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Iris recognition for human identification is one of the most accurate biometrics, and its employment is expanding globally. The
use of portable iris systems, particularly in law enforcement applications, is growing. In many of these applications, the portable
device may be required to transmit an iris image or template over a narrow-bandwidth communication channel. Typically, a full
resolution image (e.g., VGA) is desired to ensure sufficient pixels across the iris to be confident of accurate recognition results. To
minimize the time to transmit a large amount of data over a narrow-bandwidth communication channel, image compression can
be used to reduce the file size of the iris image. In other applications, such as the Registered Traveler program, an entire iris image
is stored on a smart card, but only 4 kB is allowed for the iris image. For this type of application, image compression is also the
solution. This paper investigates the effects of image compression on recognition system performance using a commercial version
of the Daugman iris2pi algorithm along with JPEG-2000 compression, and links these to image quality. Using the ICE 2005 iris
database, we find that even in the face of significant compression, recognition performance is minimally affected.

1. Introduction

Iris recognition is gaining popularity as the method of
choice for human identification in society today. The iris,
the colored portion of the eye that surrounds the pupil,
contains unique patterns which are prominent under near-
infrared illumination. These patterns are relatively perma-
nent, remaining stable from a very young age, barring trauma
or disease. They allow accurate identification with a very high
level of confidence.

Commercial iris systems are used in a number of
applications such as access to secure facilities or other
resources, and even criminal/terrorist identification in the
Global War on Terror. The identification process begins with
enrollment of an individual into a commercial iris system,
requiring the capture of one or more images from a video
stream. Typically, the database for such a system does not
contain actual iris images, but rather it stores a binary
file that represents the distinctive information contained in
each enrolled iris (called the template). Most commercial
iris systems today use the Daugman algorithm [1–3]. In the

Daugman algorithm, the template is stored as 512 bytes per
eye.

Data compression is beginning to play a part in the
employment of iris recognition systems. Law enforcement
agencies, such as the Border Patrol, the Coast Guard, and
even the Armed Forces, are using portable wireless iris
recognition devices. In cases where the devices require a
query to a master database for identification, it may be
required to transmit captured images or templates over a
narrow-bandwidth communication channel. In this case,
minimizing the amount of data to transmit (which is possible
through compression) minimizes the time to transmit,
and saves precious battery power. There are other iris
applications that require a full-resolution iris image to be
carried on a smart card, but require a small fixed data storage
size. An example is the Registered Traveler Interoperability
Consortium (RTIC) standard, where only 4 kB is allocated on
the RT smart card for the iris image [4]. Since the standard
iris image used for recognition is VGA-resolution (640× 480,
grayscale), it contains 307 kilobytes; significant compression
would be required to fit a VGA iris image into 4 kilobytes.
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Applications of this nature serve as the primary motivation
for this research.

This paper explores whether image compression can be
utilized while maintaining recognition accuracy, and the
effects on performance. We evaluate the effects of image
compression on recognition using JPEG-2000 compression
along with a commercial implementation of the Daugman
recognition algorithm [5]. The database used in this research
is described in the following section.

2. Data

Iris images used in this paper are available from the National
Institute of Standards and Technology (NIST). The database
of iris images used in this research is the Iris Challenge
Evaluation (ICE) 2005 database [6]. This iris database is
composed of a total of 2953 iris images, collected from
132 subjects. Of these images, 1425 were of right eyes from
124 different individuals and 1528 were left eyes from 120
individuals. The images are all VGA resolution, 480 rows by
640 columns, with 8-bit grayscale resolution.

This database contains images with a wide range of
visual quality; some images seem near perfect while others
are very blurry, have iris that extend off the periphery
of the image, contain significantly occluded irises, and/or
have video interlace artifacts. All of these factors impair
recognition performance. Several examples of images from
this database are shown in Figures 1, 2, and 3.

3. Image Compression

The JPEG-2000 algorithm is published by the Joint Pho-
tographic Experts Group (JPEG) as one of its still-image
compression standards [7]. JPEG-2000 uses state-of-the art
compression techniques based on wavelets, unlike the more
popular JPEG standard, which is based on the discrete cosine
transform (DCT). JPEG-2000 contains options that allow
both lossless and lossy compression of imagery, as does
JPEG. When using any lossy compression technique, some
information is lost in the compression and the amount
and type of information that is lost depends on several
factors, including the algorithm used for compression, the
amount of compression desired (which determines the size
of the compressed file), and special options offered in the
algorithm such as Region-of-Interest (ROI) processing. In
ROI processing, select regions of the image are deemed more
important than other areas such that less information is lost
in those regions.

The effect of image compression on iris recognition
system performance has been addressed [8, 9]. In particular,
in [8], iris images were compressed up to 50 : 1 using both
JPEG-2000 and JPEG. In [9], Daugman and Downing used
a portion of the ICE-2005 iris database and JPEG-2000
compression. Daugman used the Region-of-Interest (ROI)
capability of JPEG-2000 which resulted in compression ratios
of up to 145 : 1. He used segmentation methods to completely
isolate the iris so as to reduce the size of the images from
480 × 640 to 320 × 320, and then completely discarded

Figure 1: An example image from the ICE 2005 database (image
no. 245596). The visual quality is very good.

Figure 2: An example image from the ICE 2005 database (image
no. 245795). Note the extent of the occlusion, including eyelashes.

the regions of the smaller image that did not include the
iris. Since the images were reduced in size to only contain
the segmented iris, higher compression ratios were obtained
with minimal effects on recognition performance. However,
storing iris database images in this manner precludes testing
of alternate segmentation methods. In our research, we opted
to compress entire images rather than just the area of the
iris-only information. This allows a more general approach
to algorithm development research using a compressed iris
database.

For this paper, we used the entire ICE-2005 database to
obtain our results. We compressed the images using JPEG-
2000, with the default parameters and options available in
the JasPer implementation [10]. The source code is freely
available from the JasPer Project. We did not use the ROI
capability, so that entire images were compressed as a whole
and segmentation testing could be performed on compressed
images.

Figure 4 displays an original iris image from the ICE-
2005 database before and after its compression to a ratio of
100 : 1 using JPEG-2000. This is image number 245596, the
same as displayed in Figure 1. Comparing both images in
Figure 4 closely reveals some detectable differences, primarily
in the areas of high frequency content (high detail), such
as the eyelashes, where compression artifacts or smoothing
is noted. Statistically, the two images are not very different;
the maximum difference in value between any two pixels in
the two images is 22, and the average gray level difference
between the two images is essentially unchanged (0.02) with
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Figure 3: An example image from the ICE 2005 database (image
no. 243843). Note the extent of blurriness and the video interlace
artifacts.

Figure 4: The iris image from Figure 1 after compression to 100 : 1.

Table 1: Desired and actual compression ratios.

Desired Actual

25 : 1 25.24 : 1

50 : 1 50.57 : 1

75 : 1 75.96 : 1

100 : 1 101.37 : 1

a standard deviation of 1.56. Figure 5 shows a zoomed in
image of the upper left portion of the iris in Figure 4.
Overall, JPEG-2000 does a great job of maintaining the detail
information even up to a compression ratio of 50:1.

For this research using JPEG-2000, four compressed
databases were created using the 2953 ICE images. To create
each of these databases, each original image was compressed
with loss to compression ratios of approximately 25 : 1, 50 : 1,
75 : 1, and 100 : 1. For example, the first database consisted
of all ICE images compressed to 25 : 1. The JPEG-2000
engine is not designed to achieve the specified compression
ratio exactly, but rather uses it as a target which may be
exceeded but should be close to the desired compression
ratio. For these 2953 images, the average compression ratios
achieved are shown in Table 1. The next section discusses the
quality measure that was used to relate compression ratio to
performance and quality.

Figure 5: Zoomed view of the iris image from Figure 4. At this
level of zoom, the compression artifacts are noticeable, particularly
around areas of high frequency (such as eyelashes). Also note the
smoothed out areas throughout the iris.

4. Quality Metric

The information distance-based quality measure is used
to evaluate the iris image quality [11, 12]. Prior to the
application of the quality measure, the iris is first seg-
mented and transformed to polar coordinates. This quality
measure includes three parts: Feature Information Measure,
Occlusion Measure, and Dilation Measure, which are then
combined into a quality score. These three parts and the
fusion to form the quality score are described below.

(1) Feature Correlation Measure (FCM). The compression
process will introduce artificial iris patterns, which may have
low correlation with the true patterns. Using this property,
we applied the information distance (see [13]) between
adjacent rows of the unwrapped image to measure the
correlation within regions of the iris.

Suppose the row length is L with a starting location at
(u, v). The filtered magnitude values (from feature extrac-

tion) of the L pixels in the row is formed as a vector
⇀
r . The

probability mass function (pmf) of this selected portion is
⇀
p

and
⇀
q is the pmf of the neighbor row [13]. The information

distance of this portion is J (u,v)(
⇀
p,
⇀
q), which can be calculated

by

J
(⇀
p,
⇀
q
)
= D

(⇀
p ‖ ⇀q

)
+ D

(⇀
q ‖

⇀
p
)

, (1)

where D( ) is the Kullback-Leibler information distance, D(
⇀
p

‖ ⇀q) =∑ ⇀
pi log2(

⇀
pi/

⇀
qi). In our algorithm, if there are values

that do not appear within the selected portions of rows, they
are not considered in the pmf to prevent a divide-by-zero
condition in (1).

The feature correlation measure (FCM) of an iris image
is then calculated by

FCM = 1
N

∑
i

Ji,i+1, (2)
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where Ji is the representative information distance of the ith
row and N is the total number of rows used for feature
information calculation.

(2) Occlusion Measure (O). The total amount of invalid iris
patterns can affect the recognition accuracy. Here, occlusion
measure (O) is used to measure the percentage of the iris area
that is invalid due to eyelids, eyelashes, and other noise.

(3) Dilation Measure (D). The dilation of a pupil can also
affect the recognition accuracy. Here, the dilation measure
(D) is calculated by the ratio of pupil radius and iris radius.

(4) Score Fusion (Q). The three measures were then com-
bined to one quality score based on the FCM, O, and D.
Different from simply multiplying, we normalized each of
the measure scores first:

Q = f (FCM) · g(O) · h(D), (3)

where f ( ), g( ), and h( ) are normalization functions.
The f ( ) function is used to normalize the FCM score

from 0 to 1, and is defined as follows:

f (FCM) =
{
α · FCM, 0 ≤ FCM ≤ β,

1, FCM > β.
(4)

In (4), β = 0.005 and α = 1/β. The value of β was
chosen experimentally. For most original images, the Ji,i+1

scores were above 0.005, while for compressed images most
Ji,i+1 scores were lower than 0.005. The value α is the
normalization factor to ensure that when FCM = β, f (FCM)
= 1.

We analyzed the relationship between available iris
patterns and the iris recognition accuracy to determine
the normalization functions empirically. This relationship
is more exponential than linear. Based on [14, 15], the g
function is calculated as

g(O) =
(

1− e−λ(1−O)
)

κ
. (5)

In (5), κ = 0.9179 and λ = 2.5. Similar to the occlusion,
the dilation is also a nonlinear function compared to the
recognition accuracy. The h function is calculated as

h(D) =
{

1, D ≤ 0.6,

e−γ(D−ξ), 0.6 < D ≤ 1.
(6)

Here, ξ = .6, and γ = 40. For dilation, ξ is selected based on
the dilation functionality of a normal eye.

Figure 6 shows two sample images from the ICE
database, along with each image compressed to ratios of
25 : 1, 50 : 1, 75 : 1 and 100 : 1. A zoomed in portion of the iris
is displayed also, for visual evaluation of the quality. For each
image, the resulting quality score is displayed. Additional
quality results are included in the following section.

5. Results

This section is divided into two parts; performance results
first, and then quality results. In many iris recognition
algorithms, including the Daugman algorithm used in this
research, two iris templates are compared using fractional
Hamming distance (HD) as the measure of dissimilarity
between two iris templates. Fractional Hamming distance
(HD) is defined by

HD = ‖(code A⊗ code B)∩mask A∩mask B‖
‖mask A∩mask B‖ . (7)

The ⊗ operator is the Boolean XOR operation. It detects
disagreements between the pairs of phase code bits in the
two templates (called IrisCodes in the Daugman algorithm—
here, designated as code A and code B). Mask A and B
identify the locations in each IrisCode that are not believed
to be corrupted by artifacts such as eyelids/eyelashes and
specularities. The ∩ operator is the Boolean AND operator,
and the ‖ · ‖ operator is used to sum the number of “1”
bits within its argument. The denominator of (7) ensures
that only the phase code bits that are valid are included in
the calculation, after any artifacts are discounted. A value
of HD = 0 indicates a perfect match between the IrisCodes
and a value of HD = 1 indicates that none of the bits match.
Daugman provides an alternate measure of dissimilarity
in the normalized fractional Hamming distance (HDnorm),
which incorporates the number of bits that were actually
compared [16]. This serves to reduce the chances of a false
match and is discussed later in this paper. The standard
fractional Hamming distance in (7) is used here to derive the
Performance curves shown in this section. A few images were
of poor enough quality that at higher compression ratios,
they did not produce templates for comparison, because they
failed to segment. An example is found in Figure 7. One
image failed to produce a template in its original form or at
any compression ratio and is displayed in Figure 8.

5.1. Performance Curves. The quality of the images in the
database did play a role in the performance, as demonstrated
in Figure 9. Here, two images of different eyes have been
segmented (segmentation is shown in the images), and
both segmentations are poor. Still, successful segmentation
allowed template generation, so each image was represented
by a template that could be compared. When the templates
of these two different eyes were compared, the net result was
that there was only one valid bit in the Hamming distance
computation, resulting in a HD = 0. There were two other
such comparisons of different eyes with a low number of
valid bits (3 bits and 9 bits), both also resulting in a HD =
0. All three of these cases would result in false matches. The
issue of a low number of bits being compared and their effect
on Hamming distance was addressed by Daugman in [16], in
which he compared use of performance using raw Hamming
distance (as we use here) and normalized Hamming distance,
defined as

HDnorm = 0.5− (0.5−HDraw)
√

n

911
. (8)
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Quality: .9975 .3874 .266 .2539 .2008

Original 25 : 1 50 : 1 75 : 1 100 : 1

Sample image 1

(a)

Quality: .9935 .9935 .9935 .8929 .7574

Original 25 : 1 50 : 1 75 : 1 100 : 1

Sample image 2

(b)

Figure 6: Two sample images and their compressed versions from the ICE database. Image quality is annotated for each image.

(a)

(b)

Figure 7: This image failed to generate an iris template at 75 : 1
and 100 : 1 compression (image no. 245561). (a) Original image. (b)
100 : 1 compression.

Here, HDraw is the Hamming distance computed using
(7), and n is the number of valid bits in the comparison. The
value 911 is a scaling factor based on a typical number of
bits used in comparisons. The normalization comes about
to account for the number of valid bits actually used in

Figure 8: This image failed to generate an iris template in its
original form and at all compression ratios (image no. 242451).

computing the Hamming distance. In [16], the minimum
number of bits used in the results is 400, and this is the
minimum number of bits we allow in determining our
results.

The size and number of subjects in the ICE database,
the number of images that successfully segmented so that a
template could be formed, and the number of valid bits used
in comparing two template were all factors that determined
the number of actual comparisons that were made. Recall
that five databases were used in this research, one for the
uncompressed images and one for each of the compression
ratios used. The number of comparisons made (genuine or
impostor) differed when comparing different databases. Part
of the difference in number of comparisons comes about
because when comparing one database to itself, we do not
count comparisons of each image to itself (the HD = 0 in this
case). However, when comparing two different databases, the
difference in compression ratios means that there are no
identical images, and this allows an additional number of
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(a)

(b)

Figure 9: Segmentation images. (a) Image no. 247076 compressed
to 25 : 1. (b) Image no. 246215. These two images from different
eyes generated templates, but their qualities resulted in poor
segmentation. As a result, in the template comparisons there was
only one valid bit compared, resulting in a false match using raw
HD, (HD = 0.0). Normalized HD would have resulted in an HD =
0.5 (no false match). Also, the iCAP software version used in this
research was an early version that did not include capability for
off-axis images or partially out-of-frame images. The fact that these
images did not segment properly could be expected.

valid comparisons. The number of comparisons also varies
because a few images do not generate templates, so some
databases had fewer templates for comparison than other
databases. The original, 25 : 1 and 50 : 1 databases held 2952
templates while the 75 : 1 and 100 : 1 databases held 2950
templates. Finally, we only compare templates if at least 400
bits were valid in the comparison. As a result, the overall
numbers of genuine, imposter and total comparisons are
shown in Table 2.

The performance curves that follow are derived from the
probability mass functions (PMF) of fractional Hamming
distance scores. The PMF is an estimate of the underlying
probability distribution using the histogram of HD values.
An example of the effects of compression on the PMFs of
genuine and imposter distributions is shown in Figure 10.
Here the database of 25 : 1 compressed image templates
are compared to the original image templates. We point
out that compression does not really change the imposter
distribution, but as compression ratio increases, the genuine
distributions move closer to the imposter distribution, which
reduces performance. We note that in the comparisons
between this database and the original, and this database and
itself (25 : 1 versus 25 : 1), that there is a distinct 2nd peak in

Table 2: Number of matches in each database comparison.

Compared databases Genuine
matches

Imposter
matches

Total
matches

Original versus Original 26,656 4,329,020 4,355,676

Original versus 25 : 1 29,650 4,329,068 4,358,628

Original versus 50 : 1 29,549 4,329,079 4,358,628

Original versus 75 : 1 30,876 4,327,749 4,358,625

Original versus 100 : 1 31,119 4,327,506 4,358,625

25 : 1 versus 25 : 1 26,600 4,329,076 4,355,676

25 : 1 versus 50 : 1 29,527 4,329,101 4,358,628

25 : 1 versus 75 : 1 30,862 4,327,763 4,358,625

25 : 1 versus 100 : 1 31,106 4,327,519 4,358,625

50 : 1 versus 50 : 1 26,617 4,329,059 4,355,676

50 : 1 versus 75 : 1 30,886 4,327,739 4,358,625

50 : 1 versus 100 : 1 31,136 4,327,489 4,358,625

75 : 1 versus 75 : 1 26,609 4,323,166 4,349,775

75 : 1 versus 100 : 1 29,804 4,322,291 4,352,725

100 : 1 versus 100 : 1 26,692 4,323,083 4,349,775
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Figure 10: Probability mass function curves for compression 25 : 1,
as a function of Hamming distance (25 : 1 versus original, 25 : 1
versus 25 : 1, 25 : 1 versus 50 : 1, 25 : 1 versus 75 : 1 and 25 : 1 versus
100 : 1).

the PMF close to a Hamming distance of 0; we attribute this
to the comparison of images that are only slightly different
(i.e., the compression does not result in much change in the
iris template). At higher compression ratios, more change
is induced in the templates resulting in higher Hamming
distances when comparing them.

Since the imposter distributions are relatively unchanged
as compression ratios increase, we further analyze the
changes seen in the genuine distributions. Here, we inves-
tigate the changes in HD values as compression ratio is
increased, when compared to the original images. Statistics
have been gathered for five database comparisons: original
versus original, original versus 25 : 1, original versus 50 : 1,
original versus 75 : 1, and original versus 100 : 1. The mini-
mum, average, and maximum HDs were recorded for each
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Table 3: Minimum, mean And maximum HDs.

Compared databases Minimum
HD

Mean HD
Maximum

HD

Original versus Original 0.0025 0.1535 0.4795

Original versus 25 : 1 0.0000 0.1514 0.4818

Original versus 50 : 1 0.0000 0.1685 0.4705

Original versus 75 : 1 0.0008 0.1912 0.4742

Original versus 100 : 1 0.0035 0.2109 0.4802

database comparison. We expected that all of these values
would increase as compression ratio increased, since more
of the original data is lost in the compression. These results
are included in Table 3. We note that the minimum HD is 0.0
for comparisons between the original and 25 : 1, and original
and 50 : 1 databases. We attribute this to the fact that JPEG-
2000 is efficient in how it performs the compression, and
the impacts on the iris and the iris template are minimal,
so the template of a given iris image is in general close
to the template of the same image compressed to 25 : 1 or
50 : 1. As mentioned earlier, for comparisons of a database
with itself, comparisons of an image with itself are excluded
because they trivially give a Hamming distance of zero. This
is why the minimum Hamming distance in Table 3 is lower
for the comparisons between the original and the 25 : 1 and
the original and 50 : 1 are lower than the minimum for the
first row comparing original and original.

Figure 11 is an example of the performance curves
created for this research. Here, each pair of curves (False
Rejection Rate (FRR) and False Accept Rate (FAR)) repre-
sents the comparison of each compressed database against
the original database. An original versus original comparison
is included as a baseline. We note that as the compression
ratio increases, the FAR curve remains virtually unchanged,
while the FRR curves move further to the right. This will
cause an increased Equal Error Rate (EER, where FAR =
FRR), and an increased number of errors (False Accepts +
False Rejects) which reduces overall system accuracy. Some
overall results are included in Table 4, where we record: (1)
best accuracy achieved, which reflects varying the threshold
for identity to minimize the total number of errors achieved;
(2) EER point, in percent; (3) FRR when FAR is fixed at
0.001 (one false accept in 1000 imposter comparisons); and
(4) FRR when FAR is fixed at 0.0001 (one false match
in 10,000 imposter comparisons). This table reflects all
possible comparisons of the databases used (original and
compressed), where the number of valid bits is ≥400.

5.2. Quality Measure. The quality measure using the means
described in Section 4 was determined for every image
utilized (original and compressed). In most cases, as com-
pression ratio increases, the quality degrades. An example is
the quality of image number 243843, which is displayed in
Figure 3. For this image, Table 5 displays the quality of the
original and compressed versions of this image, as well as the
Hamming distance (HD) when compared with the original
image, and the number of valid bits that were used in the

Table 4: Summary of performance results.

EER (%)

Original Cr25 Cr50 Cr75 Cr100

Original 1.350 1.470 1.540 2.020 2.500

Cr25 1.730 1.770 2.280 2.800

Cr50 2.010 2.420 3.000

Cr75 3.010 3.350

Cr100 4.450

Best Accuracy (%)

Original Cr25 Cr50 Cr75 Cr100

Original 99.969 99.961 99.950 99.931 99.917

Cr25 99.952 99.940 99.920 99.904

Cr50 99.931 99.909 99.895

Cr75 99.897 99.885

Cr100 99.867

FRR at FAR = 0.001

Original Cr25 Cr50 Cr75 Cr100

Original 0.022 0.024 0.028 0.042 0.057

Cr25 0.030 0.035 0.049 0.067

Cr50 0.044 0.057 0.075

Cr75 0.079 0.088

Cr100 0.125

FRR at FAR = 0.0001

Original Cr25 Cr50 Cr75 Cr100

Original 0.036 0.043 0.060 0.087 0.106

Cr25 0.070 0.088 0.126 0.149

Cr50 0.105 0.134 0.153

Cr75 0.177 0.170

Cr100 0.223

comparison. In addition, it shows the decidability of the two
distributions, defined as

d′ =
∣∣∣μgenuine − μimposter

∣∣∣√
0.5
(
σ2

genuine + σ2
imposter

) . (9)

This equation includes the means and standard deviations
of the pmfs of the genuine and imposter distributions,
combined into a measure of how well separated the two
probability mass functions are separated from each other [9].
A larger decidability value is indicative of a greater separation
between the distributions, which should lead to improved
recognition performance.

We note that for this image, the measured quality
decreases and Hamming distance increases as the compres-
sion ratio increases, and is the general trend when using a
large database of images. The number of valid bits compared
does not follow this trend. We attribute this to the fact that
the compression introduces artifacts that alter the spatial
makeup of the image, and these artifacts will be reflected in
a change in the masks used in the computation of Hamming
distances. Overall, the mean qualities of the databases used
are shown in Table 6.
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Figure 11: Performance curves for each compression ratio versus
original images.

Table 5: Image quality and Hamming distances.

Image Quality
HD (versus
Original)

Bits
compared

Decidability,
(d′)

Original 0.9395 0.0
All

unoccluded
bits

5.06

25 : 1 0.8743 0.023354 728 4.65

50 : 1 0.6713 0.025097 1036 4.47

75 : 1 0.6220 0.044146 1042 4.13

100 : 1 0.5687 0.092567 713 3.83

Table 6: Database qualities.

Database Quality Decidability (d′)

Original 0.9255 5.06

25 : 1 0.8565 4.65

50 : 1 0.7916 4.47

75 : 1 0.7576 4.13

100 : 1 0.7306 3.83

6. Conclusions

As expected, and as shown in other researches, as iris images
are compressed more, recognition performance reduces. The
FAR remains fairly unaffected by changes in the image
data, while the FRR is noticeably affected. The compression
introduces artifacts into the iris images which alter the
distinct patterns that are present in the original images,
making the compressed images more dissimilar. There are
some cases in which the compression introduced was small
enough such that the templates of an original and the same
image compressed by some amount resulted in the same
template. The cases of zero Hamming distance between
compression ratios came about due to a combination of
small changes in the phase and mask bits so that none of the

changed phase bits were actually counted. In general, though,
the net effect is that comparing compressed images of the
same eye will yield higher HDs, shifting the performance
curve to the right and resulting in higher FRRs.

The importance of correct segmentation cannot be
overemphasized. Poor segmentation will lead to poor results,
and in fact can lead to false matches if too few bits are
compared in computing the raw Hamming distance (7). The
normalized Hamming distance (7) was developed to avoid
this occurrence. Controls can be built into code to preclude
this possibility if the number of bits compared between two
templates is below some minimum number.

In general, when images are not compressed, images that
have higher quality will generate higher recognition accuracy,
as should be expected. When the images are compressed,
the original image patterns within the iris will be suppressed
and some new artificial compression artifacts/patterns will
be added. This tends to decrease the recognition accuracy.
As the compression rate increases, the recognition accuracy
decreases. However, when using a small database, this effect
may not be reflected in the recognition results. For some
images in a small database, the compression process could
introduce some stable unique patterns, which in some cases
can increase the recognition accuracy. That is why we see
the fluctuations in recognition accuracy across different
compression rates, as well as fluctuations in the number
of bits compared. In addition, different iris images would
have different “reactions” to the compression due to the
characteristics of the patterns. The quality of some images
may be reduced dramatically due to the compression process,
but some may not be.

Overall, the iris images in this research were subjected
to considerable compression, and yet the recognition per-
formance was only minimally affected. This is a significant,
particularly when compared to the FBI’s wavelet scalar
quantization (WSQ) compression of fingerprint images. In
the FBI standard, fingerprints can be WSQ compressed
with loss to a maximum ratio of 15 : 1 [17], while in
this research the images were compressed up to 100 : 1.
This proves the effectiveness of JPEG-2000 compression,
and its ability to preserve the important information in
the compression process. Of further note, the iris images
here were compressed without the benefit of the region-of-
interest options available in JPEG-2000, which might allow
even twice the compression with comparable results.
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