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In general, it is difficult for conventional adaptive interference cancellation schemes to improve speech intelligibility in the presence
of interference whose source is obtained asynchronously with the corrupted target speech. This is because there are inevitable
timing drifts between the two inputs to the system. To address this problem, a drift-compensated adaptive filtering (DCAF)
scheme is proposed in this paper. It extends the conventional schemes by adopting a timing drift identification and compensation
algorithm which, together with an advanced adaptive filtering algorithm, makes it possible to reduce the interference even if the
magnitude of the timing drift rate is as big as one or two percent. This range is large enough to cover timing accuracy variations of

most audio recording and playing devices nowadays.

1. Background

An example of the conventional adaptive interference can-
cellation (a.k.a. noise cancellation, or “reference canceler
filter” in [1]) system is shown in Figure 1. A broadcast signal
played by a TV or radio receiver in the same room as the
target speech interferes with the latter and makes it less
intelligible in the digitized microphone output d(n). The
goal is to reduce the interference u(n) contained in d(n) so
as to improve the intelligibility of the target speech s(n).
To achieve this, a reference x(n), being the original signal
sent to the interfering loudspeaker, is filtered by an adaptive
filter that automatically learns the electro-acoustic transfer
function from the original to the microphone output and
produces an output y(n) that resembles u(n). This y(n) is
subtracted from d(n) to reduce u(n) so that s(n) in the output
e(n) is enhanced. In other words, the signal-to-interference
ratio is increased.

Note that an adaptive interference cancellation system
in Figure 1 or any of the others discussed in this paper is
not able to reduce ambient noise uncorrelated with x(n);
it regards the noise as part of s(n). Details about the
conventional adaptive interference cancellation technology
and adaptation algorithms in general can be found in [2].

With both d(n) and x(n) acquired synchronously—an
assumption conventional schemes are based on—the system
in Figure 1 may reduce the interference quite effectively.

However, in some cases, it is not easy or even possible
to obtain x(n) at the same time when d(n) is recorded.
For example, there may be restrictions so that it is only
possible to place one surveillance microphone on-site and
it is impossible to tap the interfering signal sent to the
loudspeaker when the recording for d(n) is done.

It is then suggested in Section 4.6 of [1] that one obtains
the original broadcast material separately, for example, from
the broadcaster, and uses it as the reference input x(n).
The block diagram in Figure 2 illustrates this principle.
Material obtained separately may differ from the actual
source of interference due to, for example, alterations or
distortions during the broadcast process. As in [1], we
assume in this paper that there are no such differences. In
Figure 2, the broadcast material is independently played back
twice—once for the interfering loudspeaker and another
time when x(n) is acquired. In addition, there may be
more independent playback or recording operations involved
during the acquisition of d(n) (two more in the example of
Figure 2). These operations are performed at different times
and most likely by different devices.
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It is understood that each audio recording and playback
device, be it a CD player, a cassette tape recorder/player, a
VHS tape recorder/player, and so forth,

(i) records or plays at an average speed different from
that of others, because of their different timing
accuracies,

(ii) has an average speed that drifts over time,

(iii) may have irregularities in the recording/playback
speed, called wow-and-flutter. This is true primarily
with analog recording/playback devices.

For example, our comparison between three devices
revealed that the playback speed of a consumer portable CD
player is 0.066% slower than the timing provided by the
sound card digitizer in a personal computer, and a higher-
end DVD surround receiver plays 0.0035% slower than
the sound card. The wow-and-flutter with analog devices
also varies across different recorders/players and from time
to time with the same recorder/player. For example, the
wow-and-flutter of an analog telephone answering system is
allowed to be as large as 0.3% [3]. Table 1 of [1] indicates that
the speed error of an analog recording device can be as large
as 3.0% and the wow-and-flutter of it 1% rms.
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As a result of these factors, interference components
in d(n), which are supposed to be correlated with x(n),
are in general not synchronous with x(n) in the system in
Figure 2—there are varying timing drifts between them due
to the differences in speeds of their respective recording and
playing operations and possible timing jitters resulting from
wow-and-flutter during those operations.

Note that we use [ and m (instead of n) as time indices
for sampled signals in the on-site data acquisition part of
Figure 2. This is to emphasize the fact that they are in general
played back or acquired with sampling frequencies that can
differ, though slightly, from those of {x(#)} and {d(n)} in the
adaptive filtering unit.

The asynchronous nature of the problem, together with
the fact that

(i) a misalignment—due to the timing drift—of a small
fraction of a sampling interval can render a converged
adaptive filter useless;

(ii) existing adaptation algorithms usually converge
much slower than these timing variations,

makes it difficult to achieve an appreciable interference
reduction using just an adaptive filter in the configuration
Figure 2 illustrates.

In an attempt to alleviate the adverse impact of the timing
variations discussed above, it is suggested in Section 4.6 of
[1] that the inputs x(n) and d(n) in Figure 2 be manually
aligned. In practice, one may be able to compensate for a
timing drift with a constant rate (a.k.a. linear drift) by using
an interpolation/decimation means to stretch or compress
the time scale of {x(n)} or {d(n)} according to an estimation
of the drift rate, but it is a laborious process to manually
estimate such a rate. Furthermore, it would take even more
effort to manually look after the more general case of a timing
drift with a time-varying rate (a.k.a. nonlinear drift). This
is because x(n) and d(n) would first have to be partitioned
into segments small enough that the drift rate during each
of them can be regarded as approximately constant. Thus,
manual alignment as suggested in [1] is not an effective
or efficient solution to the problem. It is then necessary to
find a way of automatically identifying and compensating for
timing drifts regardless of whether the rates are constant or
time varying.

In the application of the echo cancellation techniques
to voice-over-IP networks and as software implementation
on personal computers, there can be similar problems—
also caused by timing variations. Examples of a software
speakerphone implemented on a personal computer are in
[4, 5]. The signal samples received from the far-end of a
voice link are delivered to the loudspeaker(s) at a rate maybe
slightly different from the rate at which the microphone
signal is sampled—although these two rates are the same
nominally. This situation is similar to that in Figure 2.
For the acoustic echo canceller to do a decent job, it is
necessary to identify the difference and compensate for it.
These two algorithms focus on circumstances where the two
sampling frequencies are slightly different but constant, that
is, constant rate or linear drift as mentioned above.
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There was extensive research in the 1980s [6, 7] on a
related topic: making the echo canceller for data modems
immune to certain echo-path variations. These variations
were caused by a frequency shift due to slightly different
carrier frequencies and by timing jitters due to coarse
adjustments made by a digital phase-locked loop. It is quite
effective and popular to use a phase-locked loop to estimate
and compensate for the frequency shift [6], and it is possible
to eliminate the adverse effect of timing jitters that happen
at known time instances [7]. However, these well-developed
approaches cannot be readily applied to the case in Figure 2
because the timing jitters caused by wow-and-flutter are
random and unpredictable.

Thus, how to do interference cancellation in the con-
figuration of Figure 2, with a significant and possibly time-
varying timing drift between the two inputs and without
any explicit information about the drift, has been an open
issue. The goal of this research is to develop a scheme that
is effective in this circumstance, with the expectation that
it may also be applied to other applications such as those
studied in [4, 5].

The rest of this paper is organized as follows: the
proposed scheme is detailed in Section 2, Section 3 presents
some experiment results, and Section 4 is a summary. In
addition, there are three appendices that provide details of
certain proofs and derivations.

2. The Proposed Scheme

In overview, the proposed drift-compensated adaptive filter-
ing (DCAF) scheme dynamically aligns the sequence {d(n)}
with {x(n)} by

(i) upsampling {d(n)} to obtain a new sequence
{d;(n")}, with a much higher time resolution;

(ii) finding the differences (errors) between {d;(n")} and
the adaptive filter’s output;

(iii) evaluating the errors to determine the nature of the
timing drift;

(iv) downsampling {d;(n")} accordingly to produce a
sequence {d,(n)} in which the interference compo-
nents are synchronous with those in {x(n)}.

The DCAF is shown in Figure 3, which is to replace
the adaptive filter and the summation node in the system
in Figure 2. The scheme has been briefly reported at a
conference [8], and more details are provided in this paper.
As illustrated, there are three major components in Figure 3:
(A) timing drift estimation and compensation, which is
the essence of the proposed scheme and looks after the
time alignment between the two inputs; (B) Ratchet fast
affine projection (FAP) adaptive filter, for fast convergence
and low complexity; and (C) peak position adjustment,
which is indispensable for such a time-drifting application of
adaptive filtering. These three components will be discussed
separately below.
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In this paper, we only discuss the time-domain approach
for ease of understanding the concepts. In practice, the DCAF
could also be implemented in the frequency domain for
improved efficiency.

2.1. Timing Drift Estimation and Compensation. The term
“timing drift” will henceforth refer to the aggregated net
effect of timing variations resulting from all playback and
recording operations involved, such as those in Figure 2. In
the DCAF scheme, the timing drift is dynamically estimated
by evaluating certain time averages and then compensated
for by properly resampling the primary input sequence
{d(n)} to form a new sequence {d,(n)} in which the interfer-
ence components are synchronous with the reference input
sequence {x(n)}. In other words, the sampling frequency
for {d(n)} is dynamically adjusted so that the resultant
{d,(n)} has the same sampling frequency as that of {x(n)}—
as if {d,(n)} and {x(n)} were acquired synchronously. That
being done, the adaptive filter is able to make a reliable
estimate of the interference in {d.(n)}. We now look at
how the resampling is implemented, how the timing drift
is estimated, and how the resampling is controlled to
compensate for the timing drift.

To resample {d(n)}, it is first upsampled by a factor I
(I =100 in this paper), resulting in an interpolated sequence

{di(n")}:
coodi(nl = 1),di(nl) = d(n),d;(nl +1),...,
di((n+ DI —-1),di((n+ 1)) =d(n+1), (1)
di((n+1)I+1),...

whose sampling frequency Fgy is I times that of {d(n)}. This
is illustrated in Figure 4.
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The upsampling is performed by first padding I — 1
zeros between each pair of adjacent samples in {d(n)} then
passing the resultant sequence through a low-pass filter. In
the case used in our experiments, I = 100, and the FIR
low-pass filter has 10208 coefficients, which are symmetric
so that the filter has a frequency-independent group delay
of (10208 — 1)/2 = 5103.5 interpolated samples. The
passband ripple and stopband attenuation are 0.5dB and
50 dB, respectively. The passband and stopband edges are
located at 0.0048125 Fg; and 0.005 Fsy, respectively. Details
about upsampling techniques can be found in a text book on
digital signal processing, for example, [9].

Then, {d;(n")} is decimated by a time-varying factor
D(n) = I to arrive at the resampled sequence {d,(n)}, whose
sampling frequency approximately equals that of {d(n)}.
This is achieved by

d,(n) = di(n'), (2)
where
n' = (n+ A)I + [offset(n)]. (3)

In (3), A is an integer, [-] denotes the rounding operation,
and 0 < offset(n) < I. Thus, d,(n) leads d(n) by A +
[offset(n)]/I original (not upsampled) samples.

If offset(n) has a constant value, then D(n) = I; that is,
{d.(n)} and {d(n)} have the same sampling frequency but
may have a constant offset in time. However, a time-varying
offset(n) may result in D(n) deviating from I.

The key to timing drift compensation is to dynamically
adjust D(n) by modifying offset(n) in (3) so that the
interference components in {d,(n)} stay synchronous with
{x(n)}. To do so, we update offset(n) adaptively using

offset(n + 1) = offset(n) + offset_inc(n), (4)

where the updating term offset_inc(n) stands for “offset
increment.” When the right-hand side of (4) goes beyond the

EURASIP Journal on Advances in Signal Processing

range [0, I — 1], wraparound is performed as follows

If offset(n + 1) = I, then

offset(n+1) = offset(n+1) = I, A=A+1.

(5)
Else if offset(n+ 1) < 0, then
offset(n+1) = offset(n + 1) +1I, A=A-1
so that offset(n + 1) remains in the range [0, I — 1].
Based on (2)—(4), the decimation factor is
D(n) = o’ = I+ dloffset(n)] = I + offset_inc(n) + &,
on on ©
6

where § is a zero-mean noise resulting from rounding;
therefore, its rms value is 1/(2+/3). In a steady state, for
example, the timing drift rate is constant (the case considered
in [4, 5]), and D(n) is expected to wobble around a constant
defined by (D(n)) = I + (offset_inc(n)), where (-) is the
time-averaging operator. It follows that, in that case, the ratio
between the sampling frequencies of the original and the
resampled sequences is

<D§n)> - (offset,]mc(n))- %

The remaining issue is to estimate the timing drift so as
to control offset_inc(n). We begin with a (2K + 1)-element
(K < 1/2) subsequence:

{di(n" + k), Vk € [-K,K]} (8)

of (1). In (8), K typically equals 15 in our experiments,
and wraparound adjustments as per (5) are made if any
offset(n) + k becomes out of [0, I —1]. Note that the element
in the middle of (8) is (2).

As illustrated in Figure 3, the adaptive filter’s output y(n)
is subtracted from (8) to produce 2K + 1 error values

ef(n +k)=di(n"+k)—y(n), Vke[-KK], (9)
with the main error value in the middle at k = 0. This enables
us to examine the output error with an I-times finer time
resolution—to facilitate timing drift estimation.

Let us consider the expectations

Ele}(n' +k)], Vke|[-KK]. (10)

It is henceforth assumed that the adaptive filter has mostly
converged and there exists a unique kope € [—K, K] so that

E[e}(n +kopt) | <E[(n' +K)], Vke[-K,K]. (11)

It is proven in Appendix A that elements in (10) form
a convex and approximately quadratic function of k if
|k — kopt| < I/2 and the target signal s(n) plus the ambient
noise are uncorrelated with x(n).
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We then need to control offset_inc(#n) in (4) for consecu-
tive sampling intervals in order for the main (middle) error
er(n’) to remain at the minimum in (11); that is, kopr = 0.
Thus, it is necessary to monitor (10) and keep track of the
actual position of its minimum. Since it is impossible to find
ensemble means in practice, (10) has to be approximated, for
example, by time averages. What we adopt is (12), with first-
order smoothing over time:

Ex(n) = BEx(n— 1)+ (1 = B)et(n’ +k), Vke [-K,K],
(12)

where 8 € (0, 1) is close to 1. Note that the relation between
the time indices n and n’ in (12) is defined by (3). Next, a
parabola f(n,k) that fits the elements in (12) in the least-
squares sense is found. If f(n, k) is convex as expected, then
a finite minimum inc_inst(n) of it exists, as illustrated in
Figure 5. It is shown in Appendix B that f(#, k) is convex if

K K
a(n)=3 > KE(n)—KK+1) > El(n) >0, (13)

k=-K k=-K
and, in that case,
. 4K2+4K -3 &
inc_inst(n) = —— z kEi(n). (14)
—10a’'(n) =y

This is a candidate for offset_inc(n).
Due to the presence of the target signal s(n), the ambient
noise, and uncancelable interference,

(i) equation (14) may be too noisy to be used as
offset_inc(n) in (4);

(ii) it is possible for f(#,k) to be nonconvex—indicated
by (13) as being not satisfied. If so, (14) is not
meaningful.

Thus, the offset_inc(n) is found by using a smoothing
operation over many sampling intervals:

offset_inc(n) = offset_inc(n — 1)

- inc_inst(n)
+

0 otherwise,

ifa’(n) >0, (15)

where y is a small positive step size.

Finally, the interference-reduced system output is the
main error in (9); that is,

e(n) =e/(n') = d,(n) — y(n). (16)

We now address the issue of selecting the interpolation
factor I. As seen, the resolution of the timing drift compen-
sation is 1/I of a sampling interval. For the sake of reducing
implementation complexity, a small value for I is beneficial.
It is then necessary to find a smallest I without sacrificing
the perceptible cancellation performance. Through some
manipulations, Appendix C gives the following guideline:

I>m-10™20 (17)

where TR is the wanted ratio (in dB) of the level of d(n) to the
level of tolerable adjustment errors; that is, the errors should
be TR dB lower in level than the primary input. Experiments
suggest that TR = 30 dB, which results in I = 100, gives an
adequate tradeoff between performance and complexity.

Note that, although 2K + 1 errors are calculated in (9),
the added complexity is quite small since there is only one
adaptive filter. Another remark is that the upsampling of
{d(n)} by a seemingly large factor of I = 100 is mainly
conceptual. In reality, only 2K +1 interpolated values in (8)—
as opposed to all those in (1)—need to be calculated and, for
each of them, 99% (for I = 100) of the input samples to
the 10208-coefficient FIR interpolation filter are zeros. Thus,
the polyphase filtering technique [9] is adopted so that the
computation load is minimized.

2.2. Ratchet FAP. Although any adaptive filter could poten-
tially be used in Figure 3, one adopting the Ratchet FAP
algorithm [10] is chosen. This is because (a) a FAP can
converge an order of magnitude faster than the most
commonly used NLMS and is only marginally more com-
plex; and (b) the Ratchet FAP is superior to other FAP
algorithms in terms of performance and stability. In addition
to adaptive interference cancellation, Ratchet FAP can also
find applications in echo cancellation, source separation
[11], hearing aids, and other areas in communications and
medical signal processing.

The Ratchet FAP used in this application incorporates
an algorithm that dynamically optimizes the regularization
factor so that it is just large enough to assure stability of the
implicit matrix inversion process associated with the FAP. See
[12] for further information.

2.3. Peak Position Adjustment. An important issue with
such a time-drifting application of adaptive filtering is that
the coefficients of the adaptive filter may drift over time,
even after convergence. Corresponding approximately to the
filter’s group delay, the main part of the coefficients that
needs to be considered is typically a small, contiguous set
of coefficients with large magnitudes. If this part moves
close to the beginning or end of the range spanned by the
adaptive filter, the interference reduction performance may
significantly degrade.



To circumvent this, the position of the main part of
the coefficients is constantly monitored and adjustments are
performed when necessary. This position is estimated by

Y klwk(m)|
posm{md) = S il 1)

in a manner similar to how “center of gravity” is esti-
mated. In (18), the subscript m stands for “main,” and
{wo(n), wi(n),...,wr_1(n)} are the L coefficients of the
Ratchet FAP adaptive filter in Figure 3. Equation (18) with
the parameter ¢ = 1 gives the position of the center of
magnitudes (center of mass), with g = 2 gives the center of
energy (moment of inertia) or the filter’s group delay, and
with g = oo gives the index of the coefficient with the largest
magnitude. In our experiments, g = 4 is used in order to take
into account both the group delay and large peaks.

Next, (18) is compared against a target range of values
that can be determined heuristically. If the deviation is
significant enough, then realignment adjustments, with
a step of one sample every preset number of sampling
intervals, are made until the deviation lies within the target
range. The realignment adjustments require changes to

(i) the read pointer for x(n) (Figure 3);

(ii) the coefficients of the adaptive filter—they are shifted
one sample to the left or right (depending on the
need) with a zero appended to the opposite end;

(iii) the autocorrelation matrix estimate of the Ratchet
FAP adaptive filter—the sums therein need also to be
shifted and properly appended accordingly.

Further incidental implementation details are needed but
these are omitted here for brevity.

A remark about the read-pointer adjustment mentioned
above is that, in a real-time implementation, such adjust-
ments may result in serious consequences as over- or
underflow of the input buffers can occur. This problem is
common in telecommunications (see Section 1), and there
are techniques to circumvent it. However, this topic is
beyond the scope of this paper; our purpose is to propose
an algorithm’s framework, and all processings presented
in Section 3 have been done offline so that the over- or
underflow issue is avoided.

2.4. About Adaptation Control. It is normally necessary for
an adaptive system such as the DCAF to have an adaptation
control to prevent the adaptive systems from potentially
diverging when the target signal s is active. This could be
done by nullifying the two step sizes, for example, y in
(15) and that for the Ratchet FAP. The detection of this
condition is called “double-talk detection” in literature on
echo cancellation.

Contrary to this, no adaptation control is implemented
in the current DCAF scheme because, in this application
(see Section 1), the interference and target can be active
simultaneously most of the time. This leaves very little
“single-talk” (no target) time in which the adaptation
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TaBLE 1: DCAF’s performance without and with timing drift
compensation—simulated conditions.

Achieved interference

Test ~Nature of timing drift rate reduction (dB) with timing

during the 120s test case

case . drift compensation being
period
disabled enabled
1 0 7 1% linearly 1.2 7.5
2 0 N —1% linearly 0.4 11.3
3 07 1% ™ 0 linearly 1.6 9.4
4 0N —1% - 0 linearly 0.3 8.6
5 1/60 Hz cosine with peaks 26 0.4

+0.08%

systems could adapt quickly and reliably. Indeed, the system
the DCAF tries to approximate is expected to change only
slowly, and so the adaptation is allowed to take place full-
time (i.e., even during double talk) but with very small step
sizes. The resultant DCAF scheme is a compromise between
convergence speed and immunity to the target signal. It
could be a future research topic to find a way of optimally
controlling the step sizes in conjunction with double-talk
detection.

3. Experiments

The proposed DCAF scheme has been evaluated with real-
room signals combined under simulated conditions. The
real-room signals use recording and playback devices having
different timing accuracies. The sampling frequencies used
are (nominally) 8, 16, 44.1, and 48 kHz.

Subjective evaluation to characterize the intelligibility
improvement has been performed. Its process and results are
reported in Section 3.3.

3.1. Simulated Conditions. Test cases are prepared using
recorded radio broadcast signals filtered with 740 ms long
room impulse responses which were measured in a large
meeting room. The timing drifts are created by properly
controlled resampling and delaying of the primary or
reference input.

Table 1 lists several test cases, all with a 16 kHz sam-
pling frequency, a 120-second duration, and a signal-to-
interference ratio in {d(n)}, before processing, of —1.4 dB.
In the DCAF scheme, the Ratchet FAP adaptive filter has
L = 2000 coefficients (125ms) and an affine projection
order N = 5. The normalized step size a of the adaptive
filter starts with a relatively large value of 0.050-0.100 and
diminishes to 0.005-0.010 after initial convergence. In the
drift compensation part, the interpolation factor is I = 100,
the parameter K = 15, and the step size p in (15) is either
equal to 0 or in the approximate range of 5 X 107 ~ 107>,
When g = 0, the drift compensation part (Section 2.1)
is disabled so that the DCAF falls back to a conventional
adaptive interference cancellation scheme.
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is disabled, the DCAF falls back to a conventional algorithm. (Figure 3) ond D hoise
In that case, it is not capable of handling these timing drifts.

Consequently, little interference reduction is observed, as
shown in Table 1.

Consider Test Case 3 in Table 1 as an example. The rate
of the timing drift between the two inputs goes linearly from
0 to 1% in 60 seconds and back to 0, again linearly, in the
next 60 seconds. Figure 6 shows that the DCAF has correctly
estimated that rate.

In Test Case 5, another example, the rate of the timing
drift between the two inputs varies according to a sinusoidal
pattern. It can be seen in Figure 7 that it takes some time for
the DCAF to initially catch up to the timing drift. Once the
initial alignment has been achieved, the algorithm stays in
synchronization.

It is clearly seen in Figures 6 and 7 that the offset_inc(n)
is still quite noisy despite the smoothing operations (12)
and (15). This phenomenon has also been observed in
other test cases in Table 1. This is believed to be attributed
to the presence of the strong target signal plus ambient
noise (only 1.4 dB below the interference) and uncancelable
interference—as discussed in Section 2.4. This will be veri-
fied by the next test case in Section 3.2.

3.2. Real Room with Real Recording and Playback Devices.
With the primary input recorded in real rooms by real
recording and playback devices having different speeds, these

tests aim at verifying the performance of the DCAF in real
life.

FIGURE 8: A room recording setup.

Figure 8 illustrates the recording setup in an ordinary
office room. The portable CD player plays the digitally stored
interfering speech x(n) at a slightly lower sampling rate than
that of the PC sound card used to digitize the primary input
to get d(n). In this test scenario, the target signal s is the
steady ambient noise, resulting mostly from equipment and
ventilation fans in the room. It has a level 19 dB below that
of the interference x introduced by the loudspeaker. The
primary input d(n) is sampled at 8 kHz and has a duration
of 900 seconds. In the DCAF, the Ratchet FAP adaptive
filter has L 1000 coefficients (125ms) and a step size
a = 0.05 throughout the entire period. Other parameters
are the same as those used in Section 3.1. It is observed
that the interference reduction is only 2.1dB if 4 = 0 (drift
compensation disabled) and reaches 19.3dB if y = 5 x 107°.
Figure 9 shows that after a few seconds of initial learning the
DCAF estimates a timing drift rate of around 0.066%, and
this value rises slightly to around 0.07% towards the end of
the run. This rising is thought to correspond to the variation
of the actual timing drift rate over the 900-second period.
In this test case, the target signal plus the ambient noise and
the uncancelable interference are much lower in level than
was the case in Section 3.1. This explains why the estimate
for offset_inc(n) is much less noisy.
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FIGURE 9: Estimated rate of timing drift for room recording with ambient noise but no target signal.

With other real-life signals, recorded in rooms and by
devices different from those used for Figure 8, the interfer-
ence reduction is consistent with the cases with simulated
conditions (Section 3.1) when the magnitude of the rate of
the timing drift is not very large, for example, no more than
0.5%.

When an analog cassette audio recorder/player is used,
the observed magnitude of the varying timing drift rate can
be as large as 3%. It has been observed (but not reported
in detail here) that, although the DCAF still converges
and tracks the drift, the interference-reduction performance
degrades when the timing drift rate reaches such a large
magnitude. For example, the interference-reduction can
be only around 1 or 2dB and is barely perceivable by
human ears. It is believed that the relatively severe wow-
and-flutter of the particular analog device used, not just the
large magnitude of the timing drift rate, may likely have
contributed to the performance degradation. Fortunately,
wow-and-flutter is virtually nonexistent with modern digital
devices.

3.3. Subjective Evaluation. To assess the performance of the
proposed DCAF scheme in terms of improved intelligibility,
subjective tests were conducted with 25 individuals. The
intelligibility of test signals is compared for three processing
conditions: (a) no processing, (b) processing with the DCAF,
and (c) processing conducted by an acoustic forensic expert
using conventional methodologies.

The test signals consist of target male-spoken English
sentences (the IEEE “Harvard sentences” [13]) with inter-
fering speech babble. The target and interfering signals are
processed through room impulse responses from different
locations within the same room and then mixed to a
specified signal-to-interference ratio (SIR). A time-varying
timing drift is applied to the mixed signals using two drift
patterns: a sinusoidal variation with a period of 60s and
peak change in sampling rate of 0.04% and a pseudorandom
variation with peaks of about 0.025%. These timing drifts
are imperceptible to normal listening but have a significant
impact on conventional interference cancellation.

The leading and trailing portions of the processed test
signals are discarded to ensure algorithm convergence and
avoid any possible end effects. To examine the variety of test
conditions, each subject is presented with 100 randomized
test sentences. Each test sentence is padded with interference
to a fixed duration of 4.5s. After listening to each sentence,
the subject repeats back the words that were understood and
the fraction of words correct is recorded.

100 Z%‘ V% ?

80 / / /
N
2 B 7% 7 7
* ol 7

i B =

i A e

[T Unprocessed
575 Processed by conventional scheme
Processed by DCAF

Ficure 10: Intelligibility with three processing conditions.

The resulting intelligibility is shown in Figure 10 as a
percentage of words correctly understood, for the selected
SIR values and the three processing conditions. Error bars
indicate the standard deviation of observed data. At all
tested SIR, the proposed DCAF scheme provided very
good intelligibility even though the conventional processing
provided little or no intelligibility improvement at lower SIR.

3.4. Some Discussions. The DCAF algorithm can, in prin-
ciple, accommodate any timing variation between the ref-
erence and primary inputs as long as it is relatively slow.
Therefore, there should be a limit on the rate of acceleration
or deceleration of the timing drift (i.e., rate at which the
timing drift rate varies) that the DCAF can track. Although
there are no comprehensive characterization data available at
this time, observations suggest that the DCAF can achieve
noticeable interference reduction for acceleration rates as
large as £1% per 60 seconds at a 16 kHz sampling rate,
as seen in Test Cases 3 and 4 in Table 1. In other words,
the timing drift rate changes by 1% over a period of
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60 x 16000 samples. A way of expressing the magnitude of
this acceleration of the timing drift (in “units” of “offset in
samples”/sample?) is
1%

60 x 16000
Increasing the step size y in (15) to a value beyond that used
in our experiments, which is 5x 107%, may improve the above
tracking performance index, but at the expense of reduced
noise immunity of the DCAF.

~ 1.04 x 1078 sample™". (19)

4. Summary

By adopting a unique estimation and compensation mecha-
nism, a drift-compensated adaptive filtering (DCAF) scheme
is proposed. The scheme makes it possible for an adaptive
interference canceller to survive time-varying timing drifts
between the two inputs to a degree large enough to accom-
modate timing accuracy variations of most audio recording
and playing devices nowadays. On the contrary, conventional
schemes typically fail completely under conditions of even
small timing drifts. The DCAF scheme is suitable for appli-
cations in which the reference and primary inputs may be
asynchronous with each other. Example applications include
certain surveillance scenarios, network echo cancellation
for voice-over-IP networks, and software acoustic echo
cancellation implemented on personal computers.

Appendices

A. Convexity and Quadraticity

We now prove that, as long as the system in “A” of Figure 3 is
slowing time-varying, elements in (10) form a convex and
approximately quadratic function of k if (a) the adaptive
filter has mostly converged, (b) the target signal s(#n) plus the
ambient noise are uncorrelated with x(n), and (c)

|k = kope | < 051 (A1)

For convenience, we define Ak = k — kop.

Equation (11) indicates that the interference components
in di(n’ + kop) are well aligned with y(n). As a result, di(n’ +
kopt) can be expressed as

dr(n) = di (1 +kopt) = y(n) +v(n),

where the noise v(n) is uncorrelated to y(n) and consists of
the target signal s(n), the ambient noise, and uncancelable
interference.

The discrete-time Fourier transforms of y(n) and v(n) in
(A.2) are

(A.2)

00

z v(n)e ion,
o (A3)

Y(w)= > y(n)e /",

n=—o0

Viw) =

and y(n) and v(n) can be expressed as inverse transforms

1 (" . 1 (7 )
= jon — jwn
y(n) oy LT Y(w)e/“"dw, v(n) 5 LT V(w)e!*"dw.

(A4)

It follows that (8), being interpolated from d(n), can be
written as

dr(n' +k) = i J_ Y (w)el@m AR gg

N Lr V(@)el @k g, (A.5)
27 )p ’
Vk € [-K,K].
Therefore, (9) can be expressed as
1 (" ) )
er(n +k)= —J Y(w)(ef“’Ak” - l)ef“’”dw
2m ) n
(A.6)

+ L Jﬂ V(w)ej“’("+Ak/I)dw,
2w ) n

Vk € [-K,K].
Given y(n) and v(n) being uncorrelated, (10) becomes
Elei(n' +k)]

- %712[[7 E[Y(w)Y*(w')]e/@n

. (ej(w—w')Ak/I 41— elwAKT _ e—jw'Ak/l>dwdw/ (A.7)

U
s || EV@VH@ e doda,
-7

Vk e [-K,K],

where the superscript (*) denotes complex conjugate.
To simplify (A.7), we use

Z Z E[y(n)y(m)]e 1«nei'm

m=—00 n=—00

AR

E[Y(0)Y*(w')]

Xefj(wfw’)m,
(A.8)
where
Ry (1) = E[y(m)y(n +1)] (A9)

is the autocorrelation function of y(n). By letting [ = n — m,
(A.8) becomes

E[Y(0)Y*(a')]

2. { > Ry(l)ef“’l]ef(“"“'"
m=—o0| |=—c0

=S5,(w) Z g jlw—wm _ 218y ()8

(A.10)

where §,, is the Dirac delta function of w and

Sy(w) = i Ry(l)e’f“’l.

-

(A.11)
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Similarly, for the noise we have
E[V(w)V*(w")] = 218y (w)Sw—w» (A.12)

where

Sy(w) = i R, (e 7, R,(I) = Elv(n)v(n+1)].

I=—oo

(A.13)

Substituting (A.10) and (A.12) into (A.7) results in
el = 2| sien(5re)
Elej(n' +k)] = - _ﬂSy(w)sm ST@ dw

+ij S,(w)dw, ke [-K,K].
21 J—n
(A.14)

Given (A.1) and |w| < 7 in (A.14), the argument of the
sine function here is quite small in magnitude; therefore,

sin(Afkw> ~ Afkw
207) 7 ’

and (A.14) can be written as

(A.15)

2
k—kopt) (7
E[e2(n + k)] ~ (Mf‘) L 8, (w)w*dw

+ij S, (w)dw, ke [-K,K].
27 ) n
(A.16)

While (11) only requires that there be a minimum at k = kop,
(A.16) further shows that elements in (10) form a convex and
approximately quadratic function of k.

B. Least Squares Curve Fitting

Here, we prove the validity of (13) and (14).
The parabolic curve f(#, k) illustrated in Figure 5 can be
defined by parameters {a(n), b(n), c¢(n)} asin

f(n,k) = a(n)k* +b(mk+c(n), Vke[-K,K]. (B.1)
To find the parameters that make (B.1) approximate the 2K +
1 estimates in (12) in a least-squares sense, we minimize the

nonnegative cost function

K

Cn)= > [f(nk) - Ee(m)]’

k=-K

(B.2)

by letting its partial derivatives with respect to the three
parameters {a(n), b(n), c(n)} be zeros. This leads to a
system of linear equations

Sy S5 S, a(”) 72(”)
NN b(n)| = | Ti(n) |, (B.3)
S, S 2K+1 c(n) To(n)
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where

Sm

K K
Z k™, Tp(n) = Z k™Ei(n). (B.4)
k=—K k=—K

The antisymmetry property makes S,, = 0, for all m odd;
therefore, (B.3) simplifies to

blo) = T2,
F &]Vﬂ Pw] B
Sy 2K+1||c(n) To(n)
Given that
S; = K(K+1)(2K +1)/3,
(B.6)
Sy = K(K+1)(2K +1)(3K? + 3K — 1)/15,
one can solve (B.5) to get
aln) = KK+ DK + 115)(41<2 vak—»° ™ (B7)
where
a'(n) =3T,(n) — K(K + 1)To(n). (B.8)

The fact that (B.7) and (B.8) (which is equivalent to (13)) are
positive indicates that (B.1) is convex. If so, a finite minimum
of (B.1) exists and is at

—b(n) 4K*+4K -3 Ti(n)
2a(n) -10 a'(n)’

inc_inst(n) = (B.9)

which is (14).

C. Choosing Interpolation Factor

We now study how to choose the interpolation factor I based
on how adjustment errors resulting from it degrade the noise
performance of the DCAF scheme.

The resolution of the timing drift compensation is 1/I of
a sampling interval, so we must choose I to be large enough
that k fluctuating by =1 in the vicinity of k = kop does not
lead to a perceptibly significant performance degradation.
This is expressed as

E{ [e;(n "+ kopt = 1) - el(n ’ +k0pt)]2} <ok, (C1)

where o2 is the tolerable power of the adjustment errors.
For example, if 07 is below a just-noticeable threshold, (C.1)
assures that a =1 error in k around kop is not audible.
Given (9), (C.1) is actually
E{(Ad)’} < o3, (C.2)
where Ad = d(n’ +kopi = 1) —di(n” +kopt). Using the Fourier
transform pair

D@ = 3 dyme " = 3 di(n +kope)e ",

n=-—o0 n=—oo

(C.3)
am=5- | D@
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and following the same rationale as in (A.5), we get

1 (" ) ol
Ad = o Lﬂ D, (w)e’ (e—J - 1>dw

. (C.4)
_ (" jonx0.5/1) o @
in JﬁnD,(w)e sin 2Ida)
so that
efaar} = L[ e b))
(C.5)
ﬂ W jlw—w")(n=0.5/1)
X sin i sin 21e )dwdw'.
Similar to (A.9) through (A.11), we can write
E[D,(w)D; (0")] = 2184(w)d0-w'» (C.6)
where
Si(w) = Z Eld.(n)d,(n+1)]e /¢ (C.7)
|=—c
Substituting (C.6) into (C.5) results in
E{(ady] - j Si(w)sin® 22 (C.8)

Considering |w/(2I)| < n/4 for any reasonable choice of
I (I >2)and using (C.7), (C.8) can be written as

E{(Ad)z} ~ J Sa(w)w*dw

2m]?

_ 1 S " 2 ,—jwl
= 5 2.l (n D] | wrerida
(C.9)
Substituting (C.9) into (C.2) and using
3
. 2% I=0,
J wre 1 dw = ! (C.10)
- 47'[(— 1)
T, l# 0,

we get the criterion for selecting the interpolation factor I:

2
og |

I>— |—
or

2 o]
72

M

E[d (m)d,(n+1)], (C.11)

where aj = E[d?(n)] is the power in d,(n) and also that in
d(n).

Since the right-hand side of (C.11) depends very much
on the statistics of d,(n), we now seek an upper bound
as a worst-case requirement for I. The extreme case that
maximizes the right-hand side of (C.11) is

Eld,(n)d,(n+1D)] = 03(-1)',

Vie (—o,00), (C.12)

11

which, for example, corresponds to d,(n) being a sine wave
of the Nyquist frequency. In this case,

(-1 _yi_ =
_1:112_6'

2
The last step above is a mathematical formula.

Substituting (C.13) into (C.11), the worst-case require-
ment is found as

I>7r<6d> =7
or

where TR = 20 log(os/07) is the target ratio (in dB) of
the power of d(n) to the tolerable power of the adjustment
errors. For example, if one wants the adjustment errors to be
at least 30 dB below d(n) in level, then (C.14) suggests that

1
2
04

Me

Eld,(n)d,(n+1)] (C.13)

1

. 10TR20, (C.14)

I>7-10°20 ~ 99,3, (C.15)

This results in a choice of I = 100.
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