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Frequency-Invariant (FI) beamforming is a well known array signal processing technique used in many applications. In this paper,
an algorithm that attempts to optimize the frequency invariant beampattern solely for the mainlobe, and relax the FI requirement
on the sidelobe is proposed. This sacrifice on performance in the undesired region is traded off for better performance in the
desired region as well as reduced number of microphones employed. The objective function is designed to minimize the overall
spatial response of the beamformer with a constraint on the gain being smaller than a pre-defined threshold value across a specific
frequency range and at a specific angle. This problem is formulated as a convex optimization problem and the solution is obtained
by using the Second Order Cone Programming (SOCP) technique. An analysis of the computational complexity of the proposed
algorithm is presented as well as its performance. The performance is evaluated via computer simulation for different number
of sensors and different threshold values. Simulation results show that, the proposed algorithm is able to achieve a smaller mean

square error of the spatial response gain for the specific FI region compared to existing algorithms.

1. Introduction

Broadband beamforming techniques using an array of
microphones have been applied widely in hearing aids, tele-
conferencing, and voice-activated human-computer inter-
face applications. Several broadband beamformer designs
have been reported in the literature [1-3]. One design
approach is to decompose the broadband signal into several
narrowband signals and apply narrowband beamforming
techniques for each narrowband signal [4]. This approach
requires several narrowband processing to be conducted
simultaneously and is computationally expensive. Another
design approach is to use adaptive broadband beamformers.
Such techniques use a bank of linear transversal filters to
generate the desired beampattern. The filter coefficients can
be derived adaptively from the received signals. One classic
design example is the Frost Beamformer [5]. However, in
order to have a similar beampattern over the entire frequency
range, a large number of sensors and filter taps will be
needed. This again leads to high computational complexity.
The third approach of designing broadband beamformers is

to use the Frequency-Invariant (FI) beampattern synthesis
technique. As the name implies, such beamformers are
designed to have constant spatial gain response over the
desired frequency bands.

Over recent years, FI beamforming techniques are
developed in a fast pace. It is difficult to make a distinct
classification. However, in order to grasp the literature on FI
beamforming in a glimpse, we classify them loosely into the
following three types.

One type of FI beamformers includes those that focus
on the design based on array geometry. These include, for
example, the 3D sensor array design reported in [6], the
rectangular sensor array design reported in [7], and the
design of using subarrays in [8]. In [9], the FI beampattern is
achieved by exploiting the relationship among the frequency
responses of the various filters implemented at the output of
each sensor.

The second type of FI beamformers is designed on
the base of a least-square approach. For this type of FI
beamformers, the weights of the beamformer are optimized
such that the error between the actual beampattern and
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the desired beampattern is minimized over a range of
frequencies. Some of such beamformers are designed in the
time-frequency domain [10-12], while others are designed
in the eigen-space domain [13].

The third type of FI beamformers is designed based on
“Signal Transformation.” For this type of beamformers, the
signal received at the sensor array is transformed into a
domain such that the frequency response and the spatial
response of the signal can be decoupled and hence adjusted
independently. This is the principle adopted in [14], where
a uniform concentric circular array (UCCA) is designed
to achieve the FI beampattern. Excellent results have been
produced by this algorithm. One limitation of the UCCA
beamformer is that a relatively large number of sensors have
to be used to form the concentric circular array.

Inspired by the UCCA beamformer design, a new
algorithm has been proposed by the authors of this paper
and presented in [15]. The proposed algorithm attempts
to optimize the FI beampattern solely for the main lobe
where the signal of interest is from and relaxes the FI
requirement on the side lobe. As a result, the sacrifice
on performance in the undesired region is traded off for
better performance in the desired region and fewer number
of microphones are employed. To achieve this goal, an
objective function with a quadratic constraint is designed.
This constraint function allows the FI characteristic to be
accurately controlled over the specified bandwidth at the
expense of other parts of the spectrum which are not of
concern to the designer. This objective function is formulated
into a convex optimization problem and solved by SOCP
readily. Our algorithm has a frequency band of interest from
0.3 to 0.957. If the sampling frequency is 16000 Hz, the
frequency band of interest ranges from 2400 Hz to 7600 Hz.
This algorithm can be applied in speech processing as the
labial and fricative sounds of speech mostly lie in the 8th
to 9th octave. If the sampling frequency is 8000 Hz, the
frequency band of interest is from 1200Hz to 3800 Hz.
This frequency range is useful for respiratory sounds
[16].

The aim of this paper is to provide the full details of
the design proposed in [15]. In addition, a computational
complexity analysis of the proposed algorithm and the
sensitivity performance evaluations at different numbers of
sensors and different constraint parameter values are also
included.

The remaining paper is organized in the following way:
in Section 2, problem formulation is discussed; in Section 3,
the proposed beamforming design is described; in Section 4,
the design of the beamforming weight using SOCP is
shown; numerical results are given in Section 5, and finally,
conclusions are drawn in Section 6.

2. Problem Formulation

A uniformly distributed circular sensor array with K number
of microphones is arranged as shown in Figure 1. Each
omnidirectional sensor is located at (r cos ¢, r sin ¢ ), where
r is the radius of the circle, ¢y = 2kn/K andk =0,...,K — 1.
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In this configuration, the intersensor spacing is fixed at
A/2, where A is the wavelength of the signals of interest
and its minimum value is denoted by Amin. The radius
corresponding to Amin is given by [14]

.
po o Amin (1)
4sin(n/K)
Assuming that the circular array is on a horizontal plane,
the steering vector is

a(f,¢) = [ernfreosto-ture,  ernfreoss-peire]’(2)

where T denotes transpose. For convenience, let w be the
normalized angular frequency, that is, w = 27 f/f,, let €
be the ratio of the sampling frequency and the maximum
frequency, that is, € = fi/ fmax, and let 7 be the normalized
radius, that is, 7 = r/Amn, the steering vector can be rewritten
as

a(w, ¢) — [ejw?e cos(gb—(bg)’. o ejw?é cos(¢_¢K71)]T. (3)

Figure 2 shows the system structure of the proposed
uniform circular array beamformer. The sampled signals
after the sensor are represented by the vector X[n] =
[x0(n),x1(1),. .., xx—1(n)]" where nis the sampling instance.
These sampled signals are transformed into a set of coef-
ficients via the Inverse Discrete Fourier Transform (IDFT),
where each of the coefficients is called a phase mode [17].
The mth phase mode at time instance n can be expressed as

K-1

pmln] = > xi[n]er?mm/K, (4)
k=0

These phase modes are passed through an FIR (Finite
Impulse Response) filter where the filter coefficients are
denoted as b,,[n]. The purpose of this filter is to remove
the frequency dependency of the received signal X[n]. The
beamformer output y[n] is then determined as the weighted
sum of the filtered signals:

L

Z (Pm[”] * bm[n]) ' hm: (5)

m=—L

yln] =

where h,, is the phase spatial weighting coefficients or the
beamforming weights, and * is the discrete-time convolu-
tion operator.

Let M be the total number of phase modes and it is
assumed to be an odd number. It can be seen from Figure 2
that the K received signals are transformed into M phase
modes, where L = (M — 1)/2.

The corresponding spectrum of the phase modes can
be obtained by taking the Discrete Time Fourier Transform
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(DTFT) of the phase modes defined in (4):

K-1
Pm(a)) = ZXk(w)ejZHkm/K
k=0
K-1 (6)
= S((U) . Z ejw?cos(¢*¢k)ej27rkm/l<’

k=0

where S(w) is the spectrum of the source signal.
Taking DTFT on both side of (5) and using (6), we have

L
Y(w) = > huPu(®)Bu(w)

m=—L

L K-1
_ S(w) ) Z hm ( Z ejw?cos(d)—gbk)ejanm/K)Bm(w)'

m=—L k=0
(7)

Consequently, the response of the beamformer can be
expressed as

m=-L k=0

L K-1
G(w, ¢) _ Z hm ( Z ejw?cos(qﬁ—(pk)ejanm/K)Bm(w)' (8)

In order to obtain an FI response, terms which are
functions of w are grouped together using the Jacobi-Anger
expansion given as follows [18]:

elbeosy = X" iy (B)e™, )

n=-—0o

where J,,(f8) is the Bessel function of the first kind of order #.

Substituting (9) into (8), and applying property of the
Bessel function, the spatial response of the beamformer can
now be approximated by

L
G(w, @) = D hy-e/™ K- j"- Ju(w?) - Bu(w). (10)

m=—L

This process has been described in [13] and its detailed
derivation can be found in [14].

3. Proposed Novel Beamformer

With the above formulation, we propose the following beam
pattern synthesis method. The basic idea is to enhance the
broadband signals for a specific frequency region and at a
certain direction. In order to achieve this goal, the following

3
o e ..o kth element
B \ ,‘ \
’ \‘ \\
.. \\\ Radius r
\\‘
FiGURE 1: Uniform Circular Array Configuration.
objective function is proposed:
min | [lIG(@¢)|['dw dg.

w¢ (11)

st ||G(w,¢0) — 1]| <6, w € [w,w,],

where G(w,¢) is the spatial response of the beamformer
given in (10), and w; and w,, are the lower and upper limit of
the specified frequency region respectively. ¢ is the specified
direction and ¢ is a predefined threshold value that controls
the magnitude of the ripples of the main beam.

In principle, the objective function defined above aims
to minimize the square of the spatial gain response across
all frequencies and all angles, while constraining the gain
to the value of one at the specified angle. This is to relax
the gain constraint to one angle instead of all angles,
so that the FI beampattern in the specified region can
be improved. With this constraint setting, the resulting
beamformer can enhance broadband desired signals arriving
from one direction while attenuate broadband noise received
from other directions. The concept for formulating the
objective function is similar to Capon beamformer [19]. One
difference is that the Capon beamformer aims to minimize
the data dependent array output power at a single frequency,
while the proposed algorithm aims to minimize the data
independent array output power across a wide range of
frequencies. Another difference is that the constraint used in
Capon beamformer is a hard constraint, whereas the array
gain used in the proposed algorithm is a soft constraint,
which can result in a higher degree of flexibility.

The proposed algorithm is expected to have lower com-
putational complexity compared to the UCCA beamformer.
The later is designed to achieve FI beampattern for all
angles whereas the proposed algorithm focuses only on a
specified angle. For the same reason, the proposed algorithm
is expected to have a larger degree of freedom too. This
explains the result in having a better FI beampattern for a
given number of sensors. These performance improvements
have been supported by computer simulations and will be
discussed in the later part of this paper.
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@

F1GURE 2: The system structure of a uniform circular array beamformer.

The optimization problems defined by (10) and (11)
require the optimum values of both the compensation filter
and the spatial weightings to be determined simultaneously.
As such, Cholesky factorization is used to transform the
objective function further into the Second-Order Cone Pro-
gramming (SOCP) problem. The details of implementation
will be discussed in the following section. It should be noted
that when the threshold value § equals zero, the optimization
process becomes a linearly constrained problem.

4. Convex Optimization-Based Implementation

Second-Order Cone Programming (SOCP) is a popular tool
for solving convex optimization problem, and it has been
used for array pattern synthesis problem [20-22] since the
early papers by Lobo et al. [23]. One advantage of SOCP
is that the global optimal solution is guaranteed if it exists,
whereas constrained least square optimization procedure
looks for local minimum. Another important advantage is
that it is very convenient to include additional linear or
convex quadratic constraints, such as the norm constraint of
the variable vector, in the problem formulation. The standard
form of SOCP can be written as follows:

min bTx,

(12)
s.t. diTx+qi > [|[Ax+c¢ill,, i=1,...,N,
where x € R™ is the variable vector; the parameters are b €
R™, A; € R=Dxm ¢, ¢ R~ d; € R™, and gq; € R. The
norm appearing in the constraints is the standard Euclidean

norm, that is, [|ull, = (uTu)">.

4.1. Convex Optimization of the Beampattern Synthesis
Problem. The following transformations are carried out to
convert (11) into the standard form defined by (12).

First, B,(0) = SN byu[n]e 1" is substituted into (10),
where N, is the filter order for each phase. The spatial
response of the beamformer can now be expressed as

L N,
Glw,9)= D hy-e/™ - K- j" - Jn(F) - [me[n]e‘j”w]

m=—L n=0

(13)

Using the identity e /" = cos(nw) — jsin(nw), (13)
becomes

L

G(w, @) = D hy-e/™ K- j" - Ju(w?)
m=—L
N
. [ by [n](cos(nw) —jsin(nw)}
n=0
L
=K Z F - ejm¢.jm < Jn(@0F)
m=—L
N
. [Z (b [n] cos(nw) — jbyuln] sin(nw))}
n=0
L
- K z iy - eifﬂ¢.jm < Tn(@0F)
. Ny
. [Z (bm[n] cos(nw) — ijm[n] sin(nw)))]
n=0 n=0
L J— J—
=K Z B - e/me . ]m (@) - [Cmbm - jsmbm])
" (14)
where by = [bm[0],bml1],..sbm[Nml1Tsem = [cos(0),
cos(w),...,cos(Ny, - w)];s,, = [sin(0),sin(w),...,sin(N,, -
w)].

_ hyy, is the spatial weighting in the system structure, and
b, is the FIR filter coefficient vector for each phase.

Letw,, = hy, - j™ - by, we have

L
G(w,¢) =K Z elme . Im(w?) * CmUm

m=—L

L 15
-j-K Z e]m(P'Im(wm'Smum ()

m=—L
= (@ ¢)u - js(w,¢)u,

where ¢(w,¢) = [Ke/"D]_(wP)e_p,...,Ke! D] (wF)er];
= [ul,ul,,. 18w, ¢) = [Ke/ D9 (0P)sy,
. Kel DO (wP)s].
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Representing the complex spatial response G(w, ) by
a 2-dimensional vector g(w, ¢) which display the real and
imaginary parts into rows of a vector separately, (15) is
rewritten in the following form:

(w,
g(w, ¢) = ( f ¢) )u= A(w, )" (16)
—5(w, ¢)

Hence, [G(w,§)II” = g'g = (A(w,)"®)" (A(w,¢)")
=1 A(w, $)A(w, ¢)"a.

The objective function and the constraint inequality
defined in (11) can now be written as

min u’Ru,
' (17)
st ||Glw,¢0) —1]| <6, for w € [w), w,],
where R = [, [ ,A(w, $)A(w, $)" dw d¢.

In order to transform (17) into the SOCP form defined
by (12), the cost function must be a linear equation.
Since matrix R is hermitian and positive definite, it can
be decomposed into an upper triangular matrix and its
transpose using Cholesky factorization, that is, R = DHD,
where D is the Cholesky factorization of R. Substituting this
into (17), we have

uRi = o (D7D) = (DW)" (D). (18)

This further simplifies (17) into the following form:

min d?,
4 =|D-ul? (19)
[|G(w,¢0) — 1]| <8 for w € [w), wy].

Denoting ¢ as the maximum norm of vector |Dull
subject to various choices of u, (19) reduces to

min t,
u

{IID-ulI <t, (20)
[|G(w, o) —1]] <& for w € [w, w,].

It should be noted that (20) contains I different con-
straints where I uniformly divides the frequency range
spanned by w.

Lastly, in order to solve (20) by SOCP toolbox, we stack
t and the coefficients of u together and definey = [#;u]. Let
a = [1,0]", so that t = aTy. As a result, the objective function
and the constraint defined in (11) can be expressed as

min aly,
y
[0 D]y|[<a"y,

1
[0 Alw, g0)]y - (0)

+ <§ forwe [wl wu],

(21)

—10 +
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FIGURe 3: The normalized spatial response of the proposed
beamformer for w = [0.37,0.957].

where 0 is the zero matrix with its dimension determined
from the context.

Equation (21) can now be solved using convex optimiza-
tion toolbox such as SeDuMi [24] with great efficiency.

4.2. Computational Complexity. When the Interior-Point
Method (IPM) is used to solve the SOCP problem defined
in (21), the number of iterations needed is bounded by
O(+/N) where N is the number of constraints. The amount
of computation per iteration is O(n? >; n;) [23].

The bulk of the computational requirement of the broad-
band array pattern synthesis comes from the optimization
process. The computational complexity of the optimization
process of the proposed algorithm and that of the UCCA
algorithm have been calculated and are listed in Table 1.

It can be seen from Table 1 that the proposed algorithm
requires a similar amount of computation per iterations
but a much smaller number of iterations compared to
the UCCA algorithm. The overall computational load of
the proposed method is therefore much smaller that that
is needed by the UCCA algorithm. It should be noted
that, as the coefficients are optimized in the phase modes,
the comparative computational load presented above is
calculated based on the number of phase modes and not the
number of sensors. Nevertheless, the larger the number of
sensors, the larger the number of phase modes too.

5. Numerical Results

In this numerical study, the performance of the proposed
beamformer is compared with that of UCCA beamformer
[14] and Yan’s beamformer [25], for the specified frequency
region. The evaluation metric used to quantify the frequency
invariance (FI) characteristics is the mean squared error
of the array gain variation at the specified direction. The
sensitivity performance of the proposed algorithm will also
be evaluated for different number of sensors and different
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TasLe 1: Computational complexity of different broadband beampattern synthesis method.

Method Number of iteration Amount of computation per iteration
UCCA O{VI x M} O{(1+P(1+Nm))*[2M(I + 1)]}
Equation (11) OVI1+1} O{[M(Nm+ 1)*][2I + M(Nm + 1) + 1]}

TaBLE 2: Comparison of array gain at each frequency along the
desired direction for the three methods.

Normalized Proposed Yan’s UCCA
Frequency Beamformer beamformer Beamformer
(radians/sample)  (dB) (dB) (dB)

0.3 —0.0007 0 0.6761

0.4 —0.0248 —0.8230 0.1760

0.5 0.0044 —1.3292 -0.022

0.6 —0.0097 —1.6253 —0.2186

0.7 —0.0046 -1.8789 -0.6301

0.8 0.0085 —2.9498 —-0.1291

0.9 —0.0033 —6.2886 0.1477

threshold values set for magnitude control of the ripples of
the main beam.

A uniform circular array consisting of 20 sensors is
considered. All the sensors are assumed perfectly calibrated.
The number of phase modes M is set to be 17 and thus
there are 17 spatial weighting coefficients. The order of the
compensation filter is set to be 16 for all the phase modes.
The frequency region of interest is specified to be from
0.377 to 0.957. The threshold value, §, which controls the
magnitude of the ripples of the main beam is set to 0.1.
The specified direction is set to be 0° where the reference
microphone is located.

There are several optimization criteria presented in
[25]. The one that is chosen to compare is peak sidelobe
constrained minimax mainlobe spatial response variation
(MSRV) design. Its objective is to minimize the maximum
MSRV with peak sidelobe constraint. The mathematic
expression is shown as follows:

min o,
(u” (fo¢0)h =1,
st - ’[“(fk’eq) —u(fo)Gq)]Th‘ <0, (22)
[u(f.00"h] <&,
i [fiuful, 6, €0Om, 6, €0,

where f; is the reference frequency and choose to have
the value of f;, and h is the beamformed weightings to be
optimized. ¢ is the peak sidelobe constraint and set to be
0.036. Oy and g represent the mainlobe and sidelobe
region, respectively.

The beampattern obtained for the proposed beamformer
for the frequency region of interest is shown in Figure 3. The
spatial response of the proposed beamformer at 10 uniformly

—10 +

_15 -

20 +

Gain (dB)

_25 -

—30 +

735 .

—40 +

—45 : : . : ) . .
-200 —-150 -100 —50 0 50 100 150 200
Angle (deg)

FiGure 4: The normalized spatial response of the UCCA beam-
former for w = [0.371,0.957].

SO

Gain (dB)

-100 -50 0 50 100 150 200
Angle (deg)

=50 !
-200 —150

Fi1GURE 5: The normalized spatial response of Yan’s beamformer for
w = [0.37,0.957].

spaced discrete frequencies is superimposed. It can be seen
that, the proposed beamformer has approximately a constant
gain within the frequency region of interest in the specified
direction (0°). As the direction deviates from 0°, the FI
property becomes poorer. The peak sidelobe level has a value
of —8dB.

The beampattern of the UCCA beamformer is shown in
Figure 4. As the proposed algorithm is based on a circular
array, only one layer of the UCCA concentric array is used
for the numerical study. All other parameter settings remain
the same as that used for the proposed algorithm. As shown



EURASIP Journal on Advances in Signal Processing

Mean square error

02 03 04 05 06 07 08 09 1
Normalised frequency (radians/sample)
—o— Yan’s beamformer

—e— Proposed beamformer
—+— UCCA beamformer

FiGure 6: Comparison on FI characteristic between the proposed
beamformer, UCCA beamformer and Yan’s beamformer at 0 degree
for w = [0.37,0.957].
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w
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FiGure 7: Directivity versus frequency for the broadband beam
pattern shown in Figure 3.

in the figure, the beampattern of the UCCA beamformer
is not as constant as that of the proposed beamformer in
the specified direction (0°). The peak sidelobe level which
has a value of —6 dB is higher as compared to the proposed
beamformer too.

The beampattern of Yan’s beamformer is shown in
Figure 5. The frequency invariant characteristics is poorer
at the desired direction. However it has the lowest sidelobe
level among all. From this comparison, we find that having
processed the signal in phase mode, the frequency range
for the beamformer to achieve Frequency Invariant (FI)
characteristics is wider.

The mean squared errors of the spatial response gain in
the specified direction and across different frequencies for

—_
[\S]

— —
o —
T T

o
T

White noise gain (dB)

5 1 1 1 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalised frequency (radians/sample)

FIGURE 8: White noise gain versus frequency for the broadband
beam pattern shown in Figure 3.

different methods are shown in Figure 6. It is seen that the
proposed beamformer outperforms both the UCCA beam-
former and Yan’s beamformer on achieving FI characteristic
at the desired direction. Table 2 tabulates the array gain at
each frequency along the desired direction for these three
methods.

Furthermore, the performance of the frequency invariant
beam pattern obtained by the proposed method is assessed
by evaluating the directivity and the white-noise gain over
the entire frequency band considered, as shown in Figures
7 and 8, respectively. Directivity describes the ability of the
array to suppress a diffuse noise field, while white noise
gain shows the ability of the array to suppress spatially
uncorrelated noise, which can be caused by self-noise of the
sensors. Because our array is a circular array, the directivity
D(w) is calculated using the following equation:

L 2
D(w) = — |5t Bu(@)]

DL Zﬁ:_L Bu(0)B,(w)'sinc[(m — n)2rwr/c]’
(23)

where B,,(w) is the frequency response of the FIR filter at mth
phase mode, and r is the radius of the circle.

As shown in the figure, the directivity has a constant
profile, with an average value equal to 13.1755dB. The
white noise gain ranges from 5.5dB to 11.3dB. These
positive values represent an attenuation of self-noise of the
microphones. As expected, the lower the frequency, the
smaller the white noise gain, and the higher the sensitivity
to array imperfections. Hence, the proposed beamformer
is more sensitive to array imperfection at low frequency
and is the most robust to array imperfection at normalized
frequency 0.757.

5.1. Sensitivity Study—Number of Sensors. Most FI beam-
formers reported in the literature employ a large number
of sensors. In this study, the number of sensors used
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FIGURE 9: The normalized spatial response of the proposed FI
beamformer for 10 microphones.
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Figure 10: The normalized spatial response of the UCCA beam-
former for 10 microphones.

are reduced from 20 to 10 and 8 and the performances
of the proposed FI beamformer, UCCA beamformer, and
Yan’s beamformer are compared. The results are shown in
Figures 9, 10, 11, 12, 13, and 14. As seen from the simula-
tions, when 10 microphones are employed, the proposed
algorithm achieves the best FI performance in the mainlobe
region, with a sidelobe level of —8 dB. For UCCA method
and Yan’s method, frequency invariant characteristics are
not promising at the desired direction, and higher sidelobes
are obtained. When the number of microphone is further
reduced to 8, our proposed method is still able to produce
reasonable FI beampattern whereas the FI property of the
beampattern of the UCCA algorithm becomes much poorer
in the specified direction.

5.2. Sensitivity Study—Different Threshold Value §. In this
proposed algorithm, & is a parameter created to define
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Figure 11: The normalized spatial response of the Yan’s beam-
former for 10 microphones.
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FiGure 12: The normalized spatial response of the proposed FI
beamformer for 8 microphones.

the allowed ripples in the magnitude of the main beam
spatial gain response. In this section, different values of &
are used to study the sensitivity of the performance of the
proposed algorithm to this parameter value. Three values,
namely, § = [0.001,0.01,0.1] are selected and the results
obtained are shown in Figures 15, 16, and 17, respectively.
The specified frequency region of interest remains the same.
Figure 18 shows the mean squared error of the array gain at
the specified direction (0°) for the three different § values
studied.

As shown in the figures, as the value of § decreases, the FI
performance at the specified direction improves. The results
also show that the improvement in the FI performance in
the specified direction is achieved with an increase in the
peak sidelobe level and a poorer FI beampattern in the other
directions in the main beam. For example, when the value
of & is 0.001, the peak sidelobe of the spatial response is
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FIGURE 13: The normalized spatial response of the UCCA beam-

former for 8 microphones.

—15

20

25 F

Gain (dB)

—30
—35
_40 F

745 F

—50 L L L L L L L
-200 —150 -100 50 0 50 100 150 200
Angle (deg)

FIGURE 14: The normalized spatial response of the Yan’s beam-
former for 8 microphones.
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Figure 15: The normalized spatial response of the proposed
beamformer for § = 0.001.
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FIGURE 16: The normalized spatial response of the proposed
beamformer for § = 0.01.

710 F

20

—30 +

Gain (dB)

_40 -

750 F

-200 —-150 -100 -—50 0 50 100 150 200
Angle (deg)

FiGure 17: The normalized spatial response of the proposed
beamformer for § = 0.1.

as high as —5dB and the beampatterns do not overlap well
in the main beam. As § increases to 0.1, the peak sidelobe
of the spatial response is approximately —10 dB (lower) and
the beampatterns in the main beam are observed to have a
relatively good FI characteristics.

6. Conclusion

A selective frequency invariant uniform circular broadband
beamformer is presented in this paper. Other than pro-
viding the details of a recent conference paper presented
by the authors of this paper, a complexity analysis and
two sensitivity studies on the proposed algorithm are also
presented in this paper. The proposed algorithm is designed
to minimize an objective function of the spatial response gain
with a constraint on the gain being smaller than a predefined
threshold value across a specified frequency range and in a
specified direction. The problem is formulated as a convex
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FiGure 18: Comparison on FI characteristic of the proposed
beamformer for § = 0.001,0.01 and 0.1 at 0 degree for w =
[0.377,0.957].

optimization problem and the solution is obtained by using
the Second-Order Cone Programming (SOCP) technique.
The complexity analysis shows that the proposed algorithm
has a lower computational requirement compared to that of
the UCCA algorithm for the problem defined. Numerical
results show that the proposed algorithm is able to achieve
a more FI beampattern and a smaller mean square error of
the spatial response gain in the specified direction across the
specified FI region compared to the UCCA algorithm.
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