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Blood motion estimation provides fundamental clinical information to prevent and detect pathologies such as cancer. Ultrasound
imaging associated with Doppler methods is often used for blood flow evaluation. However, Doppler methods suffer from
shortcomings such as limited spatial resolution and the inability to estimate lateral motion. Numerous methods such as block
matching and decorrelation-based techniques have been proposed to overcome these limitations. In this paper, we propose
an original method to estimate dense fields of vector velocity from ultrasound image sequences. Our proposal is based on a
spatiotemporal approach and considers 2D+t data as a 3D volume. Orientation of the texture within this volume is related to
velocity. Thus, we designed a bank of 3D quaternionic filters to estimate local orientation and then calculate local velocities. The
method was applied to a large set of experimental and simulated flow sequences with low motion (≈1 mm/s) within small vessels
(≈1 mm). Evaluation was conducted with several quantitative criteria such as the normalized mean error or the estimated mean
velocity. The results obtained show the good behaviour of our method, characterizing the flows studied.

1. Introduction

Blood motion estimation provides fundamental clinical
information for the diagnosis of numerous pathologies such
as cancer [1]. Ultrasound imaging is often used for blood
flow evaluation in clinical routine. Indeed, a set of methods
based on the Doppler effect are widely used to estimate
blood flow velocity from ultrasound data. There are two
kinds of ultrasound images, radiofrequency and B-mode.
A radiofrequency (RF) ultrasound image stems from the
backscattering of ultrasonic waves by a set of scatterers
distributed in the tissues or the blood. B-mode images result
from the demodulation of RF images, which preserves only
the amplitude information. Moreover, ultrasound images
are characterized by a texture, called speckle, which is
related to the system’s Point Spread Function (PSF). Doppler
techniques are thus able to display color flow maps at a
high frame rate, close to the image acquisition rate. Most
notably, Kasai et al. [2] developed a real-time autocorrelation
estimator that estimates the average phase shift related to
the axial velocity. In addition, other methods [3–5] estimate

the temporal shift instead of the phase shift. However,
Doppler methods have a number of limitations. Firstly, the
spatial resolution of the estimates is limited due to the use
of narrowband signals. Secondly, the motion can only be
estimated along the ultrasound beam axis. Therefore, it is
necessary to know the angle between the velocity vector
and the beam axis to estimate the velocity modulus. As
a consequence, Doppler techniques are unable to estimate
purely lateral motion since the axial component is null in this
case.

Numerous methods have been proposed to overcome
these limitations. Ferrara and Algazi [6] proposed a max-
imum likelihood estimator for velocity from a stochastic
model of the signal from a point scatterer. It uses the effect
of the scatterer velocity on both the time delay and the shift
in frequency. In addition, Jensen and Munk [7] explored the
use of lateral oscillations (transverse spatial modulation) to
study and quantify the influence of transverse motion on
the signals received. More recently, several methods proposed
to make use of the statistics of the ultrasonic image by
associating velocity and decorrelation [8, 9]. Derived from
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standard Doppler approaches, Newhouse et al. [10] and then
Tortoli et al. [11] suggested using a second beam to remove
the angle ambiguity of conventional Doppler. In a different
way, block matching techniques, called speckle tracking in
ultrasonic imaging [12], have been widely studied. The
principle underlying block matching techniques is based on
the maximization of a similarity measure between two blocks
from two successive images. To avoid decorrelation during
motion, a deformation model has also been proposed [13].
Other types of methods were originally proposed by Wilson
and Gill [14] to use the 3D Fourier space of an image
sequence with moving objects. Recently, new estimators
using this Fourier approach were proposed by Oddershede
et al. [15].

Our proposal is close to the spatiofrequential approaches
mentioned above. However, this paper provides a spatiotem-
poral development. The goal of this paper is to present an
original approach based on a bank of spatiotemporal quater-
nionic filters to estimate apparent velocity vectors from B-
mode image sequences. 2D+t sequences can be described
as 3D volumes. Within these volumes, local orientations
of the textures due to speckle in the data volume are
related to velocity. The spatiotemporal data volume (2D+t)
is filtered to estimate the local orientations of the textures.
The local velocity is then deduced from this orientation.
Section 2 presents the proposed methodology, and Section 3
details the data used for validation. The results obtained
with various experimental and simulated ultrasound imag-
ing flow sequences will be presented and discussed in
Section 4.

2. Quaternionic 3D Filter Banks for
Motion Estimation

Figure 1 presents the frame of reference that will be used in
this paper. The x-axis is the lateral direction within the imag-
ing plane, the y-axis is the axial direction, or propagation
direction, and the t-axis is the temporal direction. The z-axis,
not represented here, is the azimuthal direction.

2.1. Velocity and Orientation in Space-Time Data. An image
sequence (2D+t) can be seen as a 3D spatiotemporal
volume. Within this volume, a pattern depends on the
spatial information of the images but also on its temporal
evolution. Therefore, the problem of velocity estimation can
be formulated as a problem of pattern orientation.

Figure 2 illustrates an image sequence with a moving
target. In this figure we introduce two angles, ϕ and θ,
respectively associated with the velocity vector orientation
within the imaging plane and the velocity modulus. The
velocity vector is composed of two components �vx and �vy ,
as illustrated in Figure 2(a). An oriented pattern, related to
motion, is then presented within the plane oriented along
�v = �vx +�vy and t, shown in Figure 2(b).

Now, let us examine ultrasound data with motion.
Figure 3 represents an ultrasound image sequence as a stack
in a spatiotemporal frame of reference. This image sequence
corresponds to a parabolic flow inside a cylindrical vessel.
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Figure 1: Schematic representation of an image sequence. Δt is the
time interval between two successive frames.
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Figure 2: (a) Synthetic image sequence containing a moving object
(white square) within the imaging plane (x, y). (b) Representation
of the sequence in the spatiotemporal frame of reference and a plane
extracted along the velocity vector �v and time t.

Figure 4 shows three 2D+t representations constructed
from the sequence presented in Figure 3. For different
depths, the changes in the orientation of the patterns
contained in the tilted spatiotemporal planes can be seen
clearly. The first plane (Figure 4(a)) is located at the center
of the vessel where velocity is maximum, according to the
parabolic law. The second plane is near the border, where
velocity is minimum, and the third plane is outside the vessel,
where velocity is null.

Now, let us define the relation between orientation and
velocity. According to Figure 2, the velocity modulus |�v| =√
v2
x + v2

y is related to the angle θ following

∣∣�v
∣∣ = ft

fs
tan θ, (1)
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Figure 3: Stack of ultrasound images.

where ft is the temporal sampling frequency (frame rate)
and fs the spatial sampling frequency. Then we project
these results over the x- and y-axis to estimate the velocity
components vx and vy , as in

vx =
ft
fx

tan θ · cosϕ, (2)

vy =
ft
fy

tan θ · sinϕ, (3)

where ft is the frame rate, fx the spatial sampling frequency
along the lateral direction, and fy the spatial sampling
frequency along the axial direction. If necessary, further
information is given in [16] on the relation between the
orientation in 2D+t volume and velocity.

2.2. Spatiotemporal-Oriented Filters for Motion
Estimation. Equations (1), (2), and (3) show that vector
velocity can be estimated from the texture angles θ and
ϕ. We know from [16] that the use of a 3D anisotropic
Gaussian filter is suitable to estimate orientations from
2D+t ultrasound moving data. In this paper, we propose to
develop a bank of 3D quaternionic filters to estimate local
orientations and then provide estimated dense motion fields.
First, we defined a bank of oriented filters and a region of
interest (ROI). Next, each of the filters was convolved with
the ROI and then the energy criteria were calculated from
each filtered data to estimate the main local orientations. In
the following subsections, we will detail the design of 3D
filters then define the energy criterion.

2.2.1. Construction of 3D-Oriented Filters. Firstly, we defined
a 3D-Gaussian filter initially aligned along the x-axis.
Secondly, the bank of filters was constructed by successive
rotations of the original filter in the three-dimensional space.
According to Figure 2, the oriented filter is subjected to a
rotation Rϕ,t with an angle ϕ around the t-axis then to a
rotation Rθ,y′ with an angle θ around the y′ = Rϕ,t(y)-axis.
It is similar to estimating the velocity vector orientation ϕ
within the plane (x, y), and then the 2D velocity modulus,
related to the orientation θ. This methodology implies the

use of moving axes because the second rotation is performed
around the y′-axis, which is the y-axis rotated at an angle
ϕ around the t-axis. Consequently, we propose to use
quaternion algebra to develop our bank of oriented filters.
Quaternion modelling provides precise and fast framework
for modelling rotations; it outperforms approaches based on
Euler angles, and also does not suffer from ambiguities such
as Gimbal lock.

Let us recall the definitions and properties of quater-
nions. A quaternion is a linear combination of unitary
elements and can be written as in

Q = a + b · i + c · j + d · k, (4)

where a, b, c,d ∈ R4 and i, j, k ∈ C3.
Another simpler formulation is given in

Q =
(
a, �V

)
, (5)

where a ∈ R and �V = (b, c,d) ∈ R3. a is called the scalar
component and �V the vectorial component.

Based on these definitions, we define a rotation R2ψ,�Vn

with an angle 2ψ around the �Vn-axis. The coordinates of �U ′,

the image of vector �U after the rotation R2ψ,�Vn
, are given in

(
0, �U ′

)
=
(

0,R2ψ,�Vn

(
�U
))

=
(

cos
(
ψ
)
, sin

(
ψ
)�Vn

)
·
(

0, �U
)

·
(

cos
(
ψ
)
,− sin

(
ψ
)�Vn

)
,

(6)

where (cos(ψ), sin(ψ)�Vn) and (cos(ψ),− sin(ψ)�Vn) are two

unitary conjugate quaternions, while (0, �U ′) and (0, �U) are
two quaternions whose scalar component is null.

Based on the formula expressed in (6), we constructed a
bank of spatiotemporal filters by defining the range for θ and
ϕ and the angular resolution. Each 3D-oriented Gaussian
filter is defined in (7):

gϕ,θ
(
x, y, t

) = 1

(2π)3/2σxσyσt
exp

(
− x′′

2

2σ2
x
− y′′2

2σ2
y
− t′′2

2σ2
t

)
,

(7)

where (x′′, y′′, t′′) are the coordinates after rotations of θ and
ϕ. When θ and ϕ are null, the filter is aligned along the x-axis.

Thus, it was necessary to bring the new frame of reference
(x′′, y′′, t′′) toward the initial one (x, y, t). To achieve this,
we performed inverse rotations, that is, a rotation R−θ,y with
an angle −θ around the y-axis then a rotation R−ϕ,t′ with
an angle −ϕ around the t′ = R−θ,y(t)-axis. This was done
following three steps.

First, we defined the first quaternion Q1 corresponding
to the rotation R−θ,y in

Q1 = cos
(−θ

2

)
+ sin

(−θ
2

)
j (8)

because �Vn = (0, 1, 0).
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Figure 4: Tilted spatiotemporal planes extracted from the 2D+t data volume at several depths: (a) at the center of the vessel (maximum
velocity), (b) close to the border of the vessel (minimum velocity), (c) outside the vessel (no velocity).

From Q1, we calculated in (9) the intermediate coordi-
nates �U ′ = (x′, y′, t′) using the definition given in (6):

(
0, �U ′

)
=
(

cos
(−θ

2

)
+ sin

(−θ
2

)
j
)
·
(

0, �U
)

·
(

cos
(−θ

2

)
− sin

(−θ
2

)
j
)
.

(9)

Second, we calculated in (10) the coordinates of vector�t′, the
modified vector of�t with R−θ,y :

(
0,�t′

)
=
(

cos
(−θ

2

)
+ sin

(−θ
2

)
j
)
·
(

0,�t
)

·
(

cos
(−θ

2

)
− sin

(−θ
2

)
j
)

,

(10)

where�t = (0, 0, 1).
Next, we used vector �t′ to define the second quaternion

Q2 in

Q2 = cos
(−ϕ

2

)
+ sin

(−ϕ
2

)
�t′(1)

+ sin
(−ϕ

2

)
�t′(2) + sin

(−ϕ
2

)
�t′(3).

(11)

Third, the coordinates of �U ′′ = (x′′, y′′, t′′) were obtained
from the formula in (12):

(
0, �U ′′

)
=
(

cos
(−ϕ

2

)
, sin

(−ϕ
2

)
�t′
)
·
(

0, �U ′
)

·
(

cos
(−ϕ

2

)
,− sin

(−ϕ
2

)
�t′
)
.

(12)

Finally, banks of 3D spatiotemporal oriented filters
were constructed using this methodology. Figure 5 illustrates
a set of four examples of 3D filters with the following
characteristics:

(
ϕ, θ

) = (0◦, 0◦), (30◦, 0◦), (30◦, 50◦), (30◦, 90◦),

σx = 10,

σy = 1,

σt = 1.

(13)

From a practical point of view, if a good accuracy is
required, one must use more than four filters. We can choose,
for example, θ ∈ [0,π/2] with a step equal to 2◦, and ϕ ∈
[0,π/2] with a step equal to 5◦.

2.2.2. Energy Criterion. After having convolved the spa-
tiotemporal volume with each of the 3D filters, we had
to choose which filter brought the maximum response in
order to determine the best orientation. We defined an
energy criterion to determine the best candidate filter. Let us
define Iϕ,θ as the values of the volume filtered by the kernel
whose orientations are (ϕ, θ). The criterion is then calculated
for each pixel of the 2D+t volume using a neighbourhood
composed of C columns, R rows, and F frames. For each
voxel of a filtered volume and for each orientation (ϕ, θ), we
calculated the criterion defined in (14):

E
(
x, y, t,ϕ, θ

)

=
C/2∑

c=−C/2

R/2∑

r=−R/2

F/2∑

f=−F/2

(
Iϕ,θ
(
x+c, y+ r, t + f

)− Iϕ,θ
(
x, y, t

))2
,

(14)
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Figure 5: Representation of 3D filters for different pairs (ϕ, θ)

where Iϕ,θ(x, y, t) is the mean of the values Iϕ,θ over the
neighbourhood of size C ∗ R∗ F voxels centered in (x, y, t).

The principal orientation was then determined by maxi-
mizing, according to ϕ and θ, the quantity E(x, y, t,ϕ, θ), as
expressed in

̂(ϕ, θ) = arg maxϕ,θ
(
E
(
x, y, t,ϕ, θ

))
. (15)

The shape of this criterion, as a function of ϕ and θ, is
represented in Figure 6.

From the estimated orientations (ϕ, θ), we calculated
a local velocity measure from (2)-(3). Finally, the motion
estimation algorithm can be summarized in five steps:

(1) definition of the 3D ROI whose velocity is sought,

(2) definition of the range values for ϕ and θ (Nϕ and
Nθ are, respectively, the number of ϕ angles and θ
angles),

(3) computation of the (Nθ ∗ Nϕ) 3D oriented filters
gϕ,θ(x, y, t),

(4) filtering of the 3D ROI with each of the filters to
obtain (Nθ ∗Nϕ) 3D filtered volumes,

(5) for each voxel (x, y, t),

(a) computation of the criterion E(x, y, t,ϕ, θ) for
each filtered volume,

(b) selection of the best pair (ϕ, θ) by maximizing
the energy criterion,

(c) computation of the local vector velocity accord-
ing to (2) and (3).

3. Data Used for the Evaluation

This section presents the data used for the evaluation of
the algorithm to estimate local velocities. This work focused
on high-frequency, 40 MHz imaging because Doppler tech-
niques are not efficient with these data. In high-frequency,
40 MHz imaging, arrays are not yet implemented and these
systems use a single transducer continuously moving for
imaging. Thus, Doppler techniques necessitate stopping the
transducer to provide velocity estimates that is a strong
limitation. So we decided to use high-frequency, 40 MHz
simulated and experimental data with various velocities and
orientations for the evaluation of our method. Orientation is
defined, within the imaging plane, as the angle between the
lateral axis (x) and the flow (ϕ in Figure 2(b)). The velocity
is defined by the mean value inside the vessel, which is equal
to 66% of the maximum value according to the theoretical
parabolic profile.

3.1. Simulated Data. The simulation of blood flow sequences
was based on the system approach of Meunier and Bertrand
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Figure 6: Example of an energy criterion curve as a function of ϕ
and θ.

[17]. For a realistic simulation, a 3D set of scatterers was
generated and then displaced following a paraboloid law.
The diameter of the vessel was equal to 1 mm. An out-of-
plane angle equal to 5◦ was used to simulate the out-of-plane
motion that occurs in real situations. The convolution was
performed using a numerical convolution algorithm after
approximation of the scatterers to nodes of a sampled grid.
Radiofrequency (RF) images were demodulated and then
log-compressed to create sequences of B-mode images at 30
frames per second. Central frequency was set to 40 MHz.
Axial and lateral resolutions were equal to 40 μm and
80 μm, respectively. Further information on the simulation
methodology can be found in [18].

We used 16 experimental sequences with mean velocities
ranging from 0.4 mm/s to 2 mm/s and orientations from
0◦ to 30◦. We chose orientations in this range because
Doppler techniques are unable to provide reliable estimates
for these cases since only the axial projection of the velocity
is estimated with Doppler. The prefix Ss was added to this set
of sequences.

3.2. Experimental Data. We also used experimental data
to validate our method. These data were acquired from
circulation of a fluid in a phantom.

3.2.1. Phantom and Blood-Mimicking Fluid. A phantom in
gelatin was used to simulate the biological tissues. Silica
was added to the phantom to replace scatterers. A blood
vessel, 1 mm in diameter, was placed inside the phantom.
As described in [19], blood-mimicking fluid was used as the
circulation medium in the vessel. The fluid consists of 5 μm-
diameter nylon scattering particles (Orgasol, ELF, Atochem,
Paris, France) suspended in a fluid base of water, glycerol,
dextran, and surfactant. The fluid was filtered and degassed
before being injected into the flow circuit setup. Ramnarine
et al. [19] showed that the fluid’s characteristics (density,
viscosity, ultrasound propagation velocity and attenuation)
were close to the characteristics of human blood. The blood-
mimicking fluid was injected into the vessel using a motor-
controlled pump (Pump 11, Harvard Apparatus). The mean
velocity was less than 2 mm/s.

Table 1: List of the flow sequences used for the validation.

Name Type Orientation ϕ vmean

S f b1 Experimental 0◦ 0.25 mm/s

S f b2 Experimental 0◦ 0.5 mm/s

S f b3 Experimental 0◦ 1 mm/s

S f b4 Experimental 0◦ 2 mm/s

S f s1 Experimental 8◦ 0.37 mm/s

S f s2 Experimental 8◦ 0.53 mm/s

S f s3 Experimental 8◦ 0.83 mm/s

S f s4 Experimental 8◦ 1.73 mm/s

Ss1 Simulated 0◦ 0.4 mm/s

Ss2 Simulated 0◦ 0.8 mm/s

Ss3 Simulated 0◦ 1 mm/s

Ss4 Simulated 0◦ 2 mm/s

Ss5 Simulated 10◦ 0.4 mm/s

Ss6 Simulated 10◦ 0.8 mm/s

Ss7 Simulated 10◦ 1 mm/s

Ss8 Simulated 10◦ 2 mm/s

Ss9 Simulated 20◦ 0.4 mm/s

Ss10 Simulated 20◦ 0.8 mm/s

Ss11 Simulated 20◦ 1 mm/s

Ss12 Simulated 20◦ 2 mm/s

Ss13 Simulated 30◦ 0.4 mm/s

Ss14 Simulated 30◦ 0.8 mm/s

Ss15 Simulated 30◦ 1 mm/s

Ss16 Simulated 30◦ 2 mm/s

We used eight experimental sequences with different
situations of velocity and orientation. Among them, four
sequences were carried out with blood-mimicking fluid
and four with true rabbit blood. The mean velocities were
included in the range of [0.25 mm/s, 2 mm/s], whereas
orientation was set in the range of [0◦, 8◦]. The prefix S f b

was added to the first set of sequences while the prefix S f s

was added to the second set of sequences.

3.2.2. Ultrasound Imaging System. An ultrasonic system
(Vevo 660, VisualSonics, Totonto) operating at 40 MHz was
used to acquire B-mode sequences of 300 images at 30 frames
per second. Axial and lateral resolutions were equal to 40 μm
and 80 μm, respectively. Figure 7 shows a 3D view of the
spatiotemporal volume with three orthogonal slices.

3.3. Synthesis. Table 1 contains all the sequences used for our
evaluation.

Let us note that all data are temporal image sequences
that are manipulated as 3D volumes. The size of voxels
depends on the imaging system; it is equal to 15.6 μm
along spatial dimensions (x- and y-axis) and 33 ms along
temporal dimension (t-axis). In the following, we will equally
mention displacements in pixels per frame or blood velocity
in millimeters per second.
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Figure 7: 3D view of the spatiotemporal volume from an experi-
mental US image sequence.

4. Evaluation of theMethod

The proposed method was applied to each of the sequences
defined in Table 1. For each sequence, we computed dense
velocity fields within an ROI, centered on the vessel. An
ROI example is illustrated in Figure 8. Estimates were
calculated for 15 successive images. From these estimates,
we extracted the column located at the center of the ROI
then calculated means and standard deviations along the
15 temporal columns, as schematized in Figure 8. Thus, for
each sequence, we had two velocity profiles for x and y.
The mean estimates were called v̂xi and v̂yi , whereas the
mean standard deviations were called stdxi and stdyi . Then we
defined several performance criteria to quantify the accuracy
of the estimator. Some of them have been used by researchers
proposing new vector velocity estimation methods in flow
imaging [15, 20].

4.1. Performance Criteria

4.1.1. Normalized Mean Errors along x and y. These criteria
evaluate, for each estimate of vx and vy , the mean errors
compared with the theoretical profiles. We defined them in
(16):

Ex = 1
N

N∑

i=1

∣∣∣∣∣
v̂xi − vxi
vxmax

∣∣∣∣∣, Ey = 1
N

N∑

i=1

∣∣∣∣∣
v̂yi − vyi
vymax

∣∣∣∣∣, (16)

where vxi and vyi are the theoretical velocities according
to the parabolic profiles and vxmax and vymax the maximum
theoretical velocities along x and y.

4.1.2. Normalized Mean Standard Deviation along x and
y. These standard deviations quantify the variability of
estimates and are defined in (17):

stdx =

√√√√√ 1
N

N∑

i=1

std2
xi

vxmax

, stdy =

√√√√√ 1
N

N∑

i=1

std2
yi

vymax

, (17)

where std2
xi and std2

yi are the temporal variances of estimates
vxi,yi at depth i.

4.1.3. Mean Velocity Components along x and y. The mean
velocity components within the vessel are examined in order
to evaluate the global behaviour of the estimator. The mean
velocity components were obtained from (18):

v̂x = 1
N

N∑

i=1

v̂xi , v̂y = 1
N

N∑

i=1

v̂yi . (18)

4.1.4. Mean Velocity Modulus. From components v̂xi and v̂yi ,
we calculated the mean velocity modulus in (19):

|̂v| = 1
N

N∑

i=1

√
v̂xi

2 + v̂yi
2. (19)

4.1.5. Mean Standard Deviation of Estimated Modulus. We
introduced the mean standard deviation of the modulus
estimates in (20):

std|v| =

√√√√√ 1
N

N∑

i=1

(√
v2
xi + v2

yi −
√
v̂xi

2 + v̂yi
2
)2

. (20)

4.1.6. Mean Orientation of the Velocity Vector. The last
characteristic is the mean estimated orientation of the
velocity vector, defined in (21):

ϕ̂ = 1
N

N∑

i=1

arctan

(
v̂yi
v̂xi

)
. (21)

4.1.7. Mean Standard Deviation of Orientation. Finally, the
associated standard deviation is defined in (22):

stdϕ =

√√√√√ 1
N

N∑

i=1

[
arctan

(
vyi
vxi

)
− arctan

(
v̂yi
v̂xi

)]2

. (22)

4.2. Results. The filters used for this evaluation were defined
over a neighbourhood of 21∗21∗21 voxels and an angular
resolution equal to 2◦ for θ and 5◦ for ϕ. The energy criteria
were calculated over a window of 7∗7∗7 voxels by setting
C = 6, R = 6, and F = 6.

We constructed several curves from the performance
criteria that were computed for each sequence. Figures 9 and
10 represent the normalized mean error and the normal-
ized mean standard deviation along x and y, respectively.
Figure 11 illustrates the mean velocities estimated inside the
vessel, v̂x and v̂y , compared with theoretical mean veloci-
ties, represented with black lines. Finally, Figure 12 shows
the mean modulus and orientations with their associated
standard deviations.

According to Figure 9, the mean normalized error along
x does not rise above 15%. We note that the best estimates
are obtained for an angle ϕ = 0◦. By observing how this
error evolves, we see that it globally rises in the same way
as the orientation. Moreover, the estimates from simulated
sequences appear to be slightly better than the estimates
from the experimental sequences. Indeed, it should be
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Figure 8: Computation of profiles (mean ± standard deviation) from estimates on 15 successive frames.
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Figure 9: For each sequence, (a) normalized mean error Ex, (b) normalized mean standard deviation stdx.
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Figure 10: For each sequence, (a) normalized mean error Ey , (b) normalized mean standard deviation stdy .
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Figure 11: For each sequence, (a) estimated mean velocity v̂x , (b) estimated mean velocity v̂y .
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Figure 12: For each sequence, (a) mean and standard deviations of the mean velocity vector modulus |̂v| ± std|v| (b) mean and standard
deviations of mean velocity vector orientation ϕ̂± stdϕ.

noted that estimates from experimental sequences S f s1−4

are less accurate. Let us add that the theoretical values
for experimental sequences are not an absolute reference.
Concerning standard deviations along x, it is difficult to draw
a conclusion. However, we can assert that an increase in
the mean velocity generates an increase in the normalized
standard deviations that reach up to 30% in the case of
the maximum orientation equal to 30◦. Once again, we can
note that the lowest standard deviations were obtained with

longitudinal flows, situations where Doppler methods fail to
provide estimates.

The curves presented in Figure 10 are slightly different
from the others because they do not contain values corre-
sponding to sequences S f b1−4 and Ss1−4. Indeed, normal-
ization is not possible for these cases because vmax = 0.
Estimates from sequences S f s1−4 exhibit the highest values
for Ey , between 15% and 20%. Otherwise, the mean errors
along y are located around 10%, with two extrema values for
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Ss12 and Ss15. The trend seems to be inverted in comparison
with the previous curve of Ex. The standard deviation
values stdy are slightly less than those with stdx. Moreover,
the normalized standard deviations increase when velocity
increases.

The curves presented in Figure 11 are relevant to a
global analysis of the estimator’s quality. Contrary to criteria
Ex and Ey , which provide local information, the mean
values estimated evaluate whether or not an estimation is
acceptable. Blood velocity estimation methods rarely provide
dense velocity fields. Concerning v̂x, it can be noted that the
less accurate estimates are those from sequences with a high
mean velocity. This underlines the saturation phenomenon,
due to the use of the tangent function to calculate velocity
modulus.

Errors are more often due to overestimations than
underestimations. However, future systems with a higher
frame rate would correct this small limitation. Concerning
v̂y , the errors compared to the theoretical velocity values are
again limited. However, contrary to v̂x, an underestimation
phenomenon appears for some sequences. We also note that
null components vy = 0 of sequences S f b1−4 and Ss1−4

are always nearly perfectly estimated. Finally, we observe
that the mean velocities are globally close to the theoretical
components.

The last two curves in Figure 12 are also pertinent to
obtaining global information on the method’s behaviour.
The first (Figure 12(a)) is a representation of the modulus
mean value plus or minus the standard deviation. Logically,
it shows an increase in the standard deviation when the
modulus increases because there is no normalization. This
curve also confirms the comments previously made on
the mean components v̂x and v̂x. The increase in errors
is correlated to the increase in mean velocities and the
errors are mainly due to overestimations. Regarding the
mean orientations, Figure 12(b) contains the estimated mean
values plus or minus the standard deviations. It is clear
that orientations are not estimated as well as the modulus.
The errors obtained for velocity components along x and
y seem to be related to the errors on ϕ rather than

the errors on |̂v|. Thus, the orientation is systematically
underestimated for sequences S f s1−4. Moreover, important
errors are also denoted for sequences S f s14 and S f s15. In
addition, the orientations estimated for sequences with 10◦

and 20◦ are correct. Finally, let us add that the estimates of
null orientations, for longitudinal flows, are globally the best.

To conclude on this part, we assert that the results
obtained with our method are good compared to theoretical
values and to estimates obtained with other blood velocity
estimation methods [21]. They provide good information
on the global behaviour of the flows. We have notably seen
that the estimated mean velocities, the modulus, and the pro-
jected components were all close to theoretical values with
low variability. Locally, estimates can appear less precise, with
errors exceeding 10% along x and 20% along y. Similarly,
local variability is increased with the normalized standard
deviation reaching 20%. We also observe an increase of the
normalized standard deviations when the mean velocities are

the highest. These comments underline the different degrees
of quality of the estimates, viewed from a local or global
point of view. Let us add that blood velocity estimation
methods such as Doppler methods do not provide dense
velocity fields. It should be remembered that the sequences
contained flows whose orientations were less than 30◦, with
regards to lateral direction, because these cases are not solved
with classical Doppler techniques.

5. Conclusion

In this paper, we proposed an original approach to esti-
mate vector velocity from ultrasound image sequences.
Our approach is based on a bank of 3D spatiotemporal
quaternionic filters to estimate local texture orientations. It
evaluates displacements in pixels per frame by estimating
texture orientations within a 3D (2D+t) spatiotemporal
volume. The method only requires textured data and is not
dedicated to high-frequency imaging. However, this kind of
data has better resolution and so texture is finer. The method
was evaluated with a large set of experimental and simulated
flow sequences. We studied sequences with different mean
velocities whose velocity distributions followed parabolic
laws. This kind of data is of great interest since it can evaluate
displacements from zero pixels at the border of the vessel
up to several pixels at the center. However, this type of data
remains difficult to study because each pixel at each depth
has a different velocity.

The results underlined several positive aspects of the
method presented, notably the method’s good behaviour in
characterizing the flows studied. However, the results also
demonstrated that obtaining accurate local estimates is very
challenging; this difficulty is shared by all the approaches
dealing with this problem. A possible explanation, with our
proposal, can be related to the axial filter kernel size. Indeed,
filters cover several voxels along depth, whereas the parabolic
profile generates different velocities as a function of the depth
within the vessel. This phenomenon introduces ambiguity on
velocity.

Moreover, the range of displacements that can be esti-
mated with our proposal is directly related to the intrinsic
definition of the spatiotemporal approach, and particularly
to the use of the tangent function. The range of potential
velocities then depends on the frame rate and on the spatial
sampling. Thus, estimation of displacements greater than six
pixels per frame leads to greater errors, assuming fixed spatial
and temporal sampling. Errors can be reduced by increasing
the frame rate or decreasing the spatial sampling. In a general
way, we showed that spatiotemporal quaternionic filters are
a good alternative to Doppler methods for dense motion
field estimation in ultrasound imaging. Note that this paper
did not investigate in vivo data, which is one of the main
perspectives to this work.
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