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We propose a new model adaptation method based on the histogram equalization technique for providing robustness in noisy
environments. The trained acoustic mean models of a speech recognizer are adapted into environmentally matched conditions by
using the histogram equalization algorithm on a single utterance basis. For more robust speech recognition in the heavily noisy
conditions, trained acoustic covariance models are efficiently adapted by the signal-to-noise ratio-dependent linear interpolation
between trained covariance models and utterance-level sample covariance models. Speech recognition experiments on both the
digit-based Aurora2 task and the large vocabulary-based task showed that the proposed model adaptation approach provides
significant performance improvements compared to the baseline speech recognizer trained on the clean speech data.

1. Introduction

Speech recognizers employed on the noisy environment
usually show dramatic performance degradation [1]. This
performance degradation has been the major obstacle in
introducing the automatic speech recognition (ASR) tech-
nology to the real-world applications. For this reason, one
of the hot issues in the current research areas of ASR is
to provide robustness against performance degradation of
speech recognizers in the noisy environments [1, 2]. Noisy
environments encountered in ASR are usually different from
training acoustic environments. Therefore, the performance
degradation of speech recognizers in the noisy environments
can be well accounted for the acoustic mismatch [3] between
training and test environments. In this case, the acoustic mis-
match is mainly due to the corruption of speech by additive
noise and channel distortion in the test environments. A lot
of robust speech recognition approaches have been proposed
to reduce the acoustic mismatch in the past few decades and
most of them can be categorized into feature compensation,
model adaptation, and uncertainty-based approaches [2].
Of the three approaches, the easiest way to provide the
robustness against the acoustic mismatch is feature com-
pensation, where noisy test features are compensated or

enhanced to remove noise effects and then decoded by speech
recognizers trained on clean speech data [4]. Cepstral mean
normalization [5] and cepstral mean variance normalization
[6] are the popular techniques for feature compensation.
However, it is generally known that model adaptation has
the potential for greater robustness in noisy environments
than feature compensation although feature compensation is
simpler and more efficient to implement [2]. One reason for
the possible superiority of model adaptation results from the
fact that it can use very detailed knowledge of the underlying
speech signal encoded in the acoustic models of the speech
recognizer [2]. Because acoustic models in the speech recog-
nizer are designed to represent their own acoustic-phonetic
units, they can provide a much more detailed representation
of speech. On the contrary, feature compensation methods
usually make use of the much simpler model of speech such
as a single Gaussian mixture model (GMM). For this reason,
better performance can be expected by transforming these
acoustic models to match current noise conditions. Another
reason for the advantage of model adaptation may be due
to the fundamental limitations of feature compensation.
Because of the acoustic-phonetic information loss in both
noise corruption and feature extraction, it is difficult to
perfectly recover clean features from noisy features by



using feature compensation algorithms. As a result, this
information loss causes discrepancies between clean speech
models and compensated features in the decoding process
of ASR. On the other hand, clean speech models can be
fully adapted into acoustically matched speech models as
far as the amount of adaptation data is provided enough in
model adaptation. Therefore, although the same information
loss can occur in model adaptation, it does not cause unde-
sirable discrepancies between acoustic models and speech
features but it is just disregarded in the decoding process.
Due to these advantages, numerous environmental model
adaptation techniques have been proposed for robust speech
recognition until recently. A well-known environmental
model adaptation method is the parallel model combination
technique [7], which combines both clean speech and noise
models in the spectral domain to obtain noisy speech
models. Another representative model adaptation technique
is the vector Taylor series (VTS) approach [8], which linearly
approximates noisy speech models from both clean speech
and noise models by using the Taylor series expansion. Both
methods are reported to be quite effective in providing the
robustness against noise. The standard adaptation methods
used for speaker adaptation, such as maximum a posteriori
(MAP) [1, 2] and maximum likelihood linear regression
(MLLR) [9], can be also used for environment model
adaptation. Because MAP has the asymptotic property, it can
offer performance similar to those of matched conditions.
MLLR uses a set of linear transforms to map the initially
trained models into the adapted models such that the
likelihood of the adaptation data is maximized. This method
is known to be quite robust and to achieve reasonable
performance with about a minute of speech for minor
mismatches.

Basically, the model adaptation approach needs to adapt
the entire model parameters employed in the speech rec-
ognizer. Therefore, the amount of computation in model
adaptation can be a serious problem even in the small
vocabulary speech recognition task. Moreover, due to the
temporal and spatial variations of acoustic environments, the
environmental model adaptation needs to be performed in
the input utterance or temporal segment level. Therefore,
the model adaptation technique should have computational
efficiency as well as noise robustness in its application to real-
time speech recognition.

In this paper, we propose a new efficient model adapta-
tion approach based on the histogram equalization (HEQ)
technique [10]. HEQ is basically a nonlinear transformation-
based approach. In this sense, it can fundamentally cope with
the nonlinearity of noisy features in the case of logarithmic
space-based features such as cepstral features and is reported
to provide considerable performance improvements in both
speech recognition and speaker recognition in noisy environ-
ments [11-17]. In addition, HEQ is computationally efficient
because most of its algorithm consists of sort and search
routines with relatively narrow depth and scope. Since its first
application to speech recognition [18], HEQ has been mainly
used in feature compensation. However, due to the potential
superiority of the model adaptation approach, it is expected
that the use of HEQ in model adaptation can provide
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more robustness in noisy environments. In the proposed
approach, HEQ transforms the trained mean models of a
speech recognizer into environmentally matched models.
The transformation function of HEQ is obtained by using
reference and test cumulative distribution functions (CDFs)
of the training data and test utterance, respectively. A signal-
to-noise ratio (SNR)-dependent linear interpolation-based
method is used to efficiently adapt the covariance models
of a speech recognizer to achieve further performance
improvements in heavily noise conditions.

2. HEQ for Feature Compensation

2.1. Basic Algorithm. The application of HEQ to feature
compensation begins with such an assumption [18] that
the acoustic mismatch between clean reference (or training)
features and noisy test features results in the statistical
difference between their corresponding probability density
functions (PDFs). Then, the idea of HEQ for feature
compensation (HEQ-FC) is to conduct a transformation that
converts the PDF of the original or test features into that of
reference or training features to reduce the effects of noise
corruption. In practice, reference and test PDFs are replaced
by their corresponding histograms and the test histogram
is equalized by using the transformation given by the HEQ
algorithm [10]. Here, we assume that HEQ-FC is applied
to each feature on a component-by-component basis for
algorithmic simplicity. This assumption can be well accepted
in the orthogonal transformation-based features such as
cepstral features due to their low correlation. In this case,
the algorithm of HEQ-FC is described as follows [10]. For
given reference and test random features x and y, respectively,
a transformation function of HEQ-FC mapping test PDF
Py (y) into reference PDF Px(x) is obtained by equating their
corresponding CDFs defined as

Cy(y) = Cx(x) = Cx(F(y)), (1)
x=F(y) = C'[Cr (»)], (2)

where C)}l is the inverse of the reference CDF Cyx(x),
Cy(y) is the test CDF, and F(y) is the transformation
function of HEQ-FC and has single valued, monotonically
nondecreasing characteristics.

2.2. Order Statistic-Based CDF Estimation. In (2), it is noted
that the effectiveness of HEQ-FC is directly related to the
reliable estimation of both reference and test CDFs. A better
CDF estimation can be achieved by using a larger amount
of sample data. Due to its relatively large amount of sample
data in the training phase, the reference CDF can be well
estimated by the classical cumulative histogram approach.
However, current speech recognizers frequently employ a
short utterance or word as their input unit. In this case, the
amount of sample data can be insufficient for the reliable
estimation of the test CDE In this test environment, the
reliable estimation of the test CDF is an important issue
for the effective HEQ-FC. When the amount of sample data
is small, the order statistic-based CDF estimation method
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can be more reliable than the classical histogram-based
approach due to its enhanced probabilistic resolution. A brief
algorithm of the order statistics-based CDF estimation is
given as follows [13].

Let us define a sequence S consisting of N frames of test
feature components as

S= {yl,)’z,---,)/m---,}/N}, (3)
where y, is a test feature component at the nth frame.
The order statistics of the sequence S in (3) is given by
sorting its elements in ascending order as
Yoy S Y1) S Sy < <y, (4)
where T(r) denotes the original frame index of feature
component yr(; in which its rank is given by r. Then,

the order statistic-based test CDF estimate of test feature
component y, is given by

R(y»)
N

éY(yn) = (5)

where R(y,) denotes the rank of y, among the feature
components composing the sequence S according to the
order statistics defined in (4). Given test feature y,, an
estimate of the reference feature by HEQ-FC using the order
statistic-based test CDF estimation is obtained by assigning
(5) to (2) as

- cXI[R%")]. (6)

Because the reference CDF is approximated by its cumulative
histogram, the inverse reference CDF transformation in (6)
is performed with a linear interpolation by considering the
relative position of test CDF estimate within the reference
histogram bin to reduce the quantization error.

3. HEQ for Model Adaptation

3.1. Basic Algorithm. To employ the HEQ technique in the
model space, we interpret the acoustic mismatch between the
noisy test environment and the clean reference environment
as a transformation function y = G(x), which is the
inverse function of the transformation used in HEQ-FC.
In model adaptation, the trained acoustic models of a
speech recognizer are adapted to be acoustically matched
into the test environment. Therefore, the HEQ technique
for model adaptation (HEQ-MA) transforms the trained
acoustic models into the test environment-matched models
such that their transformation function follows y = G(x).
If the acoustic models under training and test environments
are denoted as @y and Dy, respectively, the transformation
function of HEQ-MA is obtained by mapping the reference
PDF P, (®y) into the test PDF Py (®dy) as

Oy = G(@x) = F!(Py) = Cy1(Cx(Dx)). (7)

3.2. Mean Model Adaptation. Our model adaptation
approach is aimed to provide the speech recognizer with
robustness against acoustic noise. Therefore, the actual
adaptation is applied on the acoustic models of the speech
recognizer. In most cases, the acoustic model adaption
is focused on the mean vectors and covariance matrices
of the acoustic models in the speech recognizer due to
their dominant effectiveness compared with other model
parameters [1, 2]. Hence, we confine the adaptation scope to
both mean and covariance models in this paper.

Let i denote the mean vector of a trained acoustic model
in a speech recognizer obtained from the clean speech data. It
is then assumed that HEQ-MA is applied to each mean vector
of all trained acoustic models in the speech recognizer on a
component-by-component basis as in HEQ-FC. Under these
assumptions, the adaptation rule for HEQ-MA is given by
using (7) and a linear interpolation between two test feature
components in the sequence S which are the nearest to the
trained mean component in terms of their CDF values such
as

(k) = Crly (Cxao (u(k)))

a(k) yrom (k) + (1 = a(k)) yrme1) (k),

1<m<N,

a(k)yrov (k) + (1 — a(k)) (yrav) (k) + p(k)),

m=N,
(8)

where [i(k) and u(k) denote the kth components of the
adapted and trained mean vectors, respectively, C{,(lk) is the
inverse of the test CDF for the kth test feature component,
and @X(k)(;,t(k)) is the reference CDF estimate of the kth
mean component y(k). The parameter m is the rank index
satisfying the relationship such as

Cyty (yrim-1) (k) < Cxqpy (u(K)) < Cyiy (yrim (K)),  (9)

p(k) is a linear extrapolation factor for the boundary
condition at the kth mean component and is set to the
interval between the two last order statistic values in our
case, and a(k) is the linear interpolation factor of the kth
mean component and is determined as the relative position
of éX(k)(y(k)) between the two boundary values in (9) such
as

alk) = — éY(k) ()’T(m)(k)): éX(k) (p(k))
Crty (yrem (K)) = Cyy (yrem-1)(K))’

where the test CDF estimate of the undefined feature
component yr (o) is assumed to be zero to satisfy its boundary
condition. By using the order statistics-based test CDF
estimate defined in (5), the interpolation factor in (10) can
be further simplified as

(10)

a(k) = m — NCxq (u(k)). (11)

When the acoustic models are estimated by using the
logarithmically scaled features such as cepstral coefficients,



the transformation function driven by the acoustic mismatch
defined in (8) is known to be the form of a nonlinear
function. In this nonlinear case, the mean of transformed
features is not generally the same as the transformed mean
value. However, it can be assumed that the transformed
features belonging to each acoustic model are distributed
in its relatively small acoustic space due to the detailed
definition of acoustic models. In this case, the transformation
within each acoustic model space can be approximated
linearly even though the overall transformation through the
entire acoustic model space has nonlinear characteristics.
Under this assumption, the HEQ algorithm is applied for
mean model adaptation as in (8).

3.3. Covariance Model Adaptation. As noise corruption
increases, the dynamic range of certain features such as
cepstral features tends to shrink due to the spectral whitening
effect. Because the dynamic range is directly related to the
covariance matrices of the acoustic models, it is expected
that the covariance shrinkage [14] can occur in noisy
features. For this reason, it is generally known that the
improvements gained using mean and variance adaptation
over mean adaptation only are especially large in noisy
environments, although adapting the means provides the
greater effect on performance [19]. The proposed HEQ-
MA technique focuses its adaptation target on the mean
models. Therefore, to cope with the covariance shrinkage
effect in noisy environments, it is required to introduce an
efficient adaptation rule for the covariance models. Because
the covariance shrinkage tends to increase at the severer noise
corruption, the covariance adaptation rule needs to take into
account the SNR condition of the input utterance. For this
purpose, an efficient covariance adaptation rule is given by a
linear interpolation between the trained covariance and the
sequence-level sample covariance by SNR dependently as

>S(k, 1)
2G(k,1)

S(k,D) = (1= B(y)=(k, 1)+ B(y) s(k,0),  (12)

where £(k,1) and Z(k,I) are the adapted and trained
covariance coefficients, respectively, and S(y) is an SNR-
dependent smoothing factor to deal with the higher covari-
ance shrinkage effect at the lower SNR conditions and is
approximated by a linearly decreasing function f(y) =
ay + b, ranging between 0 and 1, where y is the averaged
SNR value of the sequence S, and a and b are empirically
chosen slope and bias constants, respectively. The param-
eters X5(k,I) and X9(k,I) are the sequence-level sample
covariance coefficient obtained from the test sequence S
and the global sample covariance coefficient computed
from the whole training features, respectively. Equation (12)
indicates that the proposed covariance model adaptation
rule tries not only to make the trained covariance models
less changed at the higher SNR condition but also to make
them shrunk by the ratio of the sequence-level sample
covariance to the global sample covariance at the lower SNR
condition.
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4. Experimental Results

4.1. Experimental Setup. In the experiments, we used two
speech databases, the Aurora2 speech database [20] con-
verted from the TI-DIGITS database and the Korean pho-
netically optimized words (KPOW) database [21] consisting
of 37,993 utterances of 3,848 Korean words, to examine the
effectiveness of the proposed approach in the small as well
as the large vocabulary speech recognition tasks. The trained
acoustic models of two baseline speech recognizers were
separately obtained from the clean speech training sets of the
two databases. For performance evaluation, we used the three
test sets of the Aurora2 noisy speech database, where test set
A was added by four kinds of noise (subway, babble, car, and
exhibition), test set B was corrupted by another four types
of noise (restaurant, street, airport, and train station), and
test set C was contaminated by two kinds of noise (subway
and street) and channel distortion (MIRS) together [20].
Additionally, we used two test sets of the KPOW noisy speech
database, which were generated by artificially adding the
same kinds of the Aurora noise used in the Aurora? test sets A
and B to the KPOW clean speech test set composed of 7,609
utterances. Each of the three Aurora2 test sets and the two
KPOW test sets is further composed of 6 noisy subsets with
the SNR levels of 20, 15, 1, 5, 0, and —5 dB.

We employed the ETSI Aurora2 experimental framework
[20] in our experiments as follows. In feature extraction,
speech signals are firstly blocked into a sequence of frames,
each 25ms in length with a 10ms interval. Next, speech
frames are preemphasized by a first-order FIR filter with a
factor of 0.97 and a Hamming window is applied to each
frame. From a sequence of 23 mel-scaled log filter-bank
energies, 12-dimensional mel-frequency cepstral coefficients
(MFCCs) are extracted. The final 39-dimensional feature
vector for each frame consists of 12 MFCCs, log energy,
and their delta and acceleration coefficients. The baseline
speech recognizer for the Aurora2 task employs 13 whole-
word-based hidden Markov models (HMMs), which consist
of 11 digit models with 16 states, a silence model with three
states, and a short-pause model with a single state. The
states for digit models are composed of 3 Gaussian mixture
components while those for silence and short-pause models
have 6 Gaussian mixture components, respectively. The
baseline recognizer for the KPOW task has 6,776 tied-state
triphone-based HMMs, where each HMM has 3 states and
each state is modeled with 8 Gaussian mixture components.
Diagonal covariance matrices are used in all of the HMMs.

In the performance evaluation, the performances of
the baseline speech recognizer trained on the clean speech
data, CMN, CMVN, and HEQ-FC, and HEQ-MA were
examined. Additionally, the performance of the standard
model adaptation technique based on the MLLR method
was also evaluated by using the HTK toolkit [22] and
compared with those of the above mentioned techniques.
The number of regression classes in MLLR was set to 8 for the
Aurora?2 task and 16 for the KPOW task. In the MLLR-based
model adaptation, we adopted the unsupervised adaptation
method where the acoustic mean models were incrementally
adapted with each test utterance. In feature compensation,
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HEQ-FC is applied to all of the 39-dimensional MFCCs
independently for both training and test data after estimating
the reference CDFs from all training data. In the HEQ-
based model adaptation, the HEQ and proposed variance
adaptation techniques are applied to the 39-dimensional
mean vectors and diagonal covariance matrices, respectively,
of all trained HMM s in the baseline speech recognizers on a
component-by-component basis. The number of histogram
bins in the reference CDFs was empirically chosen as 64. Due
to the adoption of the linear interpolation in the inverse CDF
transformation of both HEQ-FC in (6) and HEQ-MA in (8),
a further increase in the number of histogram bins did not
show any meaningful performance improvements. The SNR-
dependent smoothing parameters a and b in the adaptation
of covariance matrices are set to —0.028 and 0.9, respectively,
to make the smoothing factor S(y) become 0 and 1 at the
SNRs of 30dB and —5 dB, respectively. The averaged SNR
value y was estimated as the ratio of the averaged frame
energy to the averaged noise energy of the initial silence
region in each test utterance. To cope with the time-varying
nature of environmental noise, the histogram equalization
was conducted on a single utterance basis in both feature
compensation and model adaptation.

4.2. Test with SNR Conditions. Figure 1 illustrates the re-
cognitions results on the Aurora2 test sets at various SNR
conditions in terms of the averaged word accuracy for all of
the three test sets. The figure indicates that the CMN tech-
nique produces almost the same performance as the baseline
speech recognizer trained on the clean speech data. The
recognition performance is slightly improved in the higher
SNR conditions above 10 dB but degraded noticeably in the
lower SNR conditions. On the contrary, it is observed that
the CMVN technique produces meaningful performance
improvements, especially at the higher SNRs. It is also indi-
cated that both HEQ-FC and the two HEQ-MA approaches,
HEQ-MA with mean adaptation only (HEQ-MA-M) and
HEQ-MA with mean and variance adaptation (HEQ-MA-
MV), provide significant performance improvements over all
SNR conditions. The MLLR technique yields the comparable
performance compared to HEQ-FC and HEQ-MA at the
SNR conditions above 10dB but it degrades sharply at
the lower SNRs. When the MLLR adaptation technique is
conducted on the single utterance basis, it usually produces
poor performance. For this reason, the MLLR adaptation
technique in our experiment was performed incrementally
through the test utterances. HEQ-MA-M is better than
HEQ-FC at higher SNRs than 5dB but it also becomes
inferior at the SNR condition of 0dB. On the contrary,
HEQ-MA-MV yields substantial improvements over HEQ-
FC for all SNR conditions. Figure 2 shows the recognition
results on the KPOW test sets at various SNR conditions.
The CMN technique in this task produces notable perfor-
mance gains and the CMVN technique consistently provides
substantial performance improvements over the baseline
speech recognizer. The relative gains obtained by the CMVN
technique over the CMN technique suggest that the variance
normalization be a quite effective means for reducing the
acoustic mismatches. The results provided by the MLLR
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FIGURE 1: Recognition results on the Aurora2 data at various SNR
conditions by the baseline speech recognizer, CMN, CMVN, MLLR,
HEQ-FC, HEQ-MA-M (mean-only adaptation), and HEQ-MA-
MV (mean and variance adaptation) techniques.
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FIGURE 2: Recognition results on the Korean POW data at various
SNR conditions by the baseline speech recognizer, CMN, CMVN,
MLLR, HEQ-FC, HEQ-MA-M (mean-only adaptation), and HEQ-
MA-MV (mean and variance adaptation) techniques.

technique look very similar to those from the Aurora?2 task,
which confirms that the MLLR with mean-only adaptation
technique is effective only in the slightly corrupted noise
environments. Compared to HEQ-FC, HEQ-MA with both
mean-only adaptation and mean and variance adaptation
shows higher performance.

4.3. Variance Shrinkage Effect. Figure 3 illustrates the change
of MFCC-based feature covariance with regard to various
SNR conditions. The results are represented as the global
diagonal covariance values for the three Aurora2 test sets. In
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FIGURE 4: Changes in average values of covariance models after
HEQ-MA.

this figure, it is observed that the variance decreases sharply
as the SNR condition is lowered. The variance value even at
the slight noise corruption of 20 dB SNR seems to be reduced
by half compared with the value at the clean condition. As
a result, this figure strongly suggests that variance models
should be adjusted according to their corresponding noisy
conditions to reduce the variance mismatch.

Figure 4 shows the change of the diagonal covariance
at various SNR conditions when the proposed variance
adaptation technique was used to adapt the variance models.
The results are obtained as the average values of all diagonal
covariance models of the speech recognizer used in the
Aurora?2 task. In Figures 3 and 4, we observe some differences
in scale between the test feature variance and the averaged
variance model. These scale differences are resulted from
the fact that the feature variance in Figure 3 is computed
globally from the entire test features while the averaged
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variance model is represented as the average value of the
individual variance models, each of which covers its small
acoustic model space. Therefore, if the feature variance is
computed in its acoustic unit level, it should be closer in
scale to the average variance model. After considering these
differences, we observe in Figure 4 that the averaged variance
model decreases quite linearly with the SNR conditions of
test utterances to compensate for the mismatch between the
input feature variance and the variance models.

4.4. Test with Various Test Sets. Tables 1 and 2 show
the recognition results for the Aurora2 and KPOW tasks,
respectively. The results are represented in terms of the word
error rates which are averaged between 0 and 20 dB SNRs as
proposed by the Aurora Group [20]. In the Aurora2 task, the
performance of the HEQ-MA with mean-only adaptation
technique is similar to that of HEQ-FC. From Figure 1, it
is supposed that the poor performance gain in HEQ-MA
compared with HEQ-FC is mainly due to its performance
degradation at the lower SNR conditions. On the contrary,
the HEQ-MA with mean and variance adaptation tech-
nique provides relative error reductions of 62.83%, 63.36%,
31.52%, 46.71%, and 23.40% over the baseline recognizer,
CMN, CMVN, MLLR, and HEQ-FC, respectively. Compared
to the multicondition training scheme, it produces slightly
worse results in terms of the overall performance. However,
itis seen that most of the gains in the multicondition training
scheme are obtained from test set A, where noise conditions
are the same as those employed in the training set. In the
cases of test sets B and C, where noise types are not exposed
to the training phase, the proposed approach is even better
than the multicondition training scheme.

In the large vocabulary-based KPOW task, the HEQ-
MA with mean and variance adaptation technique reduces
recognition errors by 43.04%, 38.77%, 15.05%, 41.39%, and
8.56% over the baseline recognizer, CMN, CMVN, MLLR,
and HEQ-FC, respectively. From these results, we see that
HEQ-MA produces substantially better performance than
the other approaches. Compared to the results in the Aurora2
task, the reduced performance gains in the KPOW task imply
that the proposed adaptation technique is more suitable for
the small vocabulary task due to the fewer possibilities of
unobserved acoustic models in the HEQ-based adaptation
process. The performance gap between both mean-only
adaptation and mean and variance adaptation confirms both
the importance of variance adaptation in the SNR conditions
lower than 10dB and the effectiveness of our proposed
variance adaptation approach.

5. Summary Analysis

5.1. Recognition Performance. In Figures 1 and 2, the slight
performance gain in the high SNR conditions by CMN
indicates that CMN can improve recognition performance in
the moderate noisy conditions. In addition, its performance
degradation in the low SNR conditions also implies that
CMN is not very effective in the heavily noisy conditions.
This result can be interpreted to mean that the performance
degradation caused by the variance mismatch can be larger
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TasLE 1: Word error rates (%) on the Aurora2 task (Results are averaged between 0 and 20 dB SNRs).

Test Sets Baseline CMN  CMVN  Multicondition ~ MLLR  HEQ-FC  HEQ-MA (mean-only) HEQ-MA (mean & var.)
A 38.87 42.06 21.43 12.71 29.96 19.41 21.13 15.19
B 44.43 40.79 20.43 14.49 24.88 18.32 17.63 14.00
C 33.32 37.13 24.80 16.88 29.77 21.55 21.95 15.93
Average 39.98 40.56 21.70 14.26 27.89 19.40 19.90 14.86
TaBLE 2: Word error rates (%) on the Korean POW task (Results are averaged between 0 and 20 dB SNRs).
Test Sets Baseline CMN CMVN MLLR HEQ-FC HEQ-MA (mean-only) HEQ-MA (mean & var.)
A 64.64 58.19 43.57 43.46 40.22 41.01 36.33
B 56.45 54.43 37.62 38.88 35.20 33.90 32.64
Average 60.54 56.31 40.59 58.83 37.71 37.46 34.48

than the performance gain obtained by the mean adaptation
in the heavily noisy conditions, which results in the overall
degradation of recognition performance. Similar results are
obtained in the MLLR-based mean-only model adaptation
experiments. We believe that the superior performance of
MLLR at the higher SNRs is also largely resulted from
the mean model adaptation. Similar to the case of CMN,
the variance mismatch can be regarded as the main cause
of performance degradation in both MLLR and HEQ-
MA with mean-only adaptation approaches under heavily
noisy conditions. Therefore, it can be said that the variance
adaptation plays the more crucial role at the lower SNR
conditions. The importance of variance compensation is well
confirmed by CMVN as well as HEQ-FC, both of which
noticeably improve the recognition performance compared
to CMN. Because the HEQ-MA with mean and variance
adaptation technique tries to reduce the variance mismatch
by the proposed variance adaptation technique, it can
provide further performance gain compared to the HEQ-MA
with mean-only adaptation approach as observed in Figures
1 and 2. From the results, it can be said that the proposed
techniques are also effective in the large vocabulary task
although the performance gains obtained by HEQ-MA over
HEQ-FC are not as remarkable as those at the Aurora2 task
shown in Figure 1. We think that the reduced performance
improvements in the KPOW task are mainly resulted from
the reason that because the adaptation is performed on
a single utterance basis, the amount of adaptation data
in each test utterance becomes not enough to fully adapt
the much larger number of acoustic models in this large
vocabulary task. In Figures 1 and 2, it is also observe that the
performance gains obtained by HEQ-MA-MYV over HEQ-FC
are more notable at the lower SNR conditions. These results
support our previous suggestion that model adaptation is
more effective than feature compensation in serious noise
conditions where it becomes more difficult to compensate
noisy speech features into clean speech features due to the
increased loss of acoustic-phonetic information.

5.2. Computational Complexity. The computational loads in
HEQ-MA are directly related to the number of acoustic
mean models whereas those in HEQ-FC are dependent
upon the utterance length, that is, the number of frames

on the given utterance. The usual speech recognition tasks
require the whole phonetic units in acoustic modeling. In
this case, the number of acoustic mean models tends to
be much larger than the number of frames. Therefore, it
can be said that HEQ-MA usually requires much larger
amounts of computational load than HEQ-FC. However,
the computational loads in HEQ-MA can be comparable
to those in HEQ-FC in the domain-constrained speech
recognition task such as digit recognition task which employs
a small number of acoustic models. Although HEQ-MA
has much larger computational complexity than feature
compensation techniques, it can be still regarded as an
efficient model adaptation technique compared to other
more complex model adaptation techniques such as MLLR
due to its predominantly simple algorithmic complexity.

5.3. Implementation Issues. The feature compensation and
model adaptation techniques employed in this experiment
are basically conducted in the utterance-by-utterance basis
to estimate the required statistics such as mean and variance.
Therefore, all these approaches produce some amount of
time delay in the real applications. However, a segmental
estimation approach utilizing a sliding window can be used
to achieve the real-time processing of feature compensation
and model adaptation without any significant performance
degradation. In this approach, it is reported that the appro-
priate size of a sliding window producing comparable results
compared to the utterance-by-utterance based approach is
about 600 ms for these feature compensation techniques
[13].

In the HEQ-MA with mean and variance adaptation
approach, we used an SNR-dependent covariance model
adaptation technique. In this approach, the more accurate
frame-level SNR estimation is required for the better covari-
ance model adaptation. In our experiments, we employed
a simple SNR estimation method, where the noise power
estimated from the initial silence region is used through the
entire utterance without any update procedures. Therefore,
it can be said that the estimated noise power has some degree
of estimation error, which causes the resulting covariance
models to be adapted less accurately. More reliable noise
power estimation algorithm employed in the voice activity
detection techniques can be used for better SNR estimation.



It is worthwhile conducting a further research activity utiliz-
ing this kind of more reliable SNR estimation technique.

6. Conclusion

We proposed a new environmental model adaptation
method for robust speech recognition. The proposed
approach utilizes both the histogram equalization technique
for matching the acoustic mean models and an SNR-
dependent linear interpolation-based method for adapting
the covariance models into test environments. According
to the experimental results, the proposed model adaptation
approach provides substantial effectiveness in reducing the
mismatch between trained acoustic models and test environ-
ments. The experimental results also indicate that the mean
model adaptation plays the major role in improving the
performance of the speech recognizer in noisy environments.
Additionally, the variance model adaption is especially
important for improving the recognition performance in the
heavily noisy conditions. Due to its computational efficiency
as well as noise robustness, the proposed technique can
be another model adaptation approach to robust speech
recognition under noisy environments. Further study about
more sophisticated variance adaptation techniques is needed
for enhancing the performance of the proposed approach
more.
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