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A novel channel equalizer algorithm is introduced for wireless communication systems to combat channel distortions resulting
from multipath propagation. The novel algorithm is based on minimizing the bit error rate (BER) using a fast approximation of
its gradient with respect to the equalizer coefficients. This approximation is obtained by estimating the exponential summation in
the gradient with only some carefully chosen dominant terms. The paper derives an algorithm to calculate these dominant terms
in real-time. Summing only these dominant terms provides a highly accurate approximation of the true gradient. Combined with
a fast adaptive channel state estimator, the new equalization algorithm yields better performance than the traditional zero forcing
(ZF) or minimum mean square error (MMSE) equalizers. The performance of the new method is tested by simulations performed
on standard wireless channels. From the performance analysis one can infer that the new equalizer is capable of efficient channel
equalization and maintaining a relatively low bit error probability in the case of channels corrupted by frequency selectivity. Hence,
the new algorithm can contribute to ensuring QoS communication over highly distorted channels.

1. Introduction

Broadband radio channels are susceptible to selective fading
due to multipath propagation. In this case, the differences
among the propagation delays on the paths may amount to
a significant fraction of a symbol interval. Hence, frequency
selective fading may yield severe performance degradation.
As a result, efficient channel equalization techniques prove
to be instrumental to combat intersymbol interference (ISI)
in order to avoid large scale drops in system performance.

Since the effect of interferences are especially crucial
in wireless communication systems, fast channel equalizer
algorithms have to be developed which are simple enough
to run on the currently available hardware architectures.
This paper aims at developing a low complexity channel
equalizer algorithm by directly minimizing the BER instead
of minimizing the mean-square error or the peak distortion
[1, 2]. Unfortunately, the direct minimization of BER

with respect to the equalizer coefficients is of exponential
complexity due to the large summation when expressing BER
as a function of the equalizer coefficients. Thus, we develop a
new bound on BER on which basis the equalizer coefficients
can be optimized by a fast algorithms. It is also pointed out
that the new bound on BER is sharper than the previously
known ones listed in [3].

The first attempts to derive an equalizer based on the
minimum BER strategy can be found in the work of Shimbo
and Celebiler [4] and Shamas and Yao [5]. The optimal
equalizer coefficients were only sought by exhaustive search,
thus real-time adaptivity was not guaranteed. In recent years,
some new results have been developed for minimum BER
equalization. In [6], a low-complexity adaptive algorithm
is proposed for 2- or 4-state modulation systems but the
convergence is rather slow, while in [7, 8] near minimum
BER equalization is carried out by radial basis function
neural networks which considerably increases the equalizer
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complexity. On the other hand, very complex equalizer
schemes have been proposed for DS-CDMA systems in
[9–11]. Paper [12] investigates the minimization of BER in
MIMO systems with linear equalizers based on QPSK mod-
ulation. In this model the information sequence is corrupted
by multiuser interference and additive noise. BER is derived
for the case of two transmitters and approximated by a simple
formula. The optimum then is calculated by analytical tools.
When the number of transmitters is larger than two then
the authors use a sequence of cascade filters. It is important
to note that this article does not address the problem
of ISI. In paper [13], BER is minimized subject to some
constraints. The authors prove that the constrained BER cost
function has only one global minimum and equalization
can be achieved by quadratic programming. However, due
to the constraints this detector is only optimal in the case
of minimum phase channels. In the paper [14, 15], the
equalization is carried out by using the Bayes risk criterion.
This is a more general approach than BER minimization, but
the choice of loss function is left open, realizing that not
every loss function will yield fast convergence or yield low
error rate. Furthermore, the loss function is very complex
and does not lend itself to simple minimization. Therefore,
deriving bound on BER for fast minimization with respect
to the equalizer coefficients can still yield powerful and real-
time channel equalization. The novel algorithm presented by
the paper is demonstrated by BPSK modulation scheme.

The results are given in the following structure:

(i) in Section 2, the communication model is outlined;

(ii) in Section 3, BER is expressed as a function of the
equalizer coefficients and a gradient based algorithm
is discussed for minimizing BER;

(iii) in Section 4, a novel method is derived to approxi-
mate BER by using the dominant terms;

(iv) in Section 5, the new equalizer algorithm will be
introduced based on the approximation treated in
Section 4;

(v) in Section 6, the performance and convergence prop-
erties of the new equalizer algorithms are analyzed
numerically.

2. TheModel

To describe single-user communication over a fading chan-
nel, we use the so-called equivalent discrete time white noise
filter model (for further details see [1]).

The corresponding quantities are defined as follows:
(i) yk ∈ {−1, 1} denotes the transmitted information bit

at time instant k being a sequence of identically distributed
independent Bernoulli random variables with P(yk = 1) =
P(yk = −1) = 0.5;

(ii) the discrete impulse response of the channel is
denoted by hk, k = 0, . . . ,M where M denotes the span of
ISI;

(iii) the noise is denoted by νk and is assumed to be a
stationary zero mean white Gaussian random sequence with
constant spectral density N0;

(iv) the received sequence is denoted by xk, which is
a linearly distorted and noisy version of the transmitted
sequence given as

xk =
M∑

j=0

hj yk− j + νk; (1)

(v) the equalizer is a linear FIR filter, the output of which
is denoted by ỹk

ỹk =
J∑

i=0

wixk−i, (2)

where wi i = 0, . . . , J denotes the free parameters of the
equalizer which are subject to further optimization;

(vi) the decision is carried out by threshold detection in
a symbol-by-symbol fashion:

ŷk = sgn
{
ỹk−D

} = sgn

⎧
⎨
⎩

J∑

i=0

wixk−D−i

⎫
⎬
⎭, (3)

where D denotes the delay of the channel. (For the sake of
brevity, here we assume D = 0, while the more general
treatment for D /= 0 will be given in Section 4.3);

(vii) the overall channel impulse response function is
determined by the cascade of the channel and the equalizer

qk =
M∑

i=0

hiwk−i, k = 0, . . . ,L, (4)

where L = M + J denotes the support of the overall impulse
response.

Traditional equalization algorithms aimed at minimizing
the peak distortion [1, 16] defined as

wopt : min
w

L∑

i=1

∣∣qi
∣∣ (5)

or the mean-square error [1, 2]

wopt : min
w

E

⎡
⎢⎣

⎛
⎝yk −

J∑

j=0

wjxk− j

⎞
⎠

2
⎤
⎥⎦. (6)

Both approaches involve the use of linear stochastic
approximation schemes [1, 2, 16], but they fell short of
providing efficient equalization as the goal functions did not
have any direct relationship with BER.

3. Weight Optimization Subject to
Minimizing the BER

Since our approach to equalization is based on minimizing
the bit error probability, first we express BER as a function of
the equalizer coefficients as given in [4]

PE(w) =
(

1
2L

)∑

y∈Y
Φ

(∑L
l=0 ql yl
σ

)
, (7)
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where Φ(·) denotes the standard normal cumulative dis-
tribution function, σ2 = N0

∑J
j=0 w

2
j , and Y = {y =

(y0, y1, . . . , yL) | y0 = −1; yi ∈ {−1, 1}, i = 1, . . . ,L}.
Here, we note that in the paper, for expressing the BER, we
will use the standard Gaussian distribution function defined
as Φ(x) := (1/

√
2π)

∫ x
−∞ e(u2/2)du. The relationships of Φ(x)

with the “Q′′ function Q(x) and the error function erf(x)
are given as follows: Φ(x) = 1 − Q(x) and Φ(x) = 1/2[1 +
erf(x/

√
2)]. Substituting (4) into (7), we obtain

PE(w) =
(

1
2L

)∑

y∈Y
Φ

⎛
⎝
∑J

n=0 wn
∑M+n

l=n hl−nyl√
N0

∑J
n=0 w2

n

⎞
⎠. (8)

To find the optimal weights of the equalizer which minimize
this error probability, we have to solve the following equa-
tion:

wopt : gradwPE(w) = 0, (9)

where the ith component of the gradient is

∂PE(w)
∂wi

= 1

2L
√

2πN0

(∑J
n=0 w2

n

)3

×
∑

y∈Y
exp

⎛
⎜⎝
−
(∑J

n=0 wn
∑M+n

l=n hl−nyl
)2

2N0
∑J

n=0 w2
n

⎞
⎟⎠

·
⎡
⎣
⎛
⎝

J∑

n=0

w2
n

⎞
⎠ ·

⎛
⎝
M+i∑

l=i
hl−i yl

⎞
⎠−wi

⎛
⎝

J∑

n=0

wn

M+n∑

l=n
hl−nyl

⎞
⎠
⎤
⎦.

(10)

The weights can be optimized by gradient descent, yielding
the following equalization algorithm:

wi(k + 1) = wi(k)− γ
∂PE(w(k))

∂wi
. (11)

Here, w(k) is the value of the weight vector at the kth
iteration. One must note, that the gradient search with
fixed step size in general will not guarantee the convergence
to the global minimum. However, as our simulations have
demonstrated, over standard wireless channels the algorithm
in most cases reached the global optimum.

In the forthcoming discussion, the procedure given by
formula (11) is termed as true gradient search (TGS). Unfor-
tunately performing TGS is computationally prohibitive,
because of the summation over an exponentially large
number of vectors in expression (10). Furthermore, this
summation in TGS must be calculated in each step of
algorithm (11). Thus, TGS can only be applied in practice
if the support of the overall impulse response defined in (4)
is very limited. Otherwise, near-optimal algorithms must be
sought which lend themselves to real-time implementations.
To ease this complexity a new bound is derived on BER.

4. New Lower Bound on BER by Using the
Dominant Terms

In this section, we derive a new approximation on BER.
The purpose of developing this approximation is to estimate
BER with an expression which is a computationally simple
function of the equalizer weights. This paves the way towards
real-time channel equalization.

In order to derive a bound on BER, one can note that
function Φ(·) tends rapidly to zero for negative arguments.
As a result, the terms in the summation can differ in several
magnitudes. This gives rise to the idea of collecting only the
dominant terms to provide a lower bound on BER. This
lower bound has been commonly used in other domains,
such as reliability analysis and referred to as Li-Silvester
bound [17], where the tiresome calculation of an expected
value over a large state space is approximated by only using
the dominant terms in the summation.

In our case, this bound can be obtained as follows. We
may look upon (8) as an expected value, given as follows:

G(w) = 1
2L

∑

y∈Y
Φ

⎛
⎝
∑J

n=0 wn
∑M+n

l=n hl−nyl√
N0

∑J
n=0 w2

n

⎞
⎠

= 1
2L

∑

y∈Y
Φ

(∑L
l=0 ql yl
σ

)

= 1
2L

∑

y∈Y
Φ

(
qTy
σ

)
= 1

2L
∑

y∈Y
G
(
w, y

) = Ey
[
G
(
w, y

)]
.

(12)

Introducing the following notations, one can obtain

g(w) = gradwG(w) = gradwEy
[
G
(
w, y

)] = Ey
[
g
(
w, y

)]
.

(13)

Let us then separate the set Y into two disjoint subsets Y1

and Y2 ( Y1
⋃
Y2 = Y, Y1

⋂
Y2 = 0). Let the number of

elements in Y1 be K , containing the first K vectors belonging
to the first K largest values of G(w, y), for which

G
(
w, y1

)
> G

(
w, y2

)
> · · · > G

(
w, yK

)
,

G
(
w, yi

)
> G

(
w, y

)
, ∀i = 1, . . . ,K ; ∀y ∈ Y2

(14)

From the properties of Φ(·) it follows that 0 ≤ G(w, y) ≤ 1.
This gives rise to the following bounds on BER:

1
2L

⎛
⎝

∑

∀yi∈Y1

G
(
w, yi

)
+

∑

∀yi∈Y2

0

⎞
⎠

< PE(w) <
1
2L

⎛
⎝

∑

∀yi∈Y1

G
(
w, yi

)
+

∑

∀yi∈Y2

1

⎞
⎠

(15)

yielding

1
2L

∑

∀yi∈Y1

G
(
w, yi

)
< PE(w) <

1
2L

⎛
⎝

∑

∀yi∈Y1

G
(
w, yi

)
+
∣∣Y2

∣∣
⎞
⎠,

(16)

where |Y2| denotes the cardinality of Y2.
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Remark. In this case, y is subject to uniform distribution,
thus the left hand side of (15) can be very tight if K is
chosen reasonably high. At the same time, the upper bound
tends to be loose as the terms G in Y2 have rather inaccurate
upperbounds. In Section 4.2, we will evaluate the tightness
of the bound based on the (K + 1)th dominant sample.

The most “harmful” sequence, denoted by y1 in Y (i.e.,
the sequences beginning with −1) is y1 = [−1, sgn{q1},
sgn{q2}, . . . , sgn{qL}], since qTy1 = −1 +

∑L
k=1 |qk| = −1 +

PD(q), which indicates y1 to be the absolute dominant term
in the summation equation (12).

In order to determine the dominant terms that form the
set Y1, let us introduce the following notation: let i ∈ ZL be
an index array pointing to the different elements of q, where

i1 = arg min
j

∣∣∣qj

∣∣∣ j /= 0,

ik = arg min
j

∣∣∣qj

∣∣∣ j /= 0, i1, i2, . . . , ik−1.
(17)

Note that i j points to the jth smallest element of q in absolute
value. The extension of index array i j for D /= 0 will be given
in Section 4.3. The second dominant term y2 can be deduced
from y1 by changing the sign of the component y1(i1),
because in this case qTy2 = −1 +

∑L
k=1,k /= i1 |qk| − |qi1| =−1 + PD(q)− |qi1|, where |qi1| is the smallest possible value

for decreasing the PD.
Applying the same reasoning, the first K largest terms can

be given as follows:

(1) y1 = [−1, sgn{q1}, sgn{q2}, . . . , sgn{qL}];C1 = {};
(2) y2 = y1 and change the sign of the component

y2(i1);C2 = {i1};
(3) y3 = y1 and change the sign of the component of

y3(i2); C3 = {i2};
(4) FOR k = 4 TO K find the index set Ck =

{ j1, . . . , jN} for which |qj1| + |qj2| + |qjN | is minimal,
but Ck /=C1,C2, . . . ,Ck−1 and 1 ≤ N ≤ L;

(5) Form the set Y1 = {y1, y2, . . . , yK} to be used in the
lower bound given in (16).

It is easy to see that the case of K = 1 (when Y1 = {y1})
results in a cost function which has minimum value over the
same coefficient vector as has the peak distortion. Increasing
the value of K , the lower bound in (16) tends to the exact PE
and finally the case of K = 2L and Y1 = Y results in the exact
minimum of BER.

We generally can derive an algorithm which identifies the
dominant terms for any arbitrary K = 2M where M < L. The
following procedure results in the first 4 dominant terms,
which seems practically to be a good compromise between
K = 1 (yielding the PD criterion) and K = 2L (for further
details, see Section 4.2):

(1) y1 = [−1, sgn{q1}, sgn{q2}, . . . , sgn{qL}]; C1 = {};
(2) y2 = y1 and change the sign of the component y2(i1);

C2 = {i1};

(3) y3 = y1 and change the sign of the component y3(i2);
C3 = {i2};

(4) If |qi1|+|qi2| ≤ |qi3|, then y4 = y1 and change the sign
of the components y4(i1) and y4(i2); C4 = {i1, i2};
ELSE y4 = y1 and change the sign of the component
y4(i3); C4 = {i3};

(5) Form the set Y1 = {y1, y2, y3, y4} to be used in the
lower bound (16).

Unfortunately, calculating the set Ck to find the K largest
term is of exponential complexity, as qTy must be calculated
and arranged in monotone order for all possible y.

4.1. Optimization of the Bound. The gradient s(w) of the
lower bound in (16) is a truncated version of the gradient of
the true BER (10), obtained by carrying out the summation
over Y1 instead of Y:

s(w)

= 1

2L
√

2πN0

(∑J
n=0 w2

n

)3

×
∑

y∈Y1

exp

⎛
⎜⎝
−
(∑J

n=0 wn
∑M+n

l=n hl−nyl
)2

2N0
∑J

n=0 w2
n

⎞
⎟⎠

·
⎡
⎣
⎛
⎝

J∑

n=0

w2
n

⎞
⎠ ·

⎛
⎝
M+i∑

l=i
hl−i yl

⎞
⎠−wi

⎛
⎝

J∑

n=0

wn

M+n∑

l=n
hl−nyl

⎞
⎠
⎤
⎦.

(18)

Using the gradient, the following adaptive algorithm can be
used for weight optimization

wi(k + 1) = wi(k)− γsi(w). (19)

Of course, one can use variable step size γ(k) in algorithm
(19) to improve the speed of convergence. For example, the
Armijo rule [15] can be applied to speed up the convergence.
However, simulations showed no improvement by applying
this rule. Another problem with this method is its high
complexity (the gradient has to be evaluated several times).
On the other hand, we may introduce a heuristically chosen
step size, such as γ(k) = γ0/

√
k. The convergence of (19)

by using this step size this algorithm is guaranteed by
the Kushner-Clark theorem (for more details, see [16]). In
the simulation section, the improvement of convergence
achieved by variable step size method is also illustrated.

4.2. A Numerical Example for Calculating the New Bound.
For the sake of better understanding of the algorithm
developed for finding the dominant terms, a numerical
example will be given as follows. Let us take the following
overall impulse response function

q = [
q0, q1, . . . , qL

] = [1, 0.4, 0.08,−0.26, 0.15,−0.06],
(20)
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where L = 5. At first, the index array i will be defined
containing the indices of the smallest, second smallest, and
so forth. elements of |q| (omitting q0), respectively:

i = [5, 2, 4, 3, 11]. (21)

The information sequence resulting in maximum distortion,
can be calculated as

y1 =
[−1, sgn

{
q1
}

, sgn
{
q2
}

, . . . , sgn
{
qL
}]

= [−1, +1, +1,−1, +1,−1],
(22)

yielding

c1 = qTy1 = −1 + 0.04 + 0.08 + 0.26 + 0.15 + 0.06 = −0.05.
(23)

The information sequence y2 can be derived from y1

changing the sign of the element y1(i1) = y1(5):

y2 = [−1, +1, +1,−1, +1, +1], (24)

resulting in

c2 = qTy2 = −1 + 0.04 + 0.08 + 0.26 + 0.15− 0.06 = −0.17,
(25)

and y3 comes from y1 by changing the sign of the element
y1(i2) = y1(2)

y3 = [−1, +1,−1,−1, +1,−1], (26)

yielding

c3 = qTy3 = −1 + 0.04− 0.08 + 0.26 + 0.15 + 0.06 = −0.21.
(27)

To determine y4, one can evaluate the sum |q1|+ |q5| = 0.14.
Since it is smaller than |qi3| = |q4| = 0.15, y4 can be derived
from y1 by changing the sign of the elements y1(2) and y1(5):

y4 = [−1, +1,−1,−1, +1, +1], (28)

resulting in

c4 = qTy4 = −1 + 0.04− 0.08 + 0.26 + 0.15− 0.06 = −0.33.
(29)

If one calculates all possible terms up to c32 (which equals
−1.95), the bit error probability can be calculated using (12)
as

PE = 1
25

32∑

i=1

Φ
(
ci
σ

)
. (30)

In Figure 1, one can see the terms Φ(ci/σ) versus ci/σ for
two different σ values. In this figure, logarithmic scale on the
vertical axis was used, and smaller values than 10−14 were
omitted. Note that the number of negligible terms depends
on the noise level. This is explained by the fact that increasing
the noise level, the samples ci will fall into a region where Φ()
decreases rather fast. The difference between the smallest and

−160 −140 −120 −100 −80 −60 −40 −20 0

ci/σ

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Φ
(c

i/
σ

)

σ = 0.1
σ = 0.05

Figure 1: Visualisation of the dominant terms: Φ(ci/σ) versus ci/σ
versus for two different σ values.

largest terms is of 1083 magnitudes. Furthermore, one may
note that there are no ci samples on the positive side which
proves that channel can indeed be equalized and in this case
there are no local minima as proven in [13].

In order to derive a method to identify K , first let us
express the bit error probability as a sum of two expressions

PE = 1
2L

∑

∀yi∈y1

G
(
w, yi

)
+

1
2L

∑

∀yi∈y2

G
(
w, yi

)
, (31)

where the second term can be upper bounded by using the
(K + 1)th dominant sample. In this way, one obtains the
following bound:

PE <
1
2L

∑

∀yi∈y1

G
(
w, yi

)
+

2L − K

2L
∑

∀yi∈y2

G
(
w, yK+1

)
. (32)

Since the sharpness of (32) depends on the value of the
(K + 1)th dominant sample (it becomes sharp if the value of
the (K + 1)th dominant sample is small), this expression can
be used to estimate the number of dominant samples K to be
used for giving efficient bound on BER. If the bound using
the (K + 1)th dominant sample drops below a predefined
value r then the number of samples K needed to approximate
BER can be obtained as follows:

rPE ≥ 2L − K

2L
G
(
w, yK+1

)
, (33)

where PE can be substituted by its approximation using the
first K dominant samples. Figure 2 analyzes the accuracy of
the bound obtained by the dominant samples.

Figure 2 shows two curves belonging to the SNR = 10
and 20 dB, respectively. From this figure, it can be seen that
if r = 0.05 and SNR = 20 dB then the necessary number of
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Figure 2: The necessary number of sample as function of the
relative approximation error.

samples K = 3. This necessary sample number will increase
with respect to the decrease of SNR (in the case of SNR =
10 dB the number of samples is seven). This is in line with
the reasoning detailed above.

4.3. Handling the Channel Delay. If there is some delay D
in the overall channel impulse response function q, a more
efficient equalization can be carried out by the decision rule
given in (3). The cost function based on the lower bound
in (16) has only to be slightly modified in order to handling
the delay parameter D. Since in this case (instead of the first
element) the Dth element of q must be set to −1, hence the
index array used for calculating the dominant terms have to
be changed to

i1 = arg min
j

∣∣∣qj

∣∣∣ j /=D,

ik = arg min
j

∣∣∣qj

∣∣∣ j /=D, i1, i2, . . . , ik−1.
(34)

5. Obtaining Channel-State Information

In order to run the proposed algorithm, channel state infor-
mation is needed (the channel impulse function hi appears
in expression (9)). There are plenty of real time adaptive
channel identification algorithms [18] which provide fast
and simple channel state information by using a training
sequence {(yn, xn),n = 1, . . . ,N} where yn,n = 1, . . . ,N
is a transmitted binary sequence known at the receiver and
xn,n = 1, . . . ,N is the corresponding received sequence.

We identify the channel estimator with an adaptive FIR
filter, the coefficients of which are updated as follows:

gj(n + 1) = gj(n)− Δ

⎛
⎝xn −

M∑

i=0

gi yn− j

⎞
⎠yn− j . (35)

This algorithm minimizes the mean square error between the
unknown channel impulse response function hi, i = 1, . . . ,M
and the FIR filter coefficients gi i = 0, 1, 2, . . . ,M. Here xk
denotes the received sequence at the output of the channel
estimator. Parameters gi in algorithm (35) converge to the
true channel impulse response function hi in mean square
(and in probability) if the degree of the FIR filter is larger
than the channel impulse response (overmodeling).

It is noteworthy that the adaptive channel identifier (35)
converges rather fast to the true cannel-state because of the
narrow eigenvalue-spectrum of the underlying matrices (for
further details see [1]). Hence, the combination of identifica-
tion and equalization can provide real time solutions for low
BER communication.

6. Numerical Results

In this section, a detailed performance analysis is given in
which the bit error probability achieved by the different
equalization methods are compared with each other.

6.1. Channel Characteristics and Channel-State Information.
The channel distortion can be modeled by a tapped delay-
line model (see Section 2). If the WSSUS (Wide Sense Sta-
tionary Uncorrelated Scattering) assumption is made, then
the channel coefficient hi are uncorrelated, and Gaussian
distributed. In the project COST 207 [19], several wideband
propagation models were proposed for the practical realiza-
tion of both hardware and software simulators in the context
of GSM systems for different classes of environments (an
other set of models is ITU-R models for third-generation
cellular systems). These models are generally described by
power delay profiles from which the discrete time equivalent
can be derived.

The simulations were performed on three different dis-
crete channels representing multipath propagation derived
from the power delay profiles of the above mentioned
models. The corresponding channel characteristics are given
by their impulse response as follows: h(1) = [1; 0.6;−0.3]T ,
h(2) = [1.0000; 0;−0.81; 0.42]T , h(3) = [1; 0.6;−0.45]T .

Note that channel h(1) has the minimum-phase, while
h(2) and h(3) have the nonminimum-phase property. The
equalization of nonminimum-phase channels is difficult,
because these channels have zeros outside the unit circle, and
hence, the inverse of the channel has poles outside the unit
circle.

6.2. Performance Analysis. In this section we numerically
investigate the BER with respect to SNR and we also analyze
the convergence properties of the equalization algorithms.
The abbreviations used in the figures are as follows:

(i) TGS—True Gradient Search (for details see (11));

(ii) LISIx—our algorithm with x dominant terms in the
approximation;

(iii) LMS—Least Mean Square algorithm;
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Figure 3: PE(w(k)) versus k for channel h(3) in the case of 3
equalizer coefficients, γ0 = 0.0025 and γ1 = 0.025.

(iv) MMSE—Off-line calculated Minimum Mean Square
Error solution

(v) NOEQ—BER without any equalizer;

(vi) AMBER—Adaptive Minimum Bit Error Rate algo-
rithm [6].

As far as the channel-state information is concerned,
we assumed no channel-state information to be available at
the receiver side, thus channel equalization was preceded by
an adaptive channel identifier algorithm given in (35). In
all simulations the delay parameter D used in the decision
rule (3) was set by exhaustive search. The step size of
the gradient-descent-type algorithms was set empirically.
The experiments show that the attained BER is not too
sensitive to the value of the step size, while the convergence
speed is highly dependent on this value as described below.
Furthermore the value of the step size depends on the SNR
as well, since the error surface tends to be more complicated
as SNR increases [6].

6.2.1. Convergence Analysis. Figure 3 demonstrates the con-
vergence properties of the equalization algorithms. One can
see, that the TGS algorithm converges rather fast; however, in
each step the exponential summation have to be calculated.
Algorithm LISI4 exhibits similarly fast convergence but in
each step it only needs to evaluate the function Φ(·) for only
some dominant arguments, which results in a considerable
decrease in complexity.

Figure 3 also demonstrates that algorithm LISI4 with
fix γ = γ0 step size will yield slower convergence than
TGS. However, the convergence speed can be increased by
modifying the step size in each step according to the rule
γ = γ0/

√
k [16], which indicates that investigation on the

step size can also improve the convergence.
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Figure 4: Final BER for 100 different runs of TGS in the case of
randomly chosen initial state, channel h(1) and SNR = 24 dB.
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Figure 5: Final BER for 100 different runs of TGS in the case of
randomly chosen initial state, channel h(2) and SNR = 24 dB.

It is proven in [13] that in the case of nonminimum-
phase channels the minimum BER error surface is convex,
and hence it has only one global minimum, but in the case
of nonminimum-phase channels there are local minima [6]
in which gradient descent type algorithms can get stuck.
In order to detect the chance to getting stuck into local
minima for the channel models used in our experiments, the
TGS algorithm was randomly initialized with 100 different
values, and the attained BER after convergence was depicted
in Figures 4, 5, and 6. These figures demonstrate that in
the case of minimum-phase channel there is almost no
chance of converging to local minima, while in the case of
nonminimum phase channels a 5–10 percent of convergence
to local minima has been detected. The problem of getting
stuck into local minima can be minimized by “good”
initialization, for example, iterating the equalizer weights
the minimum BER algorithm can be started from an initial
weight vector obtained from the MMSE solution.

6.2.2. BER versus SNR. In Figures 7–9, the BER versus SNR
achieved by the classical and by the new algorithm are
depicted. One can note a sharp improvement in performance
achieved by the new algorithm derived from the minimum
BER strategy, especially in the case of nonminimum-phase
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Figure 6: Final BER for 100 different runs of TGS in the case of
randomly chosen initial state, channel h(3) and SNR = 24 dB.
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Figure 7: BER versus SNR performance of the different algorithms
for channel h(1) in the case of 3 equalizer coefficients, D = 0.

channels (such as h(2) and h(3), see Figures 8 and 9) and
good SNR circumstances. The LISI algorithm using the
dominant terms performs very close to the exact minimum
BER solution in the case of good SNRs, since increasing the
SNR decreases the number of dominant terms, hence the
bound will be sharper. On the other hand, its advantage is
its low complexity against TGS (11). The AMBER algorithm
introduced in performs very close to the TGS, but converges
much slower than the TGS and LISI methods.

7. Conclusions

In this paper, a novel channel equalizer algorithm has been
developed based on approximating the BER by dominant
terms. Due to the simplicity of this approximation, a fast
equalization algorithm can be obtained, the performance
of which falls close to optimum. Since this approximation
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Figure 8: BER versus SNR performance of the different algorithms
for channel h(2) in the case of 3 equalizer coefficients, D = 3.
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Figure 9: BER versus SNR performance of the different algorithms
for channel h(3) in the case of 6 equalizer coefficients, D = 2.

needs channel state information, the equalizer is preceded
by an adaptive channel identifier. The combined conver-
gence of channel identification and the new bound-based
equalization is still much faster than the convergence of
other algorithms (e.g., LMS, AMBER [6]). The operational
complexity of the new algorithm is also smaller than TGS
(for details see (11)). The new method yielded better
performance than the traditional ZF and MMSE equalizer
algorithms on standard wireless channels. These benefits
make the new algorithm suitable for real time applications.
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