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Signal processing is an essential tool in nondestructive material characterization. Pulse-echo inspection with ultrasonic energy
provides signals (A-scans) that can be processed in order to obtain parameters which are related to physical properties of inspected
materials. Conventional techniques are based on the use of a short-term frequency analysis of the A-scan, obtaining a time-
frequency response (TFR), to isolate the evolution of the different frequency-dependent parameters. The application of geometrical
estimators to TFRs provides an innovative way to complement conventional techniques based on the one-dimensional evolution of
an A-scan extracted parameter (central or centroid frequency, bandwidth, etc.). This technique also provides an alternative method
of obtaining similar meaning and less variance estimators. A comparative study of conventional versus new proposed techniques is
presented in this paper. The comparative study shows that working with binarized TFRs and the use of shape descriptors provide
estimates with lower bias and variance than conventional techniques. Real scattering materials, with different scatterer sizes, have
been measured in order to demonstrate the usefulness of the proposed estimators to distinguish among scattering soft tissues.
Superior results, using the proposed estimators in real measures, were obtained when classifying according to mean scatterer size.

1. Introduction

Signal processing is an essential tool in nondestructive mate-
rial characterization. Modern technologies can take benefit
of more sophisticated algorithms allowing to classify and
characterize materials precisely. One of the techniques that
takes advantage of all these advances is the nondestructive
testing (NDT) using ultrasounds. Thanks to the advances in
signal processing it is now easy to find applications of NDT
using ultrasonics in materials, that some years ago was very
hard to find [1-3].

The Signal Processing Group (GTS) of the Universidad
Politécnica de Valencia published a technique [2] that allows
to characterize dispersive materials by means of pulse-
echo inspection with ultrasonic energy. The aforementioned
technique was based on extracting time of flight-dependent
parameters from the ultrasonic A-scan. This technique

involves assuming a Linear Time Varying (LTV) model
for the ultrasonic inspection of dispersive material. The
extracted parameters were affected by the physical properties
of the material and automatic classifiers could be used.

In this paper we introduce a novel technique to extract
parameters, based on the shape analysis of time frequency
responses, that complement or in some situations improve
the performance of the previously published methods.

This work is going to be structured as follows. In
Section 2 we describe a simple model that demonstrates
how physical properties of scattering materials affect the
time frequency representation (TFR) of the A-scan. Later,
in Section 3, we briefly review the traditional parameter
estimators presented in [2]. In Section 4 a new technique
based on computing geometrical descriptors from the TFR
is introduced. A comparative study of the traditional versus
the new proposed technique is presented in Section 5. An



example of application to characterize mean scatterer size on
soft dispersive materials is also shown in this section. Finally
in Section 6, conclusions are presented.

2. Ultrasonic Pulse Modeling in
the Frequency Domain

The use of Gaussian envelope pulses is very extended for
the modeling of ultrasonic echoes [4, 5]. Ping He [4]
demonstrates in his study that a Gaussian pulse propagating
in soft tissues could also be modeled as a Gaussian pulse with
parameters changing as the pulse propagates deep within
tissue. Let us assume that the ultrasonic pulse can be modeled
in the frequency domain as,

S(w) = A - e~ (@B (1)

with A, w., and B, being the pulse amplitude, transducer
central pulsation, and transducer bandwidth. When the
ultrasonic pulse propagates deep within material (z-axis),
then, it was demonstrated in [4] that for an attenuation law
of the form a,(w) = e *®"% (with y = 1, or y = 2), the
previous expression can be reformulated as

S(w,z) = A - e (@00 /B pma0wz

» 2)
=A(z) - o (0—wi(2))/B*(2)

The new parameters A’(z), w.(z), and B'(z) are the
new amplitude, central pulsation, and bandwidth as the
ultrasonic pulse travels deep inside the material. These
parameters provide new information about the tissue depen-
dent attenuation parameters (ap and y). A couple of these
parameters are shown in (3) and (4) when y = 2. For a
complete derivation see [4].

_1+(X0-Z'Bz’ (3)

Jita 2z B @)

This idea can be extended to most of the attenuation
phenomena that suffer an ultrasonic pulse as they travels
through a material (absorption, scattering, etc.). If we take
into account that most of these phenomena can be modeled
by power laws [6], their individual effect can be accumulated
and the final envelope of the pulse can be still modeled with
a Gaussian expression. We are going to illustrate this idea
with the example of attenuation due to Stochastic scattering.
Stochastic scattering is frequently modeled by

ag(w) = e 00Dtz (5)

where ag is the attenuation due to Stochastic scattering and
D is the mean scatterer size. Without lack of generality and
in order not to obtain long equations we will assume that
Stochastic scattering is the only source of attenuation of
the ultrasonic pulse. Under this assumption and similarly to
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what happens in (2) the effect of the Stochastic scattering can
be obtained using the previous equations for y = 2

S(w,2) = A'(z) - e (@%@ B) . pmas Dz

(6)

—A(2) - o (=0 (2)/B"(2)

The new parameters A" (z), w/ (z), and B”(z) that take
into account attenuation due to Stochastic scattering can be
derived by equations (7), (8), and (9)

rr w(’:
w,. (z) = — s 7
<@ l+ag-D-z-B? @
124 B,
B"(z) = — , (8)
\/l+ocso-D-z-B'2
A'(z) = A - e—(wQZ/B'Z)-(asn-5-2-3’2/(1+a30-5-z-3’2)). 9)

Equations (7) and (8) predict a downshift in the central
frequency and a pulse narrowing due to Stochastic scattering
attenuation. Similarly, and as it was expected, (9) predicts
faster attenuation in depth for materials with larger mean
grain size. All these behaviors affect the shape of the
A-scan TFR and can be used to design algorithms for
material classification, based on the amplitude, frequency,
or bandwidth profiles. This shape dependence can also be
used for scatterer mean size estimation. The TFR of a register
obtained in NDT of scattering materials can be modeled
using (6). The parameters A"’ (z), w/ (z), and B (z) will affect
the shape of the TFR.

Figure 1 shows the aspect of the TFR as described in
(6). This figure was simulated for a f. = 500 KHz central
frequency ultrasonic pulse with initial fractional bandwidth
B = 75% that propagates according to the law defined in (6)
up to z = 1.5e—3m for three different mean scatterer size
0.5, 1, and 1.5 mm. Figure 1 also shows the superimposed
parameters w_ (z) (dashed line) and B” (z) (solid line).

3. Conventional Parameter
Extraction for Material Characterization:
The Ultrasonic Signature (US) Concept

As already mentioned, information about the material is
included in the A-scan. Among some other possibilities to
extract information about the materials [5, 7], the analysis
of the variant impulse response (or equivalently the variant
frequency response) of the LTV is a feasible alternative. The
time-variant characteristic of the model leads naturally to a
nonstationary analysis of the recorded signal.

This technique proposes the use of a short-term fre-
quency analysis of the signal to isolate the evolution of
the different frequency components. This can be done
by means of explicit implementation of a bank of filters
or, more usually, by means of some type of linear or
nonlinear time-frequency transformation, including non-
constant bandwidth analysis like wavelet transform. From
the time-frequency signal we obtain the US which is a
one-dimensional signal hopefully encompassing the relevant
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FIGURE 1: Simulations of the proposed model for Stochastic scattering attenuation. Simulation parameters of the ultrasonic pulse were
central frequeniy fe = 500 KHz, fractional bandwidth B = 75%, and mean scatterer size D =1{0.5,1and 1.5mm}. (a) D=0.5mm, (b) D =
1 mm, and (¢) D = 1.5 mm.

information needed for every particular purpose. The US [2] (iii) the central pulsation:
is obtained by computing for every time instant, along a finite

discrete time interval, a spectral parameter; some possible @max(2) = &a_)SIS(w,z)I, (12)
alternatives are ®

(i) centroid frequency (normalized first moment): (iv) many other depth-dependent (z) parameters that can

be obtained from |S(w,z)| (higher-order statistics,

Jo)w - 1S(w,2)] - dw
Jo21S(w, 2)| - dw

w1

(10) median, etc.).

(UC(Z) =

where [S(w,z)| is the magnitude of the time- 4. An Alternative Technique to
frequency transformation, and [w;,w;] defines the Conventional Parameter Extraction for

integration band, Material Characterization

(ii) The fractional bandwidth: ) ) )
2-D shape analysis can be applied to the TFR of the ultrasonic

BWo,(2) = BW _345(2) . 100% (11) A-scans for material characterization. The motivation of this
2.7 w(2) idea was based on the observation that the mean scatterer
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FIGURE 2: An example of a binarized TFR diagram with the mixed
threshold. Simulation parameters of the ultrasonic pulse were
central frequency f. = 500 KHz, AWGN of variance 0.15, and D =
1.5mm.

diameter, D, affects TFR shapes (see Figure 1). It is expected
that using shape-related parameters applied to the TFR, we
will be able to classify materials with different scatterer sizes.
Additionally, if a process of binarization of TFR is employed,
previous to the extraction of geometrical parameters, the
obtained parameters should be less affected by noise.

The application of geometrical parameters to TFR dia-
grams provides an innovative way to complement classical
techniques based on one dimensional US and an alternative
way of obtaining similar meaning and less variance estima-
tors (as we will show in Section 5).

After computing the TFR of the ultrasonic A-scan,
binarization with an adequate threshold is done. If we
assume that the ultrasonic signal recorded is contaminated
with additive white Gaussian noise (AWGN), the binarized
TFR will exhibit some sort of two dimensional “jitter”. This
jitter will affect the shape of the binarized TFR and, of course,
the geometrical parameters derived from it. What we propose
in this work is to choose a variable with depth-adaptive
threshold located at the maximum slope of the Gaussian
pulse for the region of the TFR where Gaussian pulse is
higher than AWGN. This will minimize the effect of noise in
the binarized shape. In the zone of the TFR where amplitude
of the Gaussian pulse is comparable to AWGN power we use
a constant threshold. An example of a binarized TFR using
the adaptive threshold is shown in Figure 2.

Shape-related parameters are obtained from the bina-
rized TFR matrix. These geometrical parameters depend on
physical properties of the inspected material. An example
of how this can be mathematically modeled is given as
follows. Being Figure 2 the binarized TFR generated with the
mixed threshold previously described. Let us call I(w, z) the
binarized TFR of Figure 2. This representation can be math-
ematically formulated, in a first approximation, as in (13) if
the threshold is properly selected. The parameters w_' (z) and
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B"'(z) take into account material-related parameters (a, v,
aso, and D) as derived by (7) and (8). If we take into account
(for simplicity) only the Stochastic scattering, we can obtain
that the area of the binarized TFR, up to a given depth (z),
is given by equation (14). Note that to compute the area, the
shift term w'(z) can be omitted

w—wé’(z)).

IHw,z) = rect( B'(2)

(13)

For an arbitrary threshold selection, equality of (13) and
(14) does not hold. However, proportionally relationship
makes these expressions equally valid for classification
purposes. Equation (14) shows that the higher D or ag
are, the lower the final area of the binarized response is.
This simple demonstration confirms that basic geometrical
descriptors can provide important information to compare
material characteristics such us attenuation or mean scatterer
size

Area [I (w, Z, &0, 5)]

rect :o dwdz
L L) (B (z))

J B (2)dz

z=0

(14)

2 —
— 2 (Jitag-D- -32—1).
(xso-D-B<\/ 50+ 20 20

We are going to see in the next section the set of
geometrical parameters that allow us to classify materials
according to scatterer size.

4.1. Geometrical Descriptors. From I(w, z), the binarized TFR
generated with the mixed threshold, we can calculate many
geometrical descriptors [8, 9]. Our contribution, at this
point, is to work with shape or geometrical parameters
having a physical meaning related to the expected changes
produced in the TFR. It is expected that geometrical
descriptors will provide a most intuitive representation of
the model in comparison with the classical signal-processing
parameters. For example, we can establish visual relations
between orientation parameters and physical variations of
attenuation or frequency along depth.

The most representative geometrical descriptors that
have proven to give good classification results are given
below.

4.1.1. Area. For a generic discrete function in two variables,
the moments are defined as

Mpg = Z Zzpaﬂl(w,z), (15)

where I(w, z) is the binarized TFR, at coordinates (w, z).

The area is related to attenuation parameters and mean
scatterer size as it was demonstrated in (14). The area can
be obtained as the zero-order moment mgy = >. > I(w,z) =
Area.
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FIGURE 3: Description of BS and eccentricity parameters.

If we use the area parameter to distinguish between
materials with similar attenuation coefficient but including
scatterers with different sizes, it is expected that materials
with higher scatterer sizes get lower value of the area
descriptor.

4.1.2. Center of Gravity. By using first-order moments, the
center of gravity or centroid of a binary representation can
be calculated.

Being myg = > >z - I(w,2z) and mg; = 2. > w - I(w, 2),
the center of mass can be defined as (c;, ¢,,) where

Cz = @) Co = @ (16)
Moo Moo

By dividing the binary representation in smaller regions,
along horizontal z-axis, we will be able to study the central
frequency evolution with depth. Moreover, the center of
gravity is used in the definition of the second-order moments
as described in (17), note the invariance with respect to
response scaling

e XY e - ws.  (7)

4.1.3. Orientation. Object orientation (¢) can be calculated
using second-order moments. It is geometrically described
as the angle between the major axis of the object and the z-
axis. By minimizing the function S(¢) = > >\[(z—¢;) cos ¢ —
(w—c,) sin ¢]%, we get the next expression for the orientation

1 2un
= —arct —_— . 18
¢ 5 arc an(Mo—Moz) (18)

4.1.4. Eccentricity. An important parameter, which is also
dependent on TER shape, is the eccentricity €. The eccen-
tricity allows to estimate how similar to a circle an object is.
The value ranges from 0 to 1 (0 < ¢ < 1). For circular objects
e = 0 and for elliptical objects 0 < ¢ < 1. To compute the
eccentricity we have used the next expression

RO

where a and b are, respectively, the maior and minor axis of
the object, as it is depicted in Figure 3.

g; IIIIE I“Hl nnu
* ////////

Depth (2)

FiGURrE 4: Centroid estimation using decomposition of the bina-
rized TFR into small rectangles.

We can use the eccentricity parameter to distinguish
between materials with similar attenuation coefficient but
including scatterers with different sizes. For lower scatterer
sizes eccentricity is expected to be higher than for higher
scatterer size materials. Seeing TFR diagrams depicted in
Figure 1, we can notice how materials with higher value of D
have more circular shapes than those having lower D. So, it
is expected that the higher D the lower the eccentricity value
is.

4.1.5. Boundary Signature (BS). The BS is a 1-D represen-
tation of an object boundary. One of the most simple ways
to generate the BS of a region is to plot the distance from
the center of gravity of the region to the boundary as a
function of the angle, 0. Figure 3 illustrates this concept.
The changes in size of binarized TFR result in changes in
the amplitude values of the corresponding BS. It is expected
that the higher the value of D is, the lower the amplitude of
the corresponding BS. Moreover, the BS not only provides
information about area changes but also provides the angular
direction of such changes. To compute the BS we need to
compute for each angle, 0, the Euclidean distance between
the center of gravity and the boundary of the region. As will
be demonstrated, it is expected that different values of D,
for the model or material under test, will correspond with
different BSs for the binarized TFR.

4.1.6.  Frequency-Derived Parameters. Some frequency-
derived parameters have been also tested such as centroid
frequency, central frequency, or bandwidth.

To compute the central frequency we work with the TFR
in gray scale (not binarized). We divide the TFR diagram into
small rectangles (see Figure 4) along the z-axis (horizontal),
and then we compute the maximum of each rectangle.
The final result is the evolution of central frequency along
depth.

To compute the centroid frequency evolution with depth
we divide the binzarized TFR into small rectangles along the
z-axis and then we compute the center of gravity (described
above) for every rectangle, the final result is the evolution of
centroid frequency along horizontal direction.

The process to compute the bandwidth evolution is
similar to centroid frequency computation. In the case of
bandwidth the width of each rectangle is computed, thus
obtaining the evolution of bandwidth with depth.
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5. Experiments

5.1. Application of Conventional and Geometrical Descriptors
to Simulated Signals. Simulated signals have been generated
according to the model presented in Section 2.

Transducer response (ARMA order) was estimated using
phantom data based on the final prediction error and
residual time series methods [10]. The best results for
the employed transducer that will be later used in this
section, were achieved with an ARMA (4, 4) model. The LTV
system was modeled according to (20) with the expressions
for A”(z), w./(z) and B"'(z) given by (7), (8) and (9),
respectively.

y(n) = bo(z) - x(n) + by (2)x(n — 1) + by(z)x(n - 2)
+ b3(2)x(n—3) + ba(z)x(n —4) —ay(z2)y(n —1)

—a(2)y(n—2) —a3(2)y(n —3) —as(z)y(n — 4).
(20)

The block diagram of the simulated signal generator
is represented in Figure 5. Several signals (A-scans) were
generated using this model. The purpose of these simulations
was to compare conventional signal-processing estimators
with the geometrical estimators described in Section 4.1. The
results are presented in the form of bias/variance graphs
for each estimator as the amount of observation noise
increases (AWGN). The variance is presented in the graphs
with vertical color bars whereas the bias is presented with
a convenient marker to distinguish between conventional or
geometrical estimators.

Figure 6 was generated using D = 0.5mm and AWGN
variance varying from 0.05 to 0.5. The figure shows the
variance (red bars) and bias (marker “*”) of conventional
estimators: central frequency, centroid frequency, and frac-
tional bandwidth, as described in Section 3. Superimposed,
Figure 6, also represents the variance (green bars) and bias

« _»

(marker “0”) of shape analysis operators: central frequency,

centroid frequency and fractional bandwidth, as they were
described in Section 4.

Figure 7 was generated for D = 1.5mm and AWGN
variance varying from 0.05 to 0.5. It represents the same
information that has been described in the above point but
changing D = 0.5 mm with D = 1.5 mm.

From the observation of Figures 6 and 7 we can conclude
that both methods are equivalent when estimating the
central frequency. This is quite obvious, if we take into
account, that the central frequency estimator is computed
using the nonbinarized TFR diagram and it computes the
maximum of each block along z-axis (2-D shape analysis is
not applied). However, the estimator behavior changes when
extracting 2-D geometrical parameters from the binarized
diagrams (centroid and fractional bandwidth estimators). If
we compare the fractional bandwidth estimator computed
using the conventional technique with the fractional band-
width estimator computed over binarized TFR diagrams,
it can be appreciated the lower variance (represented by
shorter vertical bars) but higher bias (represented by higher
value markers). If we compare centroid frequency parameter
computed with both presented techniques, we observe that
we get lower variance (vertical bars) and bias (markers)
when geometrical estimator is employed. For the centroid
frequency parameter, superior performance of the geomet-
rical estimator is obtained in high noise conditions.

It is also worth mentioning that if we compare the
centroid estimator in Figures 6 and 7, benefits of using
the proposed geometrical estimators are as big as the mean
scatterer diameter (D) increases. Note, that the bias increases
when D increases for the conventional centroid estimator.

5.2. Application of Conventional and Geometrical Descriptors
to Distinguish Variable Size Scatterers in an Agar-Agar Matrix.
Real measurements were performed on a set of 8 test pieces.
The 8 test pieces were created at the laboratory of the group
and were composed of a uniform matrix of Agar-Agar and
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3 Armstrong porosity molecular sieves of different sizes.
All the pieces were made with the same concentration of
molecular sieves and Agar-Agar. With this homogeneous
matrix of Agar-Agar and Molecular sieves, we can simulate
soft tissues containing scatterers resembling the theoretical
model proposed at Section 2. The detailed composition of
the test pieces is given in Table 1. Note that, in order to check
the repeatability of the process, two test pieces were created
for each scatterer size.

The molecular sieves (scatterers) were homogeneously
distributed into the uniform Agar-Agar matrix. Figure 8
shows the aspect of a test piece.

TasLe 1: Composition of the test pieces.

. Agar-A . _
Test piece gar-Agar N of scatterers mean D
concentration
o 1
| and 2 2% in distilled 1.000 molecular 0.5 mm
water sieves
of e T
3 and 4 2% in distilled 1'000 molecular 0.7 mm
water sieves
o e T
5and 6 2% in distilled 1.000 molecular 1.3 mm
water sieves
o e T
7 and 8 2% in distilled 1000 molecular 1.8 mm

water

sieves
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0”), and variance (vertical bars).

The measurement equipment was a PC with an ultra-
sonic board IPR-100 (Physical Acoustics) working in pulse-
echo mode with 400V of attack voltage, 40dB in the
receiver amplifier, and damping impedance of 2000 Ohms.
The transducer frequency was chosen to be 1 MHz (K1SC
transducer probe from Krautkramer and Branson). Received
signal was acquired with the Tektronix 3000 oscilloscope ( f;
= 50 MSamples/s).

The set of 8 test pieces was separated in two subsets: the
odd subset (composed by test pieces 1, 3, 5, and 7) and the
even subset (composed by test pieces 2, 4, 6, and 8). Both sub-
sets were measured separately and individual estimators were
computed and compared between subsets. The measurement

W »

or

procedure was as follows: uniformly distributed A-scans
were obtained around each test piece contour. Individual
A-scan TFRs were obtained using the Spectrogram (by
means of the Short-Time Fourier Transform). Final TFR
for each test piece was obtained averaging individual A-
scan TFRs. After thresholding the final TFR, geometrical
descriptors presented in Section 4 were calculated for each
subset. The parameters and graphs obtained after processing
each subset were similar, for that (and for representation
purposes) all parameters and graphs presented in this
section were averaged for even and odd subsets, thus
representing an only value for each parameter for every value
of D.
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Ficure 8: Test piece.

TABLE 2: 2-D shape analysis: Area, orientation, and eccentricity
descriptors of test pieces.

D Test Piece Area Orientation  Eccentricity
0.5mm land?2 651 —0.0953 0.8762
0.7 mm 3 and 4 383 —0.0344 0.8329
1.3mm 5and 6 258 -0.3297 0.6965
1.8 mm 7 and 8 279 —0.1041 0.6423

Table 2 shows area, orientation, and eccentricity param-
eters obtained from the test pieces created in the experiment.

The area values obtained in Table2 agree with the
expected behavior described in Section 4. It can be noticed
that higher scatterer sizes get lower value of the area
descriptor. This trend is coarsely maintained among all
scatterer diameter sizes (D).

The orientation parameter values presented in Table 2
also agree with the expected behavior described by (7) since it
predicts a downshift in the TFR shape (see Figure 1). Physical
explanation is based on the fact that the higher the value
of D, the higher the attenuation of the ultrasonic energy at
high frequencies. As a result of that, higher D values get
higher negative slope (with respect to horizontal axis). The
orientation parameter allows to distinguish coarsely between
small scatterer test pieces (D = 0.5 and 0.7 mm) and large
(D = 1.3 and 1.8 mm).

However, there are geometrical parameters that allow a
precise classification of test pieces according to D: eccentric-
ity, centroid frequency, and BS are the main ones.

The eccentricity parameter values presented in Table 2
show that the higher D the lower the eccentricity value is.
This behavior agrees with theoretical equations and allows to
classify all the test pieces.

Figure 9 represents the centroid frequency evolution with
depth (time of flight). The parameter has been estimated
using both techniques presented. The left figure was obtained
using the conventional estimator (see (10)) and the right fig-
ure was obtained using the geometrical estimator (Figure 4).
Results were averaged for both subsets (even and odd). Both
estimators should give results of the same order of magnitude
as it can be verified. However, as the ultrasonic pulse travels
deep into the agar-agar matrix (increasing time axes) it
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Figure 9: Centroid frequency evolution with depth (time of
flight). Comparison between the same parameter computed with
conventional estimator (a) and geometrical estimators (b).

suffers from attenuation, whereas the grain noise remains
constant. This phenomenon produces that late-time samples
estimates requires lower variance estimators to be able to
distinguish among categories (grain diameter D). Figure 9(a)
only allows to distinguish among scatterer mean diameter at
the very beginning of the centroid frequency (from sample
1000 to 1150). Figure 9(b) allows to distinguish in a wider
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range (from sample 1000 to 1750 and from sample 3600
to 4400). This experiment confirms once more the superior
bias/variance performance predicted by simulations (Figures
6and 7).

Promising results are also obtained using the BS param-
eter, see Figure 10. Note that the amplitude of BS increases
as the scatterer size decreases. This result is coherent with the
eccentricity result, see Table 2 where pieces with lower D have
higher eccentricity than pieces with higher D.

To sum up, from Table 2 and Figures 9(b) and 10, it
is important to stress that area and orientation parameters
can classify test pieces in two categories (large and small
scatterer sizes) whereas eccentricity, centroid frequency and
BS provide better results since they are able to distinguish
among the four different scatterers sizes.

6. Conclusions

In this paper we show that parameters extracted from
the TFR of ultrasonic A-scans can be used for material
characterization/classification. The novelty of this work is
based on the use of TFRs as input information in 2D-shape
analysis algorithms, specifically geometrical descriptors. This
technique compliments traditional classification parameters
(attenuation, longitudinal ultrasonic velocity, etc.) with
shape-related parameters. Additionally, for some parameters,
the new technique allows to obtain lower variance estimators.
When binarized TFRs are processed and 2-D geometrical
modeling, inherent in our approach, is used, a new set
of estimators can be derived. The proposed geometrical
estimators can provide better estimates and moreover, they
are less sensitive to noise than conventional estimators.
Thanks to this superior performance, in terms of bias

EURASIP Journal on Advances in Signal Processing

and variance, a better classification of scattering materials
can be achieved. This behavior has been validated through
simulations.

The results were applied to real test pieces created at the
laboratory. Traditional estimators could hardly be used to
classify according to mean scatterer size. However, estimators
based on geometrical descriptors of the binarized A-scan
TFR could easily distinguish among the different scattering
sizes. Concretely, area and orientation parameters can classify
test pieces in two categories (large and small scatterer sizes)
while eccentricity, centroid frequency and BS provide better
results since they are able to distinguish among the four
different scatterers sizes.
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