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Performance gain achieved by adding mobile nodes to a stationary sensor network for target detection depends on factors such
as the number of mobile nodes deployed, mobility patterns, speed and energy constraints of mobile nodes, and the nature of the
target locations (deterministic or random). In this paper, we address the problem of distributed detection of a randomly located
target by a hybrid sensor network. Specifically, we develop two decision-fusion architectures for detection where in the first one,
impact of node mobility is taken into account for decisions updating at the fusion center, while in the second model the impact
of node mobility is taken at the node level decision updating. The cost of deploying mobile nodes is analyzed in terms of the
minimum fraction of mobile nodes required to achieve the desired performance level within a desired delay constraint. Moreover,
we consider managing node mobility under given constraints.

1. Introduction

The problem of distributed detection and decision fusion
in stationary wireless sensor networks has been exten-
sively studied by many authors in different contexts [1–
6]. However, stationary sensor networks may not suit for
some applications, for example, in situations where it might
be necessary to deploy a huge number of static nodes
with limited coverage to monitor a large region within a
desired performance level. In such situations, if relatively
a small number of nodes are allowed to move, the system
performance can be improved over time due to improvement
in sensing coverage [7]. Deploying mobile nodes in a sensor
network, however, may not be as cost-effective as deploying
static nodes. Also, nodes will have to spend node energy for
mobility in addition to sensing and communication. Thus,
it is desirable to allow only a fraction of the nodes of the
network to be mobile according to the requirement.

In this paper, we consider the problem of detecting
a randomly located stationary target in a hybrid sensor

network made of both mobile and static nodes. At the initial
deployment stage, static and mobile nodes may scatter in the
region of interest in random fashion, if the network does
not have prior information about Phenomenon of Interest
(PoI). Mobile nodes may be required to perform on-demand
for different applications after the initial deployment. Due to
energy constraints, we assume that the mobile nodes are kept
stationary until a target is detected with certain confidence
level, or useful statistics regarding the target locations are
available. Note that since mobile nodes are required to
perform on-demand for different functionalities, it is not
possible to locate them in a certain area for a specific task.
We assume that, at each time step, a mobile node can move
to a limited number of locations from its current position,
where these candidate locations are determined by physical
factors related to mobile sensors and the environment. At
each time step, mobile nodes move in a direction chosen
based on the proposed mobility management schedule to
maximize the detection probability during a desired delay
constraint. At each time step, each node makes a local binary
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decision based on its observations and transmits it to the
fusion center. The fusion center combines local decisions
from all static and mobile nodes to reach at a final decision
at the corresponding time instance. Specifically, we develop
two decision fusion models to make the final decision where
in the first model, the impact of the node mobility is taken
into account to update the decision at the fusion center, while
in the second model, the impact of node mobility is taken at
the node-level decision updating. Since allowing more nodes
to be mobile increases the cost, we characterize analytically
the required minimum fraction of mobile nodes to be
directed to move in order to achieve a desired performance
level within a desired delay constraint. We investigate the
performance gain achieved by the hybrid sensor network
when the network parameters are changing and discuss the
scenarios where the node mobility is essentially improves the
network performance.

The organization of the paper is as follows. Important
related work is discussed in Section 2. Section 3 explains the
sensor network and the observation models, and presents the
problem formulation. In Section 4, we develop a decision
fusion model in which the fusion center updates the
decisions over time while nodes make binary decisions based
on the observations collected during one time step when
the target location is random. Also, mobility management
schedule is proposed to maximize the detection probability
at the fusion center within a desired delay constraint. In
this discussion, the effect of the node mobility is taken into
account at the fusion center decision updating. In Section 5,
a decision fusion model is developed in which the effect of
the node mobility is taken into account at the node-level
decisions. In Section 6, we develop an analytical procedure
to find the minimum number of mobile nodes that should
be incorporated with static nodes to achieve a desired perfor-
mance level within a desired delay constraint. Performance
results are given in Section 7, and the concluding remarks are
given in Section 8.

2. RelatedWork

Distributed detection and decision fusion are analyzed by
many authors in different contexts, for example, [1–6, 8–10],
to name a few. However, many of these existing analysis on
target detection have considered stationary sensor networks,
where sensor nodes are deployed with fixed positions or
in a random fashion. Since the performance of such a
stationary sensor network is limited by network size, sensing
ranges, and so forth, recently, mobile sensor nodes have been
suggested to enhance the system performance in wireless
sensor network applications [7].

Use of node mobility in mobile sensor networks for
relocation after initial random placement was previously
suggested in [11, 12]. However, in their models, nodes only
make a one-time movement to achieve a better (uniform)
coverage. Using mobile nodes as data collection points
(sinks) in sensor networks was studied by [13–15]. Liu et al.
in [7] showed that the coverage can be improved by a mobile
sensor network with continuous mobility over the time,
compared to that with a static network. Surveillance coverage

of mobile sensor networks under Brownian motion random
node mobility model was addressed in [16]. Managing
mobile node mobility in target tracking applications in
mobile sensor networks is addressed in [17].

Since deploying mobile nodes for continuous perfor-
mance (coverage, detection, and tracking) improvement
might not be as cost-effective as deploying static nodes, it
is useful to consider networks consisting of both static and
mobile nodes where the mobile nodes are allowed to move
only if necessary. The target tracking performance of an
integrated mobile-static sensor network was addressed in
[18]. In [18], the mobile nodes are used to aid the data
propagation when the communication ranges of static nodes
are limited. The target detection in a hybrid sensor network
is addressed by [19, 20] where they have proposed a two-
phase detection model for target detection assuming known
target locations. Although we address a similar problem, our
work is different from [19, 20] in several contexts. (i) In this
paper we explicitly present two decision-fusion models for
target detection when the target location is random. (ii) We
consider constrained mobility for mobile nodes where each
node can move only in a predetermined set of candidate
directions from their current locations. (iii) We evaluate the
cost of deploying mobile nodes in terms of the minimum
fraction of mobile nodes that should be directed to move
to achieve a desired performance level within a desired delay
constraint, analytically. Moreover, [19, 20] did not allow for
the possibility of imperfect communication links between
nodes and the fusion center.

3. Problem Formulation and SystemModel

We consider a hybrid sensor network made of N number
of total sensors. We assume that there are Ns number of
static nodes and a maximum of Nm number of mobile
nodes initially deployed in a square region with dimensions
b × b. Note that when mobile nodes are not in the mobile
configuration, they make measurements at their stationary
configuration. Let λm = Nm/N and λs = Ns/N be
the fractions of mobile and static nodes, respectively. Let
(xsk, ysk) to be the location of the kth static node which is
assumed to be fixed after initial deployment. Let V be the set
of all node indices in the network, and let Vm and Vs to be the
sets containing mobile and static node indices, respectively.

3.1. Problem Formulation. In this paper, we assume that the
network is kept stationary until a target is detected at a
certain confidence level. We also assume that the network
does not have any information regarding sensing field at
the time of deployment. Information regarding possible
target locations may be available to the network after initial
deployment and the target can be shown in a particular target
location during a certain period of time. Because of these
factors, it is not possible to deploy mobile sensors to cover
possible target locations at the time of deployment. On the
other hand, mobile nodes may be required to perform on-
demand for different purposes. The key contributions in this
paper are threefold.
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(1) Develop decision fusion architectures for the target
detection by hybrid sensor network when the target
location is random. Specifically, we propose two
decision fusion architectures where in the first one,
the effect of the node mobility is taken into account
for the decision updating at the fusion center, and
nodes make binary decisions based on the obser-
vations during one step movement. In the second
model, nodes take the effect of the node mobility into
account for node-level decision updating.

(2) Manage node mobility to improve (maximize) the
system performance within a desired delay constraint
after a target is initially detected by the stationary
configuration at certain confidence level.

(3) The cost of mobile nodes is evaluated in terms of
the minimum number of mobile nodes required to
achieve a desired performance level within a desired
delay constraint.

3.2. Node Mobility Model. We assume limited mobility of
mobile nodes where at each time-step each mobile node
can only move in one of the predetermined set of locations
(or directions) as shown in Figure 1 for example, and the
maximum total distance it can move in any direction is
bounded. This mobility model is justifiable in cases where
a node can move to a limited number of locations from its
current position due to terrain constraints. Let the velocity of
mobile node k at time t be vk(t) = (vk(t), θk(t)) = (vk, θk(t)),
where vk(t) = vk is the speed of the node k that is assumed
to be constant and θk(t) is the direction of node k at time
t. Denote lkmax is the maximum distance that the kth mobile
node can move with the available resources. At each time
step Ts, mobile node k moves with an average speed of vk
in a direction θk selected from a set Θ = {θ1, θ2, . . . , θK}.
Selection of θk at each time step Ts is considered in later
sections. Let (xk(t), yk(t)) be the location of the kth mobile
node at time t. Under this mobility model, the location
(xk(t), yk(t)) of the kth mobile node at time jTs ≤ t ≤
( j + 1)Ts is given by

xk(t) = xk
(
jTs

)
+
(
t − jTs

)
vk cos θk

(
jTs

)
,

yk(t) = yk
(
jTs

)
+
(
t − jTs

)
vk sin θk

(
jTs

)
,

(1)

for k ∈ Vm, and j = 0, 1, 2, . . ., where θk( jTs) ∈ Θ is the
selected direction at time jTs and (xk(0) and yk(0)) are X
and Y coordinates of the initial location of the kth mobile
node.

3.3. Observation Model. At each time-step, both mobile and
static nodes make observations on the presence/absence of
the target and make a binary decision on whether the target
is present or absent. We consider the observation models for
mobile and static nodes as given below at time 0 < t ≤ nTs

under hypotheses H1 (target present) and H0 (target absent)

H1 : zk(t) = mk(t) + uk(t), for 0 < t ≤ nTs,

H0 : zk(t) = uk(t), for 0 < t ≤ nTs,
(2)

Current location at time t

Possible candidate
locations at time t + 1

(xk(t), yk(t))

(xk(t + 1), yk(t + 1))

Figure 1: Candidate locations for a mobile node at time t.

for k ∈ V, where {mk(t), t ∈ (0,nTs]} is the signal strength
received from the target at time t, {uk(t), t ∈ [0,nTs]} is the
measurement noise process at the kth node which is assumed
to be white Gaussian with mean zero and the autocovariance
function Cn(t1, t2) = σ2

uδ(t1 − t2), t1, t2 ∈ [0,nTs], where
δ(·) denotes the Dirac delta function.

The received sensing signal mk(t) represents the attenu-
ated (over distance) signal emitted by the target. Depending
on the sensing modalities, (such as acoustic, seismic, IR, etc.),
different models for received signal strength can be used. For
this discussion, we assume the following model for the signal
mk(t), which assumes that the signal emitted by the target
decays as the distance from the target to the sensing node
increases [2, 21]

mk(t) = A0

rϑ/2k (t)
, for 0 ≤ t ≤ nTs, k ∈ Vm, (3)

where A0 is the signal strength emitted by the target, rk(t) =√
(xk(t)− x0)2 + (yk(t)− y0)2 is the distance between the kth

mobile node and the target at time t for 0 ≤ t ≤ nTs, (x0, y0)
is the location of the stationary target and ϑ is the path loss
index that is assumed to be 2 throughout. Note that for static
nodes (3) reduces to

mk(t) = A0

rϑ/2k

, k ∈ Vs, (4)

where rk =
√

(xsk − x0)2 + (ysk − y0)2. However, the results
presented in this paper can be generalized to other sensing
modalities as well.
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4. Detection Performance with Decision
Fusion Architecture 1: Fusion Center
Updating Decisions Over Time

In this section we consider the performance dynamics of
the hybrid sensor network when the exact target location
is unknown. At the stationary configuration, we assume
that the network monitors the Field of Interest (FoI)
continuously, and mobile nodes are directed to move when
a possible target is detected with relatively lower confidence
level by the stationary configuration. More precisely, let P0

D

and P0
F be the overall (system) detection and false alarm

probabilities at time t = 0. If P0
D ≥ ε1 and P0

F ≤ ε2,
in particular ε1 and ε2, we say that a target is detected at
time-zero with a low confidence level. The target location
coordinates x0 and y0 are assumed to be random variables
with known statistics. Moreover, in this paper we assume that
once appeared, the target remains active for a known period
of time.

After initially detected by a lower confidence level, we
assume that mobile and static nodes make binary decisions
at each time instant nTs for n = 1, 2, . . . based on the
observations collected during the current time interval.
Formally, the kth node performs the following hypothesis
testing problem at time t = nTs

H1 : zk(t) = mk(t) + uk(t), for (n− 1)Ts < t ≤ nTs,

H0 : zk(t) = uk(t), for (n− 1)Ts < t ≤ nTs.
(5)

Each node transmits its local decision to the fusion center
over a noisy communication channel. The fusion center
combines these local decisions from mobile and static
nodes and the previous information at the fusion center to
make a final decision. The corresponding decision-fusion
architecture is shown in Figure 2, where the symbols used
in Figure 2 are defined in Sections 4.1 and 4.3. As shown
in Figure 2, at each time-instant nTs, each node performs
a local decision based on the observations collected at the
current time interval (n−1)Ts ≤ t < nTs. The corresponding
local decisions are transmitted to the fusion center over a
noisy communication channel at each time step t = nTs. The
fusion center updates the final decision based on the noisy
corrupted decisions received from both static and mobile
nodes at time nTs and the previous information at the fusion
center at time (n − 1)Ts to reach a final decision. In this
architecture, the impact of the mobility of mobile nodes is
taken into account at the fusion center while the mobile
nodes make a local decision based on observations collected
at one-step movement.

4.1. Detection Performance at kth Mobile Node. Let
(zk(t))nTs

t=(n−1)Ts
denote zk(t;n − 1,n). Note that according

to the signal model (3) assumed in the paper, the signal
strength received by a sensor node is decreasing as the
distance between the node location and the target location
is increasing. If a simple constant threshold testing is
performed on the received signal strength [2] (or on
energy [20]) at a sensor node to determine the target is

present/absent, it can be seen that more false alarms will
occur at the nodes located relatively far away from the
target location if the threshold is chosen too small, or miss
probability will be higher at sensors located closer to the
target location, if the threshold is too large. Reference [2] has
provided an approach to select an optimal threshold such
that the performance at the fusion center is maximized for a
static sensor network. However, in this paper since mobile
nodes are directed to move when required, maintaining
a constant threshold test on signal strength (or energy)
to determine the presence/absence of a target would not
essentially reflect the performance gain achieved by node
mobility. Thus it is required to have a dynamically varying
threshold at sensor nodes to exploit the impact of node
mobility in an effective way. Thus, in this paper, we consider
that kth mobile node to perform likelihood ratio testing
on its observations. Explicitly, we assume that each node
performs α1(≤ P0

F)-level Neyman-Pearson (N-P) test to
detect the presence/absence of the target at each time nTs.

According to the detection problem at the kth mobile
node as given by (5), the log likelihood ratio based on the
observations collected during time interval ((n − 1)Ts,nTs],
Lk(zk(t;n−1,n)), conditioned on the target location (x0, y0),
at the kth mobile node can be shown to be [22]

Lk
(
zk(t;n− 1,n) | (x0, y0

))

= log
dP1

dP0
(zk(t;n− 1,n))

= 1
σ2
u

∫ nTs

(n−1)Ts

mk
(
t; x0, y0

)
zk(t)dt

− 1
2σ2

u

∫ nTs

(n−1)Ts

m2
k

(
t; x0, y0

)
dt

= z̃k(n− 1,n)
σ2
u

− Em
k (n− 1,n)

2σ2
u

,

(6)

for k ∈ Vm, where z̃k(l,n) = ∫ nTs

lTs
mk(t; x0, y0)zk(t)dt

and Em
k (l,n) = ∫ nTs

lTs
m2

k(t; x0, y0)dt for n = 1, 2, . . . and

mk(t; x0, y0) = A0/
√

(xk(t)− x0)2 + (yk(t)− y0)2 as defined
in (3). Computation of Em

k (l,n) for a given target location is
given in Section 5.1. Then the log likelihood ratio Lk(zk(t;n−
1,n)) is given by

Lk(zk(t;n− 1,n))

= Ex0,y0

{
z̃k(n− 1,n)

σ2
u

− Em
k (n− 1,n)

2σ2
u

}

= 1
σ2
u

∫ nTs

(n−1)Ts

zk(t)mk(t)dt − 1
2σ2

u
E
m
k (n− 1,n),

(7)

where mk(t) = Ex0,y0{mk(t; x0, y0)} and E
m
k (n − 1,n) =

Ex0,y0{Em
k (n−1,n)}. Computation of mk(t) is associated with

the specific probabilistic model for the target location dis-
tribution. For the evaluation used in this paper, the closed-
form expression for mk(t) with assumed target location
distribution model is given in Section 7. Assuming no point
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zM1 (n− 1,n) zS1 (n− 1,n) zMNm
(n− 1,n) zSNs (n− 1,n)

M1 S1 MNm SNs

δm1

(
zM1 (n− 1,n)

)
δs1

(
zS1 (n− 1,n)

)
δmNm

(
zMNm

(n− 1,n)
)

δsNS

(
zSNs (n− 1,n)

)

Noisy channels

Fusion center
Λ((n− 1)Ts)

δF(nTs)

Figure 2: Decision Fusion Architecture for the Hybrid Sensor Network with Fusion Center updating Decisions over Time.

masses in the pdf of Lk(zk(t;n − 1,n)), the optimal decision
rule at the kth mobile node at time t = nTs for the hypothesis
problem (5) is given by (according to the N-P-criteria [22])

δmk (nTs) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 ≥
if Lk(zk(t;n− 1,n)) ηmk (n),

0 <

(8)

where ηmk (n) ≥ 0 is uniquely determined such that, the false
alarm probability at the kth node at time nTs, Pm

fk
(nTs) = α1

for k ∈ Vm. Note that we assume each node performs the
same α1-level N-P test at each time nTs. The decision rule (8)
can be further simplified to

δmk (nTs) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 ≥
if zk(n− 1,n) τmk (n),

0 <

(9)

where zk(n− 1,n) = ∫ nTs

(n−1)Ts
zk(t)mk(t)dt is the new decision

statistic and τmk (n) = σ2
uη

m
k (n) + (1/2)E

m
k (n− 1,n) is the new

threshold, at the kth mobile node for k ∈ Vm.

Proposition 1. For α1-level N-P test, the threshold τmk (n) and
the detection probability at the kth mobile node at time nTs are
given by

τmk (n) = σuQ
−1(α1)

√
Em
k (n− 1,n), (10)

P
m
dk (nTs) = Ex0,y0

⎧
⎪⎨

⎪⎩
Q

⎛

⎝Q−1(α1)− Ẽk
(
x0, y0;n− 1,n

)

σu
√
Em
k (n− 1,n)

⎞

⎠

⎫
⎪⎬

⎪⎭
,

(11)

zk(t)

mk(t)

≥ 1

0
τmk (n)

<

zk(n− 1,n)∫ nTs
(n−1)Ts (·)dt

Figure 3: Detector structure at the kth mobile node for the decision
making based on the observations during time interval ((n −
1)Ts,nTs].

respectively, where Ẽk(x0, y0;n − 1,n) =
∫ nTs

(n−1)Ts
mk(t; x0,

y0)mk(t)dt and Em
k (n − 1,n) =

∫ nTs

(n−1)Ts
m2

k(t)dt. The Q(·)
function is defined as Q(x) = 1/

√
2π

∫∞
x e−t

2/2dt.

The proof of Proposition 1 is given in Appendix A. The
block diagram of the detector at the kth mobile node is
shown in Figure 3.

4.2. Detection Performance at kth Static Node

Proposition 2. For static nodes, the optimal threshold and the
detection probability for the α1-level N-P test are given by

τsk(n) = τsk = σuQ
−1(α1)mk

√
Ts,

P
s
dk (nTs) = Ex0,y0

{

Q

(

Q−1(α1)− mk
(
x0, y0

)√
Ts

σu

)}

.
(12)

See Appendix B for the proof of Proposition 2. Note that
the detection threshold τsk for a static node is a constant over
time.

4.3. Performance Evaluation at Fusion Center with Noisy
Communication. To make the final decision, let us assume
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that the nodes send their local decisions to the fusion center
over binary symmetric channels (BSC) which can be used
to model noisy channels [2, 23]. Let wk(nTs) be the received
signal at the fusion center from the kth node at time t = nTs

for n = 0, 1, 2, . . . . Note that at t = 0, the decision center has
agreed that a target is detected at a lower confidence level if
P0
D ≥ ε1 and P0

F ≤ ε2. Thus, at time t = 0, the fusion center
has the decision, under H1, w(0) = 1 with probability P0

D

and w(0) = 0 with probability 1 − P0
D. Similarly, under H0,

w(0) = 1 with probability P0
F and w(0) = 0 with probability

1 − P0
F . For n ≥ 1, we assume that the kth node transmits

its local decision over a BSC with a cross-over probability pk,
and that the channels of N nodes are independent of each
other. The received signals at the fusion center under the two
hypotheses at time nTs for n = 1, 2, . . . are given by

wk(nTs) =
⎧
⎨

⎩

1 with μmdk (nTs),

0 with 1− μmdk (nTs) for k ∈ Vm,

=
⎧
⎨

⎩

1 with μsdk (nTs),

0 with 1− μsdk (nTs) for k ∈ Vs,

(13)

under H1 and

wk(nTs) =

⎧
⎪⎨

⎪⎩

1 with μmfk (nTs),

0 with 1− μmfk (nTs) for k ∈ Vm,

=

⎧
⎪⎨

⎪⎩

1 with μsfk (nTs),

0 with 1− μsfk (nTs) for k ∈ Vs,

(14)

under H0 where μmdk (nTs) = P
m
dk (nTs)(1 − pk) + (1 −

P
m
dk (nTs))pk, μsdk (nTs) = P

s
dk (nTs)(1− pk)+(1−P

s
dk (nTs))pk,

μmfk (nTs) = α1(1 − pk) + (1 − α1)pk and μsfk (nTs) = α1(1 −
pk) + (1− α1)pk for n = 1, 2, . . . .

For the fusion center to perform optimal fusion rule,
it should have the knowledge of detection and false alarm
probabilities of local nodes at each time step. Although local
false alarm probabilities can be easily made available at the
fusion center since they are the same at each node and do not
change with time, the analogy is not convenient with local
detection probabilities. Thus, in this paper, we assume that
the fusion center makes a final decision at time t = nTs using
the counting rule based on the received signals from all nodes
at time nTs and the previous available at the fusion center
at time (n − 1)Ts. Denote the decision statistic at the fusion
center to be Λ(nTs), where

Λ(nTs) =
⎛

⎝Λ((n− 1)Ts) +
∑

k∈Vm

wk(nTs) +
∑

k∈Vs

wk(nTs)

⎞

⎠,

(15)

where Λ((n − 1)Ts) = w(0) for n = 1, and Λ((n − 1)Ts) =
w(0) +

∑n−1
j=1

∑
k∈Vm

wk( jTs) +
∑n−1

j=1

∑
k∈Vs

wk( jTs) for n =

2, 3, . . . which can be updated recursively over time. The final
decision at the fusion center is then given by

δF(nTs) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 ≥
if Λ(nTs) ρ(nTs),

0 <

(16)

where ρ(nTs) is the threshold of the counting decision rule
at the fusion center at time nTs. The decision threshold
ρ(nTs) is selected so that the overall system false alarm
probability at the fusion center is less than a desired level,
say α2. Note that for general nonidentical BSCs, Λ(nTs)
is a sum of independent but non-identical binary random
variables. Using the Lindeberg-Feller central limit theorem
for independent random variables under certain regularity
conditions (see Appendix D) [24], it can be shown that
Λ(nTs) is distributed under two hypotheses as

under H1 : Λ(nTs) ∼ N
(
μΛ1 , σ2

Λ1

)
,

under H0 : Λ(nTs) ∼ N
(
μΛ0 , σ2

Λ0

)
,

(17)

where μΛ1 (nTs) = P0
D +

∑n
j=1

∑
k∈Vm

μmdk ( jTs) +
∑n

j=1

×∑
k∈Vs

μsdk ( jTs), σ2
Λ1

(nTs) = P0
D(1 − P0

D) +
∑n

j=1

∑
k∈Vm

×μmdk ( jTs)(1−μmdk ( jTs)) +
∑n

j=1

∑
k∈Vs

μsdk ( jTs)(1−μsdk ( jTs)),

μΛ0 (nTs) = P0
F +

∑n
j=1

∑
k∈Vm

μmfk ( jTs) +
∑n

j=1

∑
k∈Vs

μsfk ( jTs)

and σ2
Λ0

(nTs) = P0
F(1 − P0

F) +
∑n

j=1

∑
k∈Vm

μmfk ( jTs)(1 −
μmfk ( jTs)) +

∑n
j=1

∑
k∈Vs

μsfk ( jTs)(1 − μsfk ( jTs)). Then the
detection probability at the fusion center can be shown to
be

PD(nTs) = Pr
(
Λ(nTs) ≥ ρ(nTs) |H1

)
,

= Q

(
ρ(nTs)− μΛ1 (nTs)

σΛ1 (nTs)

)

,
(18)

where ρ(nTs) = Q−1(α2)σΛ0 (nTs) + μΛ0 (nTs).

4.4. Mobility Management for Mobile Nodes. In this section,
we find the best movement schedule for each mobile node
in order to maximize the detection probability at the fusion
center within a desired delay constraint (or before the target
disappeared). We assume that each mobile node moves with
the same speed such that vk = v for k ∈ Vm. Note that
each mobile node can move a distance of vTs during each
time period of Ts in a direction selected from the set Θ =
{θ1, θ2, . . . , θK}. Let Ck(nTs) be the candidate locations of
mobile node k at time nTs. Note that if there are no terrain
constraints such that nodes can move heading to the possible
target locations on a straight line, a certain number of steps
can be made along a straight line as time goes, and there is
only one direction. The following discussion is applicable,
if mobile nodes are not in a position to direct towards the
possible target locations on a straight line from their original
locations due environmental and terrain constraints. Let
TD be the desired delay constraint which is equal or less
than the average time that the target remains active after
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appearing. The requirement is to maximize the detection
probability at the fusion center, PD(nDTs), where nD =
TD/Ts, with the best movement plan for each mobile node.
Equivalently, we need to find the best direction that kth
mobile node should move at time jTs, for k ∈ Vm and
j = 0, 1, 2 . . . ,nD, to obtain the maximum (over all possible
movements) detection probability at time nDTs. Let Θ̂k =
{θ̂k(Ts), θ̂k(2Ts), . . . , θ̂k(nDTs)} be the best set of movement
directions at each time step for node k. Now the problem can
be formulated as follows:

Find the set
{
Θ̂1, Θ̂2, . . . , Θ̂Nm

}

such that

PD(nDTs) is maximized.

(19)

If the fusion center were to compute the movement
plan beforehand for each mobile node, in general, the
optimization has to search over as many as Nm × |Θ| ×
nD variables leading to a search space of size 2Nm|Θ|nD

where |Θ| is the cardinality of the set Θ. Although this
brute-force approach will result in the optimal solution,
it is computationally expensive. Thus, in the following we
propose a near-optimal approach for each mobile node to
select its best movement direction at each time step based on
its own performance measure; that is, each node moves in a
direction at each time step which would lead to maximum
individual performance at time nDTs.

Note that the detection probability at the fusion center at
time nTs is given by (18). The required optimization problem
is to find the best movement plan for each mobile node k
for each j = 0, 1, 2, . . . ,nD such that PD(nDTs) is maximized.
Maximizing PD(nTs) in (18) is equivalent to minimizing
the argument in the Q-function. Note that in the following
analysis we assume P0

D = P0
F = 0 for simplicity but the similar

results will hold for general values of P0
D and P0

F . Let f (µd) be
the argument of the Q-function in(18)

f
(
µd(nTs)

)
= ρ − (1/n)µTd (nTs)e√

(1/n2)µTd (nTs)e− (1/n2)µTd (nTs)µd(nTs)
,

(20)

where e is the Nn-length vector containing all ones,
µd(nTs) = [μmd1

( jTs),. . . ,μmdNm ( jTs), μsd1
( jTs),. . . ,μsdNs ( jTs),

j = 1, . . . ,n]T is the Nn-length vector containing
all the elements in the sum μΛ1 (nTs) so that
μΛ1 (nTs) = (1/n)µTd (nTs)e. Then as given by [20], since
P0
D,μmdk ( jTs),μsdl( jTs) ∈ (0, 1) for k ∈ Vm, l ∈ Vs and
j = 1, . . . ,n, using the first order Taylor series expansion
around central point, f (µd(nTs)) can be approximated as,

f
(
µd(nTs)

)
≈ − 2√

Nn
μΛ1 (nTs) +

2ρ
√
n√

N
+ H , (21)

where H denotes the second and higher order terms in
the Taylor series expansion. It is seen from (21) that if H
and the sum μΛ1 (nDTs) = [(1/n)

∑nD
j=1(

∑
k∈Vm

μmdk ( jTs) +∑
k∈Vs

μsdk ( jTs))] were to be independent of each other, then

f (µd(nTs)) will be monotonically decreasing with increasing
μΛ(nTs). It was shown in [20] that with high probability,
f (µd(nTs)) is indeed decreasing when the sum μΛ1 (nTs)
is increasing. Thus, with high probability, maximizing the
detection probability at the fusion center at time nTs is
equivalent to maximizing the sum μΛ1 (nTs). Since each
mobile and static node performs their detection problems
independent of each other, maximizing

∑nD
j=1 μ

m
dk

( jTs) over
all possible movement plans for k ∈ Vm will maximize the
sum μΛ1 (nTs) at time nTs.

Note that
∑nD

j=1 μ
m
dk

( jTs) for the kth mobile node is given
by

nD∑

j=1

μmdk
(
jTs

) =
nD∑

j=1

(
P
m
dk

(
jTs

)(
1− pk

)
+
(

1− P
m
dk

(
jTs

))
pk
)

= pk +
(
1− 2pk

) nD∑

j=1

P
m
dk

(
jTs

)
.

(22)

Hence maximizing
∑nD

j=1 μ
m
dk

( jTs) at kth mobile node is

equivalent to maximizing
∑nD

j=1 P
m
dk ( jTs) where P

m
dk ( jTs) is

given by (11).
Now the optimization problem is equivalent to finding

the set Θ̂k ≡ {θ̂k(Ts), θ̂k(2Ts), . . . , θ̂k(nDTs)} which maxi-
mizes the sum of detection probabilities up to time nDTs

at the kth mobile node as given in (11). Let P
m
dk (0,nD) =

∑nD
j=1 P

m
dk ( jTs) be the sum of detection probabilities at kth

mobile node up to time nDTs where P
m
dk ( jTs) as given by (11)

is the detection probability related to the decision made by
kth mobile node based on observations during time interval
(( j − 1)Ts, jTs). In the following, we convert the required
problem into an time expansion graph, so that the required
problem becomes a shortest path problem and the solution
for the optimization problem can be obtained, for example,
via forward dynamic programming.

Let Θ( jTs) = {θ1( jTs), θ2( jTs), . . . , θK ( jTs)} be the state
space at time (stage) jTs for the kth mobile node which
represents the set of directions that the kth mobile node can
move at time jTs. We assume that each mobile node has the
same candidate set of directions that it can move at a given
time step (however, this assumption can be generalized to
have different candidate sets for different mobile nodes).

For clarity, let us write the sum of detection probabilities
P
m
dk (0,nD) as

P
m
dk (0,nD) =

nD∑

j=1

P
m
dk

((
j − 1

)
, j
)
, (23)

where P
m
dk (( j − 1), j) is the average detection probability

corresponding to the decision made based on the obser-
vations during the interval (( j − 1)Ts, jTs) which is given
by (11). Now, we construct a trellis as shown in Figure 4,
where the states of the trellis at time (stage) jTs represent
the directions (states) from the finite set Θ( jTs). In Figure 4,
the trellis diagram is preceded by s0 and followed by st which
are two dummy nodes. We take that P

m
dk (θ

p( j − 1), θq j)
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S0 St

0

0

0

0

0

−P
m

d k
(0

, θ
1 (0

))
−P
m
d k
(0

, θ
2 (0

))

−
P m
d
k (0, θ K

(0))

−Pm
dk

(θK (0s), θK (Ts))

−Pm
dk

(θ1(0), θ1(Ts))

Θ(0)

θ1(0)

Θ(Ts)

θ1(Ts) Θ(nDTs)

θ1((nD − 1)Ts)

θ2(0) θ2(Ts)

θK ((nD − 1)Ts)

Time (nD − 1)Ts

θ2((nD − 1)Ts)

θK (0) θK (Ts)

Time 0 Time Ts

...
...

Figure 4: Shortest path representation for finding maximum detection probability at time nDTs at kth mobile node.

represents the detection probability for the decision based on
observations collected during transition from state θp( j −
1) ∈ Θ(( j − 1)Ts) to θq( j) ∈ Θ( jTs). This represents
the detection probability for the decision based on the
observations collected during the time interval ( jTs, ( j +
1)Ts) when the kth mobile node selects the direction θq( j)
at time instant jTs given that the direction selected at time
( j − 1)Ts is θp( j − 1). Now, branch from s0 to θp(0) ∈ Θ(0)
is assigned the metric −Pm

dk (0, θp(0)) where P
m
dk (0, θp(0))

represents the average detection probability for the decision
based on observations collected by the kth mobile node if it
selects the direction θp(0) from its original location. Branch
from state θp( j − 1) ∈ Θ(( j − 1)Ts) to θq( j) ∈ Θ( jTs) is
assigned the metric−Pm

dk (θ
p( j−1), θq j) for j = 1, 2, . . . ,nD−

1. Then finding maximum value of the sum P
m
dk (0,nD) =

∑nD
j=1 P

m
dk (( j−1), j) from time 0 to time nDTs over all possible

directions is equivalent to finding the shortest path between
the node s0 to st as in the graph shown in Figure 4, and

the optimal Θ̂k is the set of states in the shortest path. Note
that this shortest path can be computed by forward dynamic
programming with average complexity of order O(nD|Θ|2)
per mobile node.

In solving the shortest path algorithm via dynamic
programming for the original optimization problem in (19),
the movement plan for each mobile node needs to be
computed beforehand at time t = 0 which also requires the
knowledge of the candidate set of locations at each time.
In the following we show that a sequential approach where
the kth mobile node determines its movement direction at
time jTs based on only its current information and expected
information at time ( j + 1)Ts yields closer performance
compared to that with dynamic programming approach
under certain conditions.

We consider the following approach where mobile nodes
select best direction to move at time jTs sequentially. The
idea is to select the best location for the kth mobile node
at time step jTs such that the observations collected during
time interval [ jTs, ( j + 1)Ts] would lead to best detection
performance over all possible directions. According to the
signal model (3), when a mobile node is getting closer to
the target, the SNR at the node is increased, subsequently
increasing the detection probability at the kth mobile node.
Hence, the direction at time t = jTs is chosen as in the
following:

θk
(
jTs

) = argmax
θi∈Θ

{
P
m
dk

((
j + 1

)
Ts, θi

)}
,

for j = 0, 1, 2, . . . ,nD,

(24)

where P
m
dk (( j + 1)Ts, θi) is the average detection probability

at the kth mobile node at time step ( j + 1)Ts if the direction
θi ∈ Θ is selected at time jTs, nD is the step index at which
PD(nDTs) ≥ ξD for the first time. The average detection
probability at kth mobile node at time jTs is as given by (11).
From the simulation results, we see that, when the candidate
set of directions that any mobile node can move at a given
time is the same, and a node moves at the same speed in all
directions, the performance of this scheme coincides with the
near-optimal scheme which is computed based on shortest
path algorithm.

5. Detection Performance with Decision
Fusion Architecture 2: Nodes Updating
Decisions Over Time

In this section, develop an alternate formulation for decision
fusion in the hybrid sensor network when the nodes are
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updating decisions over time, where the impact of the node
mobility is taken into account at the node level decisions. As
in Section 4, let P0

D and P0
F be the overall (system) detection

and false alarm probabilities at time t = 0. If P0
D ≥ ε1 and

P0
F ≤ ε2, for particular ε1 and ε2, we say that a target is

detected at time-zero with a lower confidence level. After
a target is detected with a lower confidence level, mobile
and static nodes perform the following hypothesis testing
problem, at time t = nTs, based on the observations collected
until time nTs:

H1 : zk(t) = mk(t) + uk(t), 0 ≤ t ≤ nTs,

H0 : zk(t) = uk(t), 0 ≤ t ≤ nTs.
(25)

Note that in this section, we consider that each node
performs hypothesis testing (25) based on the observations
collected during the interval [0,nTs], in contrast to Section 4.
The decision fusion architecture in this case is shown in
Figure 5. As shown in Figure 5, at each time instant nTs, each
distributed node performs a local detection based on the
observations collected at the current time interval (n−1)Ts ≤
t < nTs and previous observations up to time (n − 1)Ts

which can be computed recursively for n = 1, 2, . . . . These
local decisions are transmitted to the fusion center over a
noisy communication channel at each time step t = nTs. The
fusion center combines these noise corrupted decisions and
the initial decision at time t = 0 to reach at a final decision
on whether the target is present or absent.

5.1. Detection Performance at kth Mobile Node. Similar to
Section 4, we assume that each node performs α1-level N-
P detector to decide whether the target is present or absent
based on the observations collected during time interval
(0,nTs]. The decision statistic and the threshold for the N-
P detector corresponding to (9) now can be shown in

δmk (nTs) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 ≥
if zk(0,n) τmk (n)

0 <

, (26)

where zk(0,n) = ∫ nTs

0 zkmk(t)dt = zk(0,n − 1) +
∫ nTs

(n−1)Ts
zkmk(t)dt is the decision statistic which can be

computed recursively at each time step and τmk (n) =
σ2
uη

m
k (n) + (1/2)E

m
k (0,n) is the corresponding threshold, for

k ∈ Vm where E
m
k (0,n) = Ex0,y0{Em

k (0,n)} as defined in
Section 4.1.

Proposition 3. With decision-fusion model 2, for α1-level N-
P test, the threshold and the detection probability at the kth
mobile node, at time nTs are given by,

τmk (n) = σuQ
−1(α1)

√
Em
k (0,n), (27)

Pm
dk

(nTs) = Ex0,y0

⎧
⎪⎨

⎪⎩
Q

⎛

⎝Q−1(α1)− Ẽk
(
x0, y0; 0,n

)

σu
√
Em
k (0,n)

⎞

⎠

⎫
⎪⎬

⎪⎭
. (28)

Note that Em
k (0,n) at the kth mobile node is Em

k (0,n) =
∑n

j=1

∫ jTs

( j−1)Ts
m2

k(t)dt which is essentially the instant total
signal energy received during the period 0 ≤ t ≤ nTs, for
a given target location. Then we have

Em
k

(
j − 1, j

)

=
∫ jTs

( j−1)Ts

m2
k(t)dt =

∫ jTs

( j−1)Ts

A2
0

r2
k (t)

dt

=
∫ jTs

( j−1)Ts

A2
0

((
x′k
(
j − 1

)
+ vk

(
t − (

j − 1
)
Ts
)

cos θk
(
jTs

))2

+
(
yk′( j − 1) + vk

(
t − (

j − 1
)
Ts
)

sin θk
(
jTs

))2
)−1

dt

= 2A2
0√

Δk
(
j − 1

)

· arctan

⎛

⎝
2akTs

√
Δk
(
j − 1

)

Δk
(
j − 1

)
+ bk

(
j − 1

)(
bk
(
j − 1

)
+ 2akTs

)

⎞

⎠,

(29)

where xk′( j − 1) = xk(( j − 1)Ts) − x0, yk′( j − 1) = yk(( j −
1)Ts) − y0, ak = v2

k′bk( j − 1) = 2vk(xk′( j − 1) cos θk( jTs) +
yk′( j − 1) sin θk( jTs)), ck( j − 1) = x

′2
k ( j − 1) + y

′2
k ( j − 1) and

Δk( j−1) = 4akck( j−1)−b2
k( j−1). Note that (29) holds only

if Δk( j − 1) > 0 which is shown to be true in the following.

Δk
(
j − 1

)

= 4v2
k

(
x
′2
k

(
j − 1

)
+ y

′2
k

(
j − 1

))

− 4v2
k

(
xk′( j − 1) cos θk( jTs) + yk′

(
j − 1

)
sin θk

(
jTs

))2

= 4v2
k

(
xk′( j − 1) sin θk( jTs)− yk′

(
j − 1

)
cos θk

(
jTs

))2

> 0.
(30)

Then Em
k (0,n) is given by

Em
k (0,n)

=
n∑

j=1

2A2
0√

Δk
(
j − 1

)

× arctan

⎛

⎝
2akTs

√
Δk
(
j − 1

)

Δk
(
j − 1

)
+ bk

(
j − 1

)(
bk
(
j − 1

)
+ 2akTs

)

⎞

⎠.

(31)

5.2. Detection Performance at the kth Static Node. Similarly,
for the kth static node, the α1-level N-P threshold and the
detection probability at time nTs are given by the following
proposition.
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Figure 5: Decision Fusion Architecture for the Hybrid Sensor Network with Nodes Updating Decisions over Time.

Proposition 4. For static nodes, the optimal threshold and the
detection probability for the α1-level NP test are given by

τsk(n) = σuQ
−1(α1)mk

√
nTs, (32)

Ps
dk

(nTs) = Ex0,y0

{

Q

(

Q−1(α1)− mk
(
x0, y0

)√
nTs

σu

)}

.

(33)

5.3. Decision-Fusion Performance with Noisy Communication.
Similar to Section 4.3, we evaluate the decision fusion
performance at the fusion center at time nTs with BSC
channels. Now, since the effect of the mobility is taken at the
node level, the decision statistic at the fusion center is taken
as, Λ̃(nTs),

Λ̃(nTs) = w(0) +
∑

k∈Vm

wk(nTs) +
∑

k∈Vs

wk(nTs), (34)

where w(0) = 1 with probability P0
D and w(0) = 0 with

probability 1 − P0
D under H1 and w(0) = 1 with probability

P0
F and w(0) = 0 with probability 1 − P0

F under H0 as
in Section 4.3. wk(nTs) for n = 1, . . . is same as given by
(13) and (14) under two hypotheses where now μmdk (nTs) =
Pm
dk

(nTs)(1− pk) + (1−Pm
dk

(nTs))pk, μsdk (nTs) = Ps
dk

(nTs)(1−
pk) + (1 − Ps

dk
(nTs))pk, μmfk (nTs) = α1(1 − pk) + (1 − α1)pk

and μsfk (nTs) = α1(1 − pk) + (1 − α1)pk with Pm
dk

(nTs)
and Ps

dk
(nTs) are given by (28) and (33), respectively. The

detection probability corresponding to the decision rule

based on majority rule is given by (following a similar
approach as in Section 4.3)

PD(nTs) = Pr
(
Λ̃(nTs) ≥ ρ̃(nTs) | H1

)

= Q

(
ρ̃(nTs)− μΛ̃1

(nTs)

σΛ̃1
(nTs)

)

,
(35)

where μΛ̃1
(nTs) = P0

D +
∑

k∈Vm
μmdk (nTs) +

∑
k∈Vs

μsdk (nTs) and
σ2
Λ̃1

(nTs) = P0
D(1 − P0

D) +
∑

k∈Vm
μmdk (nTs)(1 − μmdk (nTs)) +

∑
k∈Vs

μsdk (nTs)(1− μsdk (nTs)) and ρ̃(nTs) = Q−1(α2)σΛ̃0
+ μΛ̃0

is the threshold of the detector which ensures that the false
alarm probability is less than or equal to α2, and μΛ̃0

(nTs) =
P0
F +

∑
k∈Vm

μmfk (nTs) +
∑

k∈Vs
μsfk (nTs) and σ2

Λ̃0
(nTs) = P0

F(1−
P0
F) +

∑
k∈Vm

μmfk (nTs)(1 − μmfk (nTs)) +
∑

k∈Vs
μsfk (nTs)(1 −

μsfk (nTs)).

5.4. Mobility Management for Mobile Nodes. Similar to the
scenario in Section 4, we need to find the best movement
schedule for each mobile node in order to maximize the
detection probability at the fusion center within a desired
delay constraint or before the target disappears. The idea
is to find the optimal movement schedule for each mobile
node k such that the detection probability at the fusion
center within a desired delay constraint is maximized. As
in Section 4.4, let TD be the desired delay constraint and

Θ̂k = {θ̂k(Ts), θ̂k(2Ts), . . . , θ̂k(nDTs)} be the optimal set of
movement directions at each time step for node k. Following
a similar approach as in Section 4.4, it can be shown that with
high probability, maximizing the detection probability at the
fusion center at time nTs (35) is equivalent to maximizing
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the sum μΛ1 (nTs) =
∑

k∈Vm
μmdk (nTs) +

∑
k∈Vs

μsdk (nTs). Since
mobile and static nodes perform their detection problems
independent of each other, maximizing each μmdk (nTs) for
k ∈ Vm over all possible movement plans will maximize
the sum μΛ1 (nTs) at time nTs. Similar to Section 4.4, it can
be shown that maximizing μmdk (nTs) at kth mobile node is
equivalent to maximizing Pm

dk
(nTs) at the kth mobile node,

given by (28).
Note that if the exact target location is known, then

maximizing (28) at the kth mobile node is equivalent to
maximizing the total energy collected during the interval
(0,n], Em

k (0,n) as given in (31). Then, the approach given
in Section 4.4 can be directly used to find the optimal
movement directions at each time step, where now the
metrics of branches of the trellis in Figure 4 are replaced by
−Em

k (θp( j − 1), θq j) which represents the energy collected
during transition from state θp( j − 1) ∈ Θ(( j − 1)Ts) to
θq( j) ∈ Θ( jTs).

6. Minimum Set of Mobile Nodes

Since allowing nodes to be mobile is expensive in terms of
energy, it is important to determine the minimum number
of mobile nodes (from the set Vm) that should be directed
to move to achieve a certain detection probability within a
given delay constraint or before the target disappears. In the
following, we consider the problem of finding the smallest
set of mobile nodes in order to maintain the maximum
detection probability achieved by time TD is greater than
some threshold value. For the discussion given below, we
assume the case where exact target location is known with the
decision-fusion model as given by Section 5, in which nodes
are updating decisions over time.

Let the required detection probability threshold at time
TD be ξD. The problem is to find the minimum set of
mobile nodes, that should be used in the network to reach a
desired performance level within a desired delay constraint.
Formally, we can write the optimization problem as

min|Sm|
such that Sm ⊂ Vm, PD(nDTs) ≥ ξD,

(36)

where as before, nD = (TD/Ts). Assuming that ξD ≥ 1/2,
the inequality (36) can be further simplified as given (for
simplicity, we assume perfect communication channels such
that pk = 0 for all k ∈ V)

PD(nDTs) ≥ ξD

≡ Q

(
ρ̃(nDTs)− μΛ̃1

(nDTs)

σΛ̃1
(nDTs)

)

≥ ξD,
(37)

≡ ρ̃(nDTs)− μΛ̃1
(nDTs)

σΛ̃1
(nDTs)

≤ β (38)

=⇒ ρ̃(nDTs)− μΛ̃1
(nDTs) ≤ βσΛ̃1

(nDTs), (39)

=⇒
(
ρ̃(nDTs)− μΛ̃1

(nDTs)
)2 ≥ β2σ2

Λ̃1
(nDTs), (40)

where μΛ̃1
(nDTs) =

∑
k∈Sm P

m
dk

(nDTs) +
∑

k∈V\Sm P
s
dk

(nDTs)
and σ2

Λ̃1
(nDTs) =

∑
k∈Sm P

m
dk

(nDTs)(1 − Pm
dk

(nDTs)) +
∑

k∈V\Sm P
s
dk

(nDTs)(1 − Ps
dk

(nDTs)) and β = Q−1(ξD).
Note that here Pm

dk
(nDTs) and Ps

dk
(nDTs) are given by (28)

and (33) without the outer expectation with respect to
target locations (since we assume exact target locations for
this analysis). Note that hereafter, we use ρ̃(nDTs) and ρ̃
interchangeably when there is no ambiguity. Since mobile
nodes which are not moving also make observations at
their stationary configuration, we will have the set of static
nodes as V \ Sm when the set of mobile nodes is Sm. Note
that (39) is obtained from (38) since σΛ̃1

(nDTs) > 0. If we
constrain ξD ≥ 1/2 which is a reasonable assumption, the
argument of the Q-function in (37) should be negative.
Also, since σΛ̃1

(nDTs) > 0 for nD = 1, 2, . . ., to satisfy
Q((ρ̃ − μΛ̃1

(nDTs))/σΛ̃1
(nDTs)) ≥ ξD ≥ 1/2, the following

condition should hold ρ̃(nDTs)− μΛ̃1
(nDTs) < 0. Note that

ρ̃(nDTs)− μΛ̃1
(nDTs)

= Q−1(α2)
√

P0
F

(
1− P0

F

)
+ Nα1(1− α1)

−
⎛

⎝P0
D +

∑

k∈Sm
Pm
dk

(nDTs) +
∑

k∈V\Sm
Ps
dk

(nDTs)

⎞

⎠.

(41)

To make sure the condition ρ̃(nDTs) − μΛ̃1
(nDTs) < 0 is

satisfied, from (41), it can be seen that
∑N

k=1 P
m
dk

(nDTs) ≥
Q−1(α2)

√
P0
F(1− P0

F) + Nα1(1− α1) − P0
D = C0 at the worst

case. This says that if
∑N

k=1 P
m
dk

(nDTs) < C0 for some nD
and ξD ≥ 1/2, the required performance cannot be achieved
during the required time delay even if all nodes are mobile
such that Sm ≡ V. In the following, we consider only the case
where

∑N
k=1 P

m
dk

(nDTs) ≥ C0 ensuring ρ̃(nDTs)−μΛ̃1
(nDTs) <

0. Thus, (40) is obtained from (39). The inequality (40) can
be further simplified as follows:

− (
2ρ̃ + β2)

∑

k∈Sm
Pm
dk

(nDTs) +

⎛

⎝
∑

k∈Sm
Pm
dk

(nDTs)

⎞

⎠

2

+ β2
∑

k∈Sm
Pm
dk

2(nDTs) + 2
∑

k∈Sm
Pm
dk

(nDTs)
∑

k∈V\Sm
Ps
dk

(nDTs)

≥ (
2ρ̃ + β2)

∑

k∈V\Sm
Ps
dk

(nDTs)

− β2
∑

k∈V\Sm
Ps
dk

2(nDTs)−
⎛

⎝
∑

k∈V\Sm
Ps
dk

(nDTs)

⎞

⎠

2

− ρ̃2.

(42)

The problem is to find the minimum size set Sm such that,
inequality (42) is satisfied. To find this, in general we need to
search over a maximum of 2Nm possibilities.

In the following we will show how to obtain the solution
with reduced complexity under certain conditions. Note that
as discussed in Section 5.4, the maximum Pm

dk
(nDTs) for each

k ∈ Vm at time nDTs can be computed. Without loss of
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generality, let us arrange Pm
dk

(nDTs)s in descending order
for k ∈ Vm such that Pm

d1
(nDTs) ≥ Pm

d2
(nDTs) ≥ · · · ≥

Pm
dNm

(nDTs). Then, the set denoted by Sk
m consists of the

indices of first k mobile nodes. Now, define two functions
f1(k) and f2(k) so that,

f1(k) = (
2ρ̃ + β2)

k∑

j=1

Pm
dj

(nDTs), (43)

f2(k) =
⎛

⎝
k∑

j=1

Pm
dj

(nDTs)

⎞

⎠

2

+ β2
k∑

j=1

Pm
dj

2(nDTs)

+ 2
k∑

j=1

Pm
dj

(nDTs)
∑

j∈V\Sk
m

Ps
dj

(nDTs),

(44)

for k = 0, 1, 2, . . . ,Nm with f1(0) = f2(0) = 0.
Let Vk

s = V \ Sk
m be the set containing all static node

indices and the mobile node indices from k+1 to Nm, for k =
1, . . . ,Nm. Clearly, V0

s = V and VNm
s = Vs. Define Ks(nD, k)

to be

Ks(nD, k) = (
2ρ̃ + β2)

∑

j∈Vk
s

Ps
dj

(nDTs)

− β2
∑

j∈Vk
s

Ps
dj

2(nDTs)−

⎛

⎜
⎝
∑

j∈Vk
s

Ps
dj

(nDTs)

⎞

⎟
⎠

2

− ρ̃2.

(45)

Theorem 1. If Pm
dk

(nDTs)s are arranged in descending order
and f1(k), f2(k), and Ks(nD, k) are defined as in (43), (44)
and (45), respectively, then we can find a unique K0 so that

f2(k)− f1(k) ≥ Ks(nD, k), for k ≥ K0,

f2(k)− f1(k) < Ks(nD, k), for k < K0.
(46)

Then, K0 is the minimum number of mobile nodes that should
be used to meet the desired criteria where the minimum set
SK0
m = {1, 2, . . . ,K0}.

Proof. See Appendix C.

7. Performance Results

In this section, we evaluate the performance of the proposed
target detection schemes using a hybrid sensor network. We
assume that there is a total of 30 sensors deployed in a square
region of area 100 × 100 m2 where the center is at (0, 0). We
assume that mobile node speed is constant for all directions
and the same for all nodes. The time-step Ts = 1 s and each
mobile node’s speed is v = 1 m/s. We define the nominal
SNR at each node to be γ0 = A2

0/σ
2
u . We also assume that the

communication between nodes and the fusion center is over
i.i.d. BSCs so that pk = p for all k ∈ V. At each time step,
we assume that a mobile node can move a distance of vTs in
directions corresponding to due-east, north-east, due-north,
north-west, due-west, south-west, due-south, and south-east

or remain at the current location. X and Y coordinates of the
target location are assumed to be binary with the following
distribution:

x0 =
⎧
⎨

⎩

xa with qx,

xb with 1− qx,

y0 =
⎧
⎨

⎩

ya with qy ,

yb with 1− qy.

(47)

This type of target location model is justifiable in situations
when there is a finite number of possible surveillance
locations that the target can appear probabilistically, based
on the prior knowledge or new information received after
initial deployment. Note that with this target location model,
mk(t) is given by

mk(t) = A0√
(xk(t)− xa)2 +

(
yk(t)− ya

)2
qxqy

+
A0√

(xk(t)− xa)2 +
(
yk(t)− yb

)2
qx
(

1− qy
)

+
A0√

(xk(t)− xb)2 +
(
yk(t)− ya

)2

(
1− qx

)
qy

+
A0√

(xk(t)− xb)2 +
(
yk(t)− yb

)2

(
1− qx

)(
1− qy

)
.

(48)

In Figure 6, the time varying detection performance
is shown with the node mobility algorithms presented in
the paper. In the following figures, we assume that mobile
nodes perform sequential node mobility management as
discussed in Sections 4.4 and 5.4, since it can be seen that the
performance with mobility algorithm based on sequential
approach is much closer to that with evaluated based on
forward dynamic programming algorithm (see Figure 10 for
comparison). In Figure 6, we have let γ0 = 10 dB, false alarm
probability at local nodes α1 = 0.22, false alarm probability
at the fusion center α2 = 0.1, initial detection and false
alarm probabilities ε1 = 0.6, ε2 = 0.4, qx = qy = 0.5,
and xa = −25, xb = 25, ya = −25, yb = 25. The
detection performance is shown when the fraction of mobile
nodes is varying for p = 0. Figure 6(a) corresponds to the
decision-fusion architecture 1 (Section 4) while Figure 6(b)
corresponds to decision fusion model 2 in Section 5. It
can be seen from Figure 6 that with scheme 1, adding a
small number of nodes boosts the detection performance
significantly compared to the performance with all static
network. With the scheme 1, as time goes, since mobile nodes
getting closer to possible target locations, according to the
given probability distribution for target locations, a mobile
node can make a binary decision based on the information
collected at current time interval with a higher confidence
level, when compared to a stationary sensor. On the other
hand, stationary sensors make binary decisions based on
its observations collected during current time interval, and
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the quality of these decisions remains the same over time
since nodes are stationary. Then, according to the decision
fusion model 1 described in Section 4, fusion center receives
binary decisions over the time with higher confidence level
when there are mobile sensors, resulting in an improved
performance compared to an all-stationary network.

As can be seen in Figure 6(b), with decision-fusion model
2, in which the nodes update decisions over time, the
performance is improved significantly by adding a relatively
large number of nodes compared to that with the model 1
under same network conditions. According to the decision-
fusion model 2, static nodes also collect energy over time,
and decisions are getting more accurate as the time goes. For
moderate and higher nominal SNR values, a static node may
collect sufficient energy at its stationary locations compared
to that collected by a mobile node while moving towards
possible target locations, since for large and moderate γ0,
even sensors located far away from the target location will
receive signals with considerable strength. However, with the
decision-fusion model 2, when the fraction of mobile nodes,
λm is increasing the performance gain over a stationary
network becomes significant.

Figure 7 shows the variation of overall detection prob-
ability with the system false alarm probability α2 (ROC:
receiver operating characteristics) with two decision fusion
models for λm = 1/3 with different delay constraints. Other
relevant parameters have the same values as in Figure 6. As
can be seen from Figure 7, the fusion model 1 outperforms
the model 2 especially when the delay constraint is relatively
large. It also can be seen that for a given delay constraint
and for moderate values of system false alarm probability α2,
the model 1 outperforms model 2. However, both schemes
show similar performance when α2 is getting large which
intuitively makes sense.

Figure 8 shows the deviation of the detection perfor-
mance due to the averaging strategy used in developing local
decisions in this paper. The curves in Figure 8 correspond to
the performance deviation by applying the decision fusion
architecture 1 if the target happens to appear at (xa, ya) when
γ0 and α2 are varying. From Figure 8, it can be seen that for
relatively large γ0 the deviation in detection performance is
almost negligible. For moderate values of γ0, it is seen that
the deviation in detection performance is not very small,
but not too large as well. Note that when the local nodes
perform noncoherent detection (unknown target locations),
a higher SNR is required to achieve the same performance
level compared to that with a coherent detector (known
target location) [22]. From the simulation results, it is seen
that this deviation is mostly acceptable for a wide range of
network parameters.

It is noted that the initial detection performance may
affect the distance that the mobile nodes should move in
order to achieve a certain desired performance. Figure 9
shows the dependence of the initial detection performance
on average moving distance of a mobile node in order to
achieve a desired performance. In Figure 9, we have let the
system false alarm probability α2 = 0.1, λm = 1/6, qx =
qy = 0.5, local node false alarm probability α1 = 0.22. As can
be seen from Figure 9, the initial detection helps to reduce

average moving distance of a mobile node, especially when
the desired detection probability takes moderate values.

In Figure 10, we compare the detection performance
when the node mobility management is performed via
dynamic programming approach and the sequential
approach. In Figure 10 we assume that the target is located
at the origin and results correspond to decision fusion
model 2. It can be seen from Figure 10 that when each
mobile node uses same speed and same set of direction at
each time step, the detection performance with sequential
approach fairly matches that of the dynamic programming
approach. Figure 10 also depicts that when the desired
system false alarm probability α2 is small, adding mobility
greatly improves the detection performance.

In Figure 11, the minimum fraction of mobile nodes
required to achieve a given desired probability at the fusion
center is shown when the desired delay constraint TD =
20 s and α1 and α2 are varying. Clearly Figure 11 shows the
trade off between the required number of mobile nodes and
the local decision qualities when achieving a desired overall
system performance level. Thus, Theorem 1 in Section 6 is
important in determining the required fraction of nodes to
be mobile depending on the requirement.

8. Conclusions

In this paper, we proposed two decision-fusion models for
target detection using a hybrid sensor network in which the
node mobility is taken into account at node-level and at the
fusion center and analyzed the impact of node mobility to
the overall performance under both schemes. The mobile
nodes in the network are kept stationary until a target is
detected with a low confidence level or statistical information
on target locations are available and are directed to move
to maximize the detection probability during a desired
delay constraint once a target is detected within a certain
confidence level. We proposed a node mobility management
scheme in order to maximize the detection probability within
a desired delay constraint. Since deploying mobile nodes in
a sensor network is not as cost-effective as deploying static
nodes, we evaluate the cost of allowing nodes to be mobile
in terms of the minimum number of mobile nodes required
to achieve a desired performance level within desired delay
constraint.

Appendices

A. Proof of Proposition 1

Average false alarm probability corresponding to the decision
rule (9) at the kth mobile node is given by

P
m
fk (nTs) = Pr

(
zk(n− 1,n) ≥ τmk (n) | H0

)
, (A.1)

where zk(n − 1,n) = ∫ nTs

(n−1)Ts
zk(t)mk(t)dt. Under H0 we can

show that zk(n− 1,n) is distributed as

zk(n− 1,n) | H0 ∼ N
(

0, σ2
uE

m
k (n− 1,n)

)
, (A.2)
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Figure 6: Detection Probability at the fusion center with desired detection delay under perfect communication: Ts = 1 s, v = 1 m/s,
γ0 = 10 dB, p = 0, qx = qy = 0.5, α1 = 0.22, α2 = 0.1, ε1 = 0.6, ε2 = 0.4 (a) with decision fusion model 1, (b) with decision fusion
model 2.

where Em
k (n − 1,n) = ∫ nTs

(n−1)Ts
m2

k(t)dt. Then the false alarm
probability (A.1) becomes

P
m
fk (nTs) = Q

⎛

⎝ τmk (n)

σu
√
Em
k (n− 1,n)

⎞

⎠. (A.3)

If the allowable false alarm probability at the kth mobile node
is α1, the threshold τmk (n) is given by

τmk (n) = σuQ
−1(α1)

√
Em
k (n− 1,n). (A.4)

The detection probability at the kth mobile node at time nTs

based on the decision rule (9) is given by

P
m
dk (nTs) = Pr

(
zk(n− 1,n) ≥ τmk (n) | H1

)
. (A.5)

Under H1, conditioned on (x0, y0), zk(n − 1,n) is
distributed as

zk(n− 1,n) | (H1, x0, y0
)

=
∫ nTs

(n−1)Ts

mk
(
t; x0, y0

)
mk(t)dt +

∫ nTs

(n−1)Ts

mk(t)uk(t)dt

∼ N
(
Ẽk
(
x0, y0;n− 1,n

)
, σ2

uE
m
k (n− 1,n)

)
,

(A.6)

where Ẽk(x0, y0;n−1,n) = ∫ nTs

(n−1)Ts
mk(t; x0, y0)mk(t)dt. Thus

the pdf of zk(n− 1,n) under H1 is given by

pZk
(zk) | H1 = Ex0,y0

{
p
(
zk | H1, x0, y0

)}

= Ex0,y0

{
N
(
Ẽk
(
x0, y0;n− 1,n

)
, σ2

uE
m
k (n− 1,n)

)}
.

(A.7)

Note that we use zk = zk(n − 1,n) for simplicity, when
there is no ambiguity.

Then, the detection probability (A.5) at the kth mobile
node is given by

P
m
dk (nTs) =

∫∞

τmk (n)
pZk

(zk | H1)dzk

=
∫∞

τmk (n)
Ex0,y0

{
N
(
Ẽk
(
x0, y0;n− 1,n

)
, σ2

uE
m
k

)}
dzk

= Ex0,y0

{∫∞

τmk (n)
N
(
Ẽk
(
x0, y0;n− 1,n

)
, σ2

uE
m
k

)
dzk

}

= Ex0,y0

⎧
⎪⎨

⎪⎩
Q

⎛

⎜
⎝
τmk (n)− Ẽk

(
x0, y0;n− 1,n

)

σu
(
Em
k (n− 1,n)

)1/2

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

= Ex0,y0

⎧
⎪⎨

⎪⎩
Q

⎛

⎜
⎝Q−1(α1)− Ẽk

(
x0, y0;n− 1,n

)

σu
(
Em
k (n− 1,n)

)1/2

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
.

(A.8)

B. Proof of Proposition 2

When nodes are static, we have mk(t) = mk for (n −
1)Ts < t ≤ nTs. Then, from Section 4.1, we have E

m
k =

E
m
k (n − 1,n)|mk(t)=mk = m2

kTs where m2
k = Ex0,y0{m2

k}, Em
k =

Em
k (n − 1,n)|mk(t)=mk = Tsm

2
k, and Ẽk(x0, y0;n − 1,n) =
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mk(x0, y0)mkT . Then, the decision statistic in the decision
rule (9) reduces to

zk(n− 1,n) = mk

∫ nTs

(n−1)Ts

zk(t)dt, (B.1)

and the threshold is given by τsk(n) = τsk = σ2
uη

s
k + (1/2)m2

kTs

where ηsk is found such that Ps
fk
= α1. The false alarm

probability associated with the decision rule (9) for the kth
static node reduces to

P
s
fk (nTs) = Q

(
τsk

σumk
√
Ts

)

. (B.2)

To achieve P
s
fk (nTs) = α1, the threshold τsk can be com-

puted as, τsk = Q−1(α1)σumk
√
Ts. Then, the corresponding

detection probability (11) for the kth static node reduces to

P
s
dk (nTs) = Ex0,y0

{

Q

(

Q−1(α1)− mk
(
x0, y0

)√
Ts

σu

)}

, (B.3)

for k ∈ Vs, where we use the relations E
m
k = m2

kTs, Em
k =

Tsm
2
k and Ẽk(x0, y0;n − 1,n) = mk(x0, y0)mkTs for static

nodes in obtaining (B.3).

C. Proof of Theorem 1

When k = 0, all mobile nodes are in stationary mode. Then,
we have
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Ks(nD, 0) = (
2ρ̃ + β2)

∑

j∈V
Ps
dj

(nDTs)

− β2
∑

j∈V
Ps
dj

2(nDTs)−
⎛

⎝
∑

j∈V
Ps
dj

(nDTs)

⎞

⎠

2

− ρ̃2.

(C.1)
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approach; ε1 = 0, ε2 = 0;Ts = 1 s, v = 1 m/s, pk = p = 0, α1 = 0.22,
γ0 = 10 dB, target is assumed to be located at (0, 0).
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Figure 11: Minimum number of mobile nodes required to achieve
a desired performance level; ε1 = 0, ε2 = 0; Ts = 1 s, v = 1 m/s,
pk = p = 0, γ0 = 10 dB, TD = 20 s target is assumed to be located at
(0, 0).

If Ks(nD, 0) ≤ 0, we have f2(k) − f1(k) ≥ Ks(nD, k) for
k = 0 since f2(0) − f1(0) = 0 from the definition of f1(·)
and f2(·). Also, from the Claim 1 (given below), we can see
that then f2(k) − f1(k) ≥ Ks(nD, k) for all k ≥ 0. Then we
have K0 = 0, where no need for any node to be mobile to
achieve the desired performance level within a desired delay

constraint. Now, if Ks(nD, 0) > 0, in the following we prove
that, we can find a unique 1 ≥ K0 ≤ Nm such that f2(k) −
f1(k) ≥ Ks(nD, k) for k ≥ K0 and f2(k) − f1(k) < Ks(nD, k)
for k < K0. The uniqueness of such K0 is followed from
Claim 1. If f2(k) − f1(k) < Ks(nD, k) for all k = 1, 2, . . . ,Nm,
it implies that the required performance level can not be
achieved within the desired delay constraint even if all mobile
nodes are directed to move.

To prove the uniqueness of K0, we prove the following.

Claim 1. If f2(k)− f1(k) ≥ Ks(nD, k) then f2(k + 1)− f1(k +
1) ≥ Ks(nD, k + 1) for k = 1, . . . ,Nm. Also, if f2(k)− f1(k) ≤
Ks(nD, k) we have f2(k − 1)− f1(k − 1) ≤ Ks(nD, k − 1)

f2(k + 1)− f1(k + 1)

≥ Ks(nD, k + 1) +
(
Pm
dk+1

− Ps
dk+1

)

×

⎡

⎢
⎣β2

(
Pm
dk+1

+ Ps
dk+1

− 1
)

+ 2

⎛

⎜
⎝

k+1∑

j=1

Pm
dj

+
∑

j∈Vk
s

Ps
dj
− ρ̃

⎞

⎟
⎠

⎤

⎥
⎦.

(C.2)

Proof. First we prove that if f2(k) − f1(k) ≥ Ks(nD, k) then
f2(k + 1) − f1(k + 1) ≥ Ks(nD, k + 1). Note that when
necessary, we use Ps

dk
(nDTs) and Pm

dk
(nDTs) to denote the

detection probability at the kth mobile node at time nDTs

at its stationary configuration and mobile configuration,
respectively. We have

f2(k + 1)− f1(k + 1)

=
⎛

⎝
k+1∑

j=1

Pm
dj

(nDTs)

⎞

⎠

2

+ β2
k+1∑

j=1

Pm
dj

2(nDTs) + 2
k+1∑

j=1

Pm
dj

(nDTs)
∑

j∈Vk
s

Ps
dj

(nDTs)

− (
2ρ̃ + β2)

k+1∑

j=1

Pm
dj

(nDTs)

= f2(k)− f1(k) +
(
1 + β2)Pm

dk+1

2(nDTs)

+ 2Pm
dk+1

(nDTs)

⎛

⎜
⎝

k∑

j=1

Pm
dj

(nDTs) +
∑

j∈Vk+1
s

Ps
dj

(nDTs)

⎞

⎟
⎠

− 2Ps
dk+1

(nDTs)
k∑

j=1

Pm
dj

(nDTs)−
(
2ρ̃ + β2)Pm

dk+1
(nDTs).

(C.3)



EURASIP Journal on Advances in Signal Processing 17

Now adding and subtracting Ks(nD, k) to the right hand side
of (C.3), we will get

f2(k + 1)− f1(k + 1)

= [
f2(k)− f1(k)− Ks(nD, k)

]

+ Ks(nD, k) +
(
1 + β2)Pm

dk+1

2

+ 2Pm
dk+1

⎛

⎜
⎝

k∑

j=1

Pm
dj

+
∑

j∈Vk+1
s

Ps
dj

⎞

⎟
⎠

− 2Ps
dk+1

k∑

j=1

Pm
dj
− (

2ρ̃ + β2)Pm
dk+1

,

(C.4)

where we dropped argument nDTs so that Ps
dk

(nDTs) = Ps
dk

and Pm
dk

(nDTs) = Pm
dk

for simplicity. Substituting for Ks(nD, k)
from (45) and using the fact that f2(k) − f1(k) ≥ Ks(nD, k),
after simplification (C.4) reduces to (C.2).

Note that we use Ps
dk

(nDTs) to denote the detection
probability at the kth mobile node at time nDTs at its
stationary configuration, as mentioned before. In (C.2),
since mobility towards the target improves the detection
probability at the kth mobile node, we have Pm

dk+1
(nDTs) −

Ps
dk+1

(nDTs) ≥ 0. Using this fact, and with the assumption
that Pm

dk
(nDTs),Ps

dk
(nDTs) ≥ 1/2 for k ∈ V (which holds true

in practice for sufficient nDTs) the second term of the right
hand side of the inequality (C.2) is positive. Then we have

f2(k + 1)− f1(k + 1) ≥ Ks(nD, k + 1), (C.5)

as required. Following a similar approach, we can prove that
f2(k − 1) − f1(k − 1) ≤ Ks(nD, k − 1) if f2(k) − f1(k) ≤
Ks(nD, k).

D. Regularity Conditions to Apply L-F Central
Limit Theorem in Sections 4.3 and 5.3

Lindeberg-Feller Central Limit Theorem (L-F CLT): suppose
Sm = X1 + · · · + Xm is a sum of m independent random
variables with E{Xk} = ηk and Var{Xk} = ν2

k. The L-F CLT
states that under certain regularity conditions the sum Sm
converges in distribution to a Gaussian random variable with
mean

∑m
j=1 ηk and the variance

∑m
j=1 ν2

k as m → ∞ [24].
For the applicability of LF-CLT, it was shown in [25] two
sufficient conditions should be satisfied:

(i) ν2
k > B1,

(ii) E{|Xk − E{Xk}|3} < B2,

for k = 1, . . . ,m where B1 and B2 are positive values.

To apply the LF-CLT in Section 4.3, first we prove that the
sufficient conditions are satisfied under H1 (in the following
we assume P0

D = P0
F = 0 for simplicity). Note that we can

write Λ(nTs) as

Λ(nTs) =
⎛

⎝
n∑

j=1

∑

k∈Vm

wk
(
jTs

)
+

n∑

j=1

∑

k∈Vs

wk
(
jTs

)
⎞

⎠

=
∑

j,k

Xm
j,k + Xs

j,k,

(D.6)

where Xm
j,k = wk( jTs) for k ∈ Vm and Xs

j,k = wk( jTs) for
k ∈ Vs. Under H1, it can be seen from (13) that Xm

j,k is
a Binary random variable with mean μmdk ( jTs) and variance
μmdk ( jTs)(1 − μmdk ( jTs)). Similarly, Xs

j,k is a Binary random
variable with mean μsdk ( jTs) and the variance μsdk ( jTs)(1 −
μsdk ( jTs)). Then assuming perfect communication channels
(such that pk = 0) we have

Var
(
Xm

j,k

)
= μmdk

(
jTs

)(
1− μmdk

(
jTs

))

= Pm
dk

(
jTs

)(
1− Pm

dk

(
jTs

))
,

E
{∣
∣∣Xm

j,k − E
{
Xm

j,k
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3
}
= Pm

dk

(
jTs

)(
1− Pm

dk

(
jTs

))

×
(
Pm2

dk

(
jTs

)
+
(

1− Pm
dk

(
jTs

))2
)

= Pm
dk

(
jTs

)(
1− Pm

dk

(
jTs

))

×
(

1− 2Pm
dk

(
jTs

)(
1− Pm

dk

(
jTs

)))

> Pm
dk

(
jTs

)(
1− Pm

dk

(
jTs

))
,

(D.7)

where last inequality results because 1 − 2Pm
dk

( jTs)(1 −
Pm
dk

( jTs)) < 1. Note that from (11), if the local false alarm
probability α1 is set such that 0 < α1 < 1, Pm

dk
( jTs) is

positive and finite for any j, k. Let Bm
1 = max j,k{Pm

dk
( jTs)(1−

Pm
dk

( jTs))} and Bm
2 = max j,k{Pm

dk
( jTs)(1 − Pm

dk
( jTs))}. Then

we have Var(Xm
j,k) > Bm

1 and E{|Xm
j,k − E{Xm

j,k}|3} < Bm
2 for

j = 1, . . . ,n, k ∈ Vm. Similarly, we can show that we can find
two positive values Bs

1 and Bs
2 such that Var(Xs

j,k) > Bs
1 and

E{|Xm
j,k − E{Xm

j,k}|3} < Bs
2 for j = 1, . . . ,n, k ∈ Vs. Following

a similar procedure, it can be shown that the two regularity
conditions are satisfied under H0 as well.
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