2 =

⎧⎨
⎩σ

2
X − σ2

D , if σ2
X ≥ σ2

D

0, otherwise
, σ2

X is the variance of the processing data sample,

σ2
D denotes the variance of the main distribution (is set a priori)

Adaptive
hard-switching
estimator

TADHS =
⎧⎨
⎩TMED, KP ∈ (0;ψ0)

THL, KP ∈ [ψ0; +∞),
where Kp is an adaptation parameter which uniquely depends

on tail heaviness; ψ0 denotes the threshold value

Adaptive
censoring
estimator

TCENS = (1/Nπ)
∑N

n=1 x(n)δ(n) where

δ(n) =
⎧⎨
⎩1, if x(n) ∈ [X̂MED −D; X̂MED + D]

0, otherwise,
Nπ =

∑N
n=1 δ(n) D = 4.5 ·MAD · PCK/0.26,

Adaptive myriad
estimator 1

K̂1 =
⎧⎨
⎩(−0.66 + 0.44e1,28α̂ + 7.62 · 10−34e39.24α̂)γ1/α, α̂ ≥ 0.3

0, otherwise

α̂ = 1.035 · 103 · KP
4 − 419.8 · KP

3 + 55.17 · KP
2 + 2.051 · KP + 0.286

γ1/α = MAD/C(α̂) C(α) = 1.84α6 − 14.18α5 + 44.36α4 − 72.02α3 + 64.3α2 − 30.3α + 7.02

Adaptive myriad
estimator 2

K̂2 = MAD · f2(KP)

f (KP) = 3.029 · 105 · KP
6 − 2.011 · 105 · KP

5 + 4.95 · 104 · KP
4 − 5434 · KP

3

+265.8 · KP
2 + 2.36 · KP + 0.032, for KP ∈ (0; 0.25];

f (KP) = 2.53 · 105 · KP
2 − 1.301 · 105 · KP + 1.673 · 104, for KP ∈ (0.25; +∞]

Percentile
coefficient of
kurtosis

PCK = KP = (1/2)(Q3 −Q1)/(P90 − P10), where Q 1 and Q 3 denote the 1st and the 3rd quartiles,
P90 and P10 are the 90th and 10th percentiles of the processing data sample.

Median absolute
deviation from
median

MAD = median{|x(n)− TMED|}

time-frequency analysis for deriving Wigner-Ville or other
distributions [21, 42] and estimation of signal parameters
[26].

Also note that robust estimators can be useful for data
processing based on other than DFT orthogonal transforms
as, for example, discrete cosine transform or Hadamard
transforms [27, 43]. Furthermore, the RDFT can be applied

to signal subintervals that can be overlapping or not
[25]. In this case, data processing becomes similar to the
methods used in discrete cosine transform-based denoising
[44]. Our future work will concentrate on applying the
adaptive robust estimators for processing signals embedded
in non-Gaussian noise using other than DFT orthogonal
transforms.
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