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Maximum-likelihood semi-blind joint channel estimation and equalization for doubly selective channels and single-carrier
systems is proposed. Wemodel the doubly selective channel as an FIR filter where each filter tap is modeled as a linear combination
of basis functions. This channel description is then integrated in an iterative scheme based on the expectation-maximization (EM)
principle that converges to the channel description vector estimation. We discuss the selection of the basis functions and compare
various functions sets. To alleviate the problem of convergence to a local maximum, we propose an initialization scheme to the
EM iterations based on a small number of pilot symbols. We further derive a pilot positioning scheme targeted to reduce the
probability of convergence to a local maximum. Our pilot positioning analysis reveals that for high Doppler rates it is better to
spread the pilots evenly throughout the data block (and not to group them) even for frequency-selective channels. The resulting
equalization algorithm is shown to be superior over previously proposed equalization schemes and to perform in many cases close
to the maximum-likelihood equalizer with perfect channel knowledge. Our proposed method is also suitable for coded systems
and as a building block for Turbo equalization algorithms.

1. Introduction

Next generation cellular communication systems are
required to support high data rate transmissions for
highly mobile users. These requirements may lead to
doubly selective channels, that is, channels that experience
both frequency-selective fading and time-selective fading.
The frequency selectivity of the channel stems from the
requirement to support higher data rates that necessitates
the usage of larger bandwidth. Time selectivity arises because
of the need to support users traveling at high velocities as
well as the usage of higher carrier frequencies. It is therefore
an important challenge to develop high-performance
equalization schemes for doubly selective channels.

Doubly selective channels can rise both in single-carrier
systems and in Orthogonal Frequency Division Multiplexing
(OFDM) systems. In single-carrier systems, the doubly
selective channel is modeled as a time-varying filter and
introduces time-varying Inter Symbol Interference (ISI). In
OFDM systems, the time selectivity of the channel destroys
the orthogonality between subcarriers and introduces Inter

Carrier Interference (ICI) while the frequency selectivity of
the channel causes the ICI to be frequency varying. In this
paper, we concentrate on single-carrier systems only.

The problem of equalization for doubly selective chan-
nels has been extensively researched. Several methods for
only training-based-equalization were proposed in [1, 2].
Semi-blind equalization methods, that can benefit from both
the training and data symbols, were proposed based on linear
processing [3, 4] and Decision-Feedback Equalization (DFE)
[5]. However, the performance of these equalizationmethods
may not be satisfactory, especially when only one receiving
antenna is present [6]. Moreover, the constant advance in
processing power calls for more sophisticated equalization
schemes that can increase network capacity.

Maximum-likelihood detection based on the Viterbi
algorithm is a widely known technique for slowly fading
channels. For higher Doppler rates, this method is not
satisfactory due to the inherent delay in the Viterbi detector
which causes the channel estimator part not to track the
channel sufficiently fast. A partial remedy is offered by
the Per Survivor Processing (PSP) approach, proposed
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originally in [7] and justified theoretically from the
Expectation-Maximization (EM) principle in [8]. Using the
PSP approach, the channel estimation is updated along each
survivor path each symbol period using Least Mean Square
(LMS) or Recursive Least Squares (RLS) [9]. However, for
high Doppler rates, the performance is limited as these
algorithms are not able to track fast fading channels [10].
Improved performance can be gained by using Kalman
filtering [9, 11–13] but this approach requires the knowledge
of the channel statistics which is normally not known a
priori and its estimation will likely not be able to track fast
fading. Low-complexity alternatives to the PSP were also
proposed [11, 14].

Fast time-varying channel estimation might be achieved
using the basis expansion (BE) model [15]. In this
method, the channel’s time behavior is modeled as a
linear combination of basis functions. Basis functions can
be polynomials [15], oversampled complex exponentials
[2, 16], discrete prolate spheroidal sequences [17], and
Karhunen-Loeve decomposition of the fading correlation
matrix [10]. Several receiver structures were proposed
based on the combination of the BE with Viterbi algorithm
variants like PSP [10], M-algorithm [14], and minimum
survivor sequence [6, 18]. One common drawback of these
methods is that the channel estimation part uses only hard
decisions and does not weight the probability of different
hypothesis for the symbol sequences. Moreover, all of these
methods provide only hard decisions outputs which make
them unsuitable for coded systems.

In order to enable the channel estimation part to
benefit from soft decisions, several MAP-based algorithms
combined with recursive, RLS-based, channel estimation
were proposed [19–22]. The combination of MAP decoding
and maximum likelihood channel estimation can be justified
using the EM principle. This leads to an iterative detection
and channel estimation algorithm based on the Baum-
Welch (BW) algorithm, proposed in [23] and modified for
reduced complexity in [24] for non-time-varying channels
(See [25] and references therein for more non-time-varying
semiblind equalization methods). Adaptation for doubly
selective channels is found in [26] based on incorporation
of LMS and RLS in the algorithm.

Iterative MAP detection combined with polynomial BE
was proposed in [27]. Unfortunately, this method cannot be
directly extended to higher order BE models required in high
mobility environments because the choice of polynomial
expansion creates numerical difficulties for higher BE mod-
els. Furthermore, the equalization and channel estimation
in [27] are done in a two-step ad hoc approach which
is not a true EM (see Appendix A) and exhibits degraded
performance in our simulations.

Finally, Turbo equalization schemes, encompassing iter-
ative detection and decoding, were proposed based on
RLS/LMS channel estimation [22, 26] and BE channel esti-
mation [28]. The latter method employs a low-complexity
approximation to the MAP algorithm for the detection part.
It requires, however, that the channel statistics is fully known
a priori.

In this paper, we present a novel method for semi-
blind ML-based joint channel estimation and equalization
for doubly selective channels. The method is based on an
adaptation of the EM-based algorithm for doubly selective
channels by incorporating a BE model of the channel in the
EM iterations. Using the BE method, we can simultaneously
use long blocks thereby enhancing the performance in noisy
environments without compromising the ability to track the
channel because of the usage of sufficiently high-order BE
to model the channel time variations. The proposed method
is shown to have superior performance over previously
proposed methods with the same block size and number of
pilots in the block. Alternatively, it requires a lower number
of pilots to achieve the same performance thereby enabling
more bandwidth for the information. In addition, it is
shown to have good performance for relatively small blocks,
which is important if low latency in the communication
system is required. The proposed algorithm outputs are
the log-likelihood ratios (LLRs) of the transmitted bits,
making it ideally suited for coded systems and also suitable
as a building block for Turbo equalization algorithm that
iterates between detection and decoding stages to improve
the performance further. We treat the case of uncorrelated
channels paths which is the worst case in terms of number
of required BE functions. In Appendix B, we discuss the
generalization to correlated paths.

Another contribution of the paper is the determination
of a pilot positioning scheme that improves the equalizer’s
performance. In the context of our proposed algorithm, the
main purpose of the pilots is the enablement of sufficient
quality initialization of the EM iterations so that the
probability of convergence to a local maximum isminimized.
To that end, we propose an initialization scheme based
on a small number of pilots and find the optimal pilot
positioning such that the initial channel parameters guess
is as close as possible to the channel parameters obtained
assuming perfect knowledge of transmitted symbols (this
is the channel estimation expected at the end of the BW
iterations). It is shown that the pilot positioning depends on
the channel’s Doppler. For high Doppler rates, our results
indicate that spreading the pilot symbols evenly throughout
the block leads to the best initial channel guess. This result
is surprising as it is different from previous results where
the optimal positioning scheme was found to be spreading
of groups of pilots whose length depended on the channels
delay spread [29, 30]. These previous results, however, were
obtained using different criteria and channel model. More
importantly, the analysis in these papers was restricted and
did not consider pilot groups shorter than the channel’s delay
spread as done in this paper. Therefore, these previous results
do no contradict with our new result.

Pilot positioning was discussed in [31–33] and con-
ditions for MMSE optimality of both the pilot sequence
and positioning were derived. The resulting sequences and
positioning are, however, less attractive for practical imple-
mentations. This is because most of them require that the
pilots and data overlap in time which complicated the
receiver structure. The only optimal scheme proposed in
[32, 33] with nonoverlapping pilots and data requires a pilot
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pattern that results in very high peak to average transmission
which is not desirable in practical communications systems.
In contrast, we optimize the pilot positioning given a
predefined pilot sequence (in this paper we use, as an
example, Barker sequence). This allows us to derive optimal
pilot positioning for a given pilot sequence that meets some
other constrains (e.g., constant envelope signals, low peak-
to-average ratio, etc.).

The rest of the paper is organized as follows. In Section 2,
we present the system model and introduce the BE model.
In Section 3 we present our proposed method for semi-
blind joint channel estimation and equalization for doubly
selective channels. Section 4 discussed the BE functions set
selection. Our results regarding optimal pilot placement are
presented in Section 5. Section 6 presents our simulation
results and conclusions are drawn in Section 7. Partial results
of this work were introduced in a conference paper [34].

2. Problem Formulation

2.1. System Model. The transmitted symbols vector x =
[x0, . . . , xN−1]

T is an i.i.d sequence with uniform distribution
over an arbitrary constellation of size M. The sequence is
transmitted over an unknown multipath channel modeled
as a time-varying finite impulse response (FIR) filter with
coefficients vector at time sample n, hn = [h0,n, . . . ,hL−1,n]

T .
The received sample at time n is

yn =
L−1∑

i=0
hi,nxn−i +wn = xTnhn +wn, (1)

where y = [y0, . . . , yN−1]
T is the received vector (observation

vector) and xn = [xn, . . . , xn−L+1]
T represents a branch

(transition) on the trellis formed by the channel’s memory
[23]. There are ML possible branches at each time sample n.
Each possible branch is denoted by the row vector sk,n, where
0 ≤ k < ML and 0 ≤ n < N . Finally, w = [w0, . . . ,wN−1]

T

is an Additive White Gaussian Noise (AWGN) sequence with
zero mean and an unknown variance σ2.

The time selectivity of the channel is typically character-
ized by the normalized Doppler frequency defined as

fnd = Ts fcv

c
, (2)

where fc is the communication system carrier frequency, v is
the user’s velocity, c is the speed of light, and Ts is the time of
one symbol.

The sequence h(i) = [hi,0, . . . ,hi,N−1]
T , which represents

the time variations of the ith channel’s path, is modeled as a
wide-sense stationary stochastic process with autocorrelation
function [35]

Ci(Δn) = αiJ0
(
2π fndΔn

)
, (3)

where J0 is the zero-order Bessel function and Δn is the time
difference in sample units. Furthermore, αi is the average
power of the ith channel path and the power profile of the
channel is α = [α0, . . . ,αL−1]

T . In addition, we make the
following standard assumptions.

(A1) Information symbols, channel realization, and noise
samples are statistically independent.

(A2) The channel’s paths are statistically independent
(uncorrelated scattering [35]).

2.2. Basis Expansion Model. Using the BE approach, we
model the time variation of each channel’s path with a linear
combination of several basis functions, that is, the value of
the ith path at time n is

hi,n =
∑

q

bn
(
q
)
gi,q, (4)

where bn(q) is the nth element from the qth basis and gi,q
is the combination coefficient of the ith path and the qth
basis function. The advantage of this description is that the
complete time and frequency behavior of the channel is
described using a relatively small set of LQ coefficients vector
g = [g0,0, . . . , g0,Q−1, g1,0, . . . , gL−1,Q−1]

T . We further define a
BE matrix as

B =
[
bT0 , . . . ,b

T
N−1

]T
, (5)

and bn = [bn(0), . . . , bn(Q−1)] is a row vector of the function
values at time n. Equation (4) in matrix form is then

h(i) = Bgi, (6)

where gi = [gi,0, gi,1, . . . , gi,Q−1]
T .

3. The Baum-Welch Algorithm for Equalization
of Doubly Selective Channels

In this section, we present our new algorithm for semi-
blind maximum-likelihood joint channel estimation and
equalization for doubly selective channels. We treat channels
with uncorrelated paths as this is the worst case in term of
number of required basis functions in the BE description.
In Appendix B, we extend the algorithm for channels with
correlated paths.

3.1. Algorithm for Blind Equalization. If we define the ML
estimation of the channel parameters as θ = [ĝT , σ2]T , we
would like to find θ such that

p
(
y | θ) =

∑

s∈S
p
(
y, s | θ) (7)

is maximized. The sum is over all possible transmitted
symbols vectors, or equivalently over all possible transition
sequences in the trellis S. Direct maximization of p(y |
θ) is an intractable problem. We can, however, maximize
this expression iteratively using the EM algorithm [23]. In
each iteration we compute, in the E step, the expectation
of the log-likelihood of the complete data conditioned on



4 EURASIP Journal on Advances in Signal Processing

the observation and our current estimate of θ. At the lth
iteration, this value can be shown to be [23]

Q
(
θ | θ(l)

)
= E

[
log p

(
y, s | θ) | y, θ(l)

]

=
∑

s∈S
p
(
s | y, θ(l)

)
log p

(
y, s | θ)

= C +
N−1∑

n=0

ML−1∑

k=0
p
(
sk,n | y, θ(l)

)

×
(
−1
2
log

(
πσ2

)− 1
2σ2

∣∣yn − sk,nhn
∣∣2

)
.

(8)

We may express hn as

hn = (IL ⊗ bn)g, (9)

where IL is an L × L identity matrix and the sign “⊗”
represents a Kronecker product. In the M step, we find new
θ such that this expression is maximized, that is

θ(l+1) = argmax
θ

Q
(
θ | θ(l)

)
, (10)

where l is the iteration index. We may now use the new
time-varying expression for the channel to get the doubly
selective version of the algorithm in [23]. Plugging (9) in (8),
repeating the derivation in [23], and utilizing the Kronecker
product properties, the resulting update equations are

ĝ(l+1) =
⎛
⎝
N−1∑

n=0

⎛
⎝
ML−1∑

k=0
p
(
sk,n | y, θ(l)

)(
sHk,nsk,n

)
⎞
⎠⊗

(
bHn bn

)
⎞
⎠
−1

×
⎛
⎝
N−1∑

n=0

⎛
⎝
ML−1∑

k=0
p
(
sk,n | y, θ(l)

)
y∗n sk,n

⎞
⎠(IL ⊗ bn)

⎞
⎠
H

,

(11)

where we have used the identity xy ⊗ zw = (x ⊗ z)(y ⊗ w)
and

(
σ2

)(l+1) =
N−1∑

n=0

ML−1∑

k=0
p
(
sk,n | y, θ(l)

)∣∣yn − sk,n(IL ⊗ bn)g
∣∣2.

(12)

The values of p(sk,n | y, θ(l)) are efficiently computed using
the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [36]. For
non-time-varying channels, we have bn = 1 and (11) reduces
to equation (11) in [23]. Our algorithmmay also be extended
to channels with correlated paths. In this case, the number of
BE parameters used for describing all channel’s paths may be
reduced. In that sense, uncorrelated channels paths may be
considered as the worst case. The correlated case is discussed
in Appendix B.

3.2. Adaptation to the Semiblind Case. Adaptation of the
above algorithm to the semi-blind case where we have some
known pilot symbols is straightforward. The only required
change is in the computation of p(sk,n | y, θ(l)) using the

BCJR algorithm. We modify the branch metrics so that
all transitions that are not consistent with known pilots
are assigned zero probability. This ensures that transition
probabilities are calculated with the a priori information
about the pilots.

3.3. Initialization of the Algorithm. Optimization of the
EM objective function (8) is a nonlinear process that may
converge to a local maximum. It is therefore important to
calculate good initial guess for the channel parameters so
that the probability of convergence to a local maximum is
minimized. We suggest using the available pilot symbols
for finding initial channel parameters using the following
method. First, we run the BCJR algorithm where the branch
metrics are initialized without any initial channel guess by
assigning zero a priori probability to all transitions that are
not consistent with the known pilots and equal (nonzero) a
priori probability to all transitions that are consistent with
the pilots. This initialization of the branch metrics represents
our best a priori knowledge about the transitions probability
in the trellis. From the BCJR algorithm we find p(sk,n) and
then use them in (11) to obtain an initial guess for the
channel BE parameters. More details on this initialization
method can be found in Appendix C.

An important feature of this initialization scheme is that
all observations that have some content of pilots in them
are taken into account including those with mixed pilot and
data contributions. This is in contrast to most other pilot
based estimations that take into account observations based
on pilots only [30]. This fact turns out to be significant when
we discuss how to position the pilot symbols in the block in
Section 5.

It should be noted that the above algorithm requires
initial synchronization stage to ensure that all major chan-
nels taps fall within the searched multipath window. This
synchronization stage can be done at a much lower rate
than channel estimation update, as the channel tap positions
typically drift at a much slower rate compared to the
fading rate, and therefore its complexity is negligible. The
synchronizations stage is outside the scope of this paper and
we assume perfect synchronization throughout the paper.

3.4. Computational Complexity. The computational com-
plexity of the updating equations (11) and (12) is analyzed
in Table 1, where we have broken the calculation to several
stages and counted the number of complex Multiply-And-
Add operations (MAC) for each stage. For comparison, the
equivalent complexity of [23] can be obtained from the same
table by eliminating the stages for calculating T2, T4, and
hn. For (11), it can be seen that for the typical case of
ML > Q2/2, the stages of calculating T1,n and T3,n are more
computationally complex than the stages of calculating T2

and T4, respectively. For (12), it can be seen that the second
stage of calculating σ2 is more complex than the first stage
of calculating hn. Finally, note that all the computationally
complex stages of T1,n, T3,n, and σ2 do not depend on Q and
therefore their complexity is the same as in [23]. We may
therefore conclude that the proposed algorithm extends the
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Table 1: Computational complexity summary.

Equation Stage MAC operations

Update
channel
estimate

T1,n =
∑ML−1

k=0 p(sk,n |
y, θ(l))sHk,nsk,n

NML(L2/2 + L/2)

(11)
T2 =∑N−1

n=0 T1,n ⊗ (bHn bn),
N(L2Q2/2 + LQ/2)

T3,n =
∑ML−1

k=0 p(sk,n |
y, θ(l))y∗n sk,n,

2NMLL

T4 =
(
∑N−1

n=0 T3,n(IL ⊗ bn))
H NLQ

T2
−1T4, O(L3Q3)

Update noise
variance

hn = (IL ⊗ bn)g NLQ

(12)
∑N−1

n=0
∑ML−1

k=0 p(sk,n |
y, θ(l))|yn − sk,nhn|2 NML(L + 2)

Baum-Welch algorithm [23] for doubly selective channels
with only minor increase in complexity.

4. Selection of the Basis Functions

Although many basis functions are possible, previous papers
concentratedmostly on three types of basis function sets. The
first one is the complex exponentials functions set [2, 37].
The value of the qth basis function of this set at time n is

bn
(
q
) = exp

(
j2πqn
Nbem

)
. (13)

These functions are periodic with period Nbem. In order to
avoid modeling errors at the block edges, we therefore set
Nbem = 2N . The second type of basis functions is [15]

bn
(
q
) = nq. (14)

The functions in (14) model the channel time behavior as
polynomial in time. This choice of basis functions may be
regarded as a generalization of the channel description in
[27] where it was suggested to use first- and second-order
polynomials to model the channel time variations.

The best basis functions are the ones that minimizes the
mean square error of the fading process description given a
finite set of Q basis functions. That is,

B = argmin
B

E
∣∣h− Bg

∣∣2 s.t. rank[B] = Q, (15)

where the vector h represents the channel time variation.
The solution for this problem is readily available by usage
of the Karhunen-Loeve Transform (KLT) [10] and the basis
functions are the eigenvectors of the autocorrelation matrix
of the Rayleigh fading process. The element n1,n2 in the
autocorrelation matrix is

[Rcorr]n1,n2 = Ci(|n1− n2|). (16)

Out of all eigenvectors, the Q vectors that correspond to
the largest eigenvalues are selected as the basis set. The

target function in (15) is suitable for flat fading channel.
For frequency-selective channel, the mean square error
will be simply the sum of the mean square errors of the
individual paths and therefore the same solution is optimal
for multipath channels. We note that a similar argument is
given in [38].

An obvious alternative to the equalization approach
we propose in this paper is to divide the data block into
small subblocks such that the channel can be considered
approximately constant within a subblock period and then
equalize each subblock separately using the Baum-Welch
algorithm for non-time-varying channels [23]. Interestingly,
this subblock scheme can be considered as an instance of the
BE approach if we choose Q basis functions for Q subblocks
where the qth basis function is equal to one in the symbols
time that correspond to the qth subblock and zero elsewhere,
that is B = IQ⊗1N/Q, where 1x is a vector on x ones. To justify
our approach, we would like to compare it to this subblock
approach.

The efficiency of a given set of basis functions may be
evaluated by calculating the mean square error of the fading
process representation using this set of functions:

E
∣∣h− Bg

∣∣2 = E
[
hH

(
I − B

(
BHB

)−1
BH

)
h
]

= Tr
(
Rcorr

(
I − B

(
BHB

)−1
BH

))
,

(17)

where E and Tr are expectation and matrix trace operators,
respectively. Figure 1 plots the required number of basis
functions (rank of B) so that the mean square error in (17)
is lower than 1% error. As expected, using the eigenvectors
as basis functions leads to the lowest number of functions.
The polynomial basis set is shown to be quite close to the
optimal eigenvectors solution for low normalized Doppler
while for high Doppler rates, it is more beneficial to use
the complex exponentials basis. The sub-block-based basis
functions performance is much worse. This is not surprising
as these basis functions do not utilize the correlation between
subblocks and force a noncontinuous description of the
channel in contrast to the channel’s typical behavior. The
results shown in Figure 1 confirm that this choice of basis
functions is not suitable for Rayleigh fading and provides
an explanation to the degraded performance of the subblock
method shown in the simulation results section.

5. Placement of Pilot Symbols

5.1. Pilot Positioning Problem Formulation. Pilot placement
may influence the equalization performance significantly.
Traditionally, pilots have been grouped in big clusters. Recent
results, however, indicate that using small groups of pilots
that are spread evenly throughout the data block is a better
strategy [29, 30, 39]. Proper pilot placement for EM based
algorithms is particularly important because of the highly
nonlinear nature of the EM objective function in doubly
selective channels, which results in many local maxima.
The purpose of the pilots is, therefore, to enable sufficient
quality channel parameters vector initialization so that the
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probability of convergence to a local maximum isminimized.
First, we reformulate the initialization scheme in Section 3.3
as an equivalent Least Squares (LS) problem. Consider first
the case where all transmitted symbols are known. In this
case, the channel parameters g can be found with an LS
solution to the problem

y = Ag +w, (18)

where A represents the known transmitted symbols and the
BE model-based time variations. More specifically,

A = XBL, (19)

whereX = [X0, . . . ,XL−1] andXn is anN×N diagonal matrix
such that Xn = diag(x−n, x−n+1, . . . , xN−1−n) and negative
indexes represent data symbols from the previous block that
are affecting the observations of the current block due to
ISI (if no interblock interference is assumed, these can be
replaced by zeros). In addition, BL = IL×L ⊗ B and IL×L is
an L× L identity matrix. The LS solution to (18) is

g =
(
AHA

)−1
AHy. (20)

Now consider the case where only part of the transmitted
symbols are known (pilots) and replace the unknown
symbols in X with zeros. The solution to this “sparse LS”
problem is

gp =
(
AH

p Ap

)−1
AH

p y, (21)

where

Ap = Xp(IL×L ⊗ B) = XBp (22)

and Xp is defined similarly to X with nonpilot symbols set
to zero. Finally, Bp is received by setting to zero all elements
in the rows corresponding to nonpilot symbols in the matrix
BL. In Appendix C, we show that the initialization method in
Section 3.3 is equivalent to (21). The initialization method
is thus equivalent to finding the best BE model parameters
vector that fits, in the LS sense, the transmitted pilot sequence
(Note that the noise term in this model is not white (since
the data is treated as part of the noise). Therefore, a better
initialization would be to use weighted least squares method.
To do that, however, the noise level and average channel
profile need to be known or estimated). Our goal is to
position the pilots such that the initial channel guess, based
on these pilots, will be optimal according to some criterion.
Two reasonable criteria for pilot positioning are

p = argmin
p

[
max
h,x,w

∣∣∣y − Agp
∣∣∣
2
]
, (23)

p = argmin
p

E
[∣∣∣g− gp

∣∣∣
2
]
, (24)

where p is a vector of the pilot positions in the block.
The maximum function in (23) and expectation in (24) are
taken with respect to the data symbols, noise, and channel
realizations. Using these criteria, it might be possible to
optimize both the pilots positions and the pilot patterns. We,
however, select known pilot patterns (e.g., Barker sequences)
so that we keep constant envelope signals and optimize the
positioning for this given pilot pattern. The usage of these
two criteria is detailed in the next sections. Interestingly, both
criteria lead to the same positioning scheme for high Doppler
rates.
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5.2. Worst Case Analysis for Flat Fading Channels. In this
section, we find the best positioning scheme by using (23).
First, notice that the criterion may be decomposed to two
terms because

∣∣∣y − Agp
∣∣∣
2 =

∣∣∣y − Ag +Ag− Agp
∣∣∣
2

= ∣∣y − Ag
∣∣2 +

∣∣∣Ag− Agp
∣∣∣
2
,

(25)

where the second equality is justified because, by construc-
tion of g, the term y − Ag is orthogonal to the span of the
matrix A to which Ag − Agp belongs. Note that only the
second term is dependent on the pilot positions. Obviously,
the best pilot positioning is dependent on the channel and
noise realizations. Our goal is to obtain positioning scheme
suitable for all channels, data, and noise realizations by
optimizing the positioning scheme with respect to the worst
case realizations. Using (19) and (22), the second term in (25)
may be bounded by

∣∣∣Ag− Agp
∣∣∣
2 =

∣∣∣Apy
∣∣∣
2 ≤ σ2max

∣∣y
∣∣2, (26)

where Ap = A(AHA)−1AH − A(AH
p Ap)

−1AH
p and σ2max is

the largest eigenvalue of the matrix AH
p Ap. For flat fading

channels (and any PSK constellation) XHX = I and,
therefore,

Ap = X
(
B
(
BHB

)−1
BH − B

(
BH
p Bp

)−1
BH
p

)
XH

≡ XBpX
H ,

eig
[
AH

p Ap

]
= eig

[
XBH

p X
HXBpX

H
]
= eig

[
BH

p Bp

]
,

(27)

where eig[D] is the vector of eigenvalues of the matrix D.
The second equality follows from the fact that for flat fading
channels XH = X−1 and eig[X−1DX] = eig[D](Assume that
β is eigenvalue of D, that is, Du = βu, define v = X−1u, then
DXv = Xβv and (X−1DX)v = βv. Matrices D and X−1DX
have therefore the same eigenvalues).

It follows that minimization of the worst case MSE is
achieved by finding a pilot positions vector p such that

p = argmin
p

σ2max = argmin
p

max
(
eig

[
BH

p Bp

])
. (28)

The matrix BH
p Bp is a deterministic function of the

BE functions, block size, pilot positioning, and the pilot
pattern (sequence). It is therefore possible to find the best
positioning scheme for the desired block size, BE model, and
pilot sequence with a computer search. For simplicity, we
limit the search for patterns in which the pilots are grouped
in groups of length L and these groups are spread throughout
the block as evenly as possible. This means that the pilot
positioning we find with this limited search is only optimal
amongst all positioning with evenly spaced pilot clusters.
However, all previous works on pilot positioning arrived at
positioning schemes that are consistent with this structure. It
turns out that the best positioning scheme is obtained with
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Figure 3: Performance of various equalization schemes. Block size
= 256, number of pilots = 20, pilot positioning scheme: L = 1,
channel profile = [0 − 3 − 3] dB.
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Figure 5: Performance of various equalization schemes. Block size
= 256, number of pilots = 20, pilot positioning scheme: L = 1,
channel profile = [0 0 0 0] dB.

L = 1 for all tested block sizes. It is interesting to note that
this result is identical to the result in [29] which was obtained
using different channel model and criterion.

5.3. Mean Case Analysis for Frequency Selective and Frequency
Flat Channels. In this section, we optimize (24). We begin
with the approximation

BH
L X

HXBL ≈ Cx, (29)

where

[Cx]kQ+q1, jQ+q2 ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣
N−1∑

n=k
bHn bn

⎤
⎦
q1,q2

,

k = j,
⎡
⎣
N−1∑

n=0
bHn bnx

∗
p (n− k)xp

(
n− j

)
⎤
⎦
q1,q2

,

k /= j,
(30)

and xp(m) is defined as

xp(m) =
⎧
⎨
⎩
xm, m ∈ p,

0, otherwise.
(31)
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Figure 6: Performance of various equalization schemes as a
function of the pilot percentage in the block. Block size = 256,
SNR = 12 dB, pilot positioning scheme: L = 1, channel profile =
[0 − 3 − 3] dB.
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Note that an accurate expression (with no approximation)
may be obtained by replacing x∗p (n − k)xp(n − j) with
x∗n−kxn− j . When either xn−k or xn− j is an information
symbol (not a pilot), this multiplication result is a random
variable, uniformly distributed over a finite set of values
with zero average. As a result, for long enough blocks, the
contributions from the information symbols to the sum in
(30) cancel out and this approximation is fairly accurate. Our
criterion may be therefore approximated with

∣∣∣g− gp
∣∣∣
2

≈
∣∣∣∣
(
Cx

−1BH
L −

(
BH
L X

H
p XpBL

)−1
BH
p

)
XHy

∣∣∣∣
2

≡
∣∣∣DpX

Hy
∣∣∣
2
.

(32)

The analysis that follows should be considered valid only
for large enough block sizes where (29) is accurate. The
expectation of the approximated metric is

E
[∣∣∣g− gp

∣∣∣
2
]
= E

[∣∣∣DpX
Hy

∣∣∣
2
]

= E
[
yHXDH

p DpX
Hy

]

= E
[
Tr

(
XHyyHXDH

p Dp

)]

= Tr
(
E
[
XHyyHX

]
DH

p Dp

)
.

(33)

The autocorrelation matrix R = E[XHyyHX] is com-
posed of L × L submatrices, where the k, j submatrix is
XH
k yy

HXj . Using the standard assumption that the channel’s
paths are statistically independent (assumption A2), we may
express the autocorrelation matrix R as a linear combination
of the contributions of the channel paths, that is,

R ≡ E
[
XHyyHX

]
=

L−1∑

i=0
Ri + σ2INL (34)

Using assumptions A1-A2 and (3), the entry n1,n2 in the
submatrix k, j (or equivalently, the element kN +n1, jN +n2
in the matrix Ri) is

[Ri]kN+n1, jN+n2

= E
[
hi,n1h

∗
i,n2

]
E
[
xn1−ix∗n2−ix

∗
n1−kxn2− j

]
.

(35)

where

E
[
hi,n1h

∗
i,n2

]
= αiJ0

(
2π fcv|n1− n2|Ts

c

)
,

E
[
xn1−ix∗n2−ix

∗
n1−kxn2− j

]
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, n1 = n2, k = j,

1, k = j = i, n1 /=n2,

x∗p (n1− k)xp
(
n2− j

)
, n1 = n2, k /= j,

x∗p (n2− i)xp
(
n2− j

)
, i = k /= j,

xp(n1− i)x∗p (n2− i), n1− k = n2− j, n1 /=n2,

xp(n1− i)x∗p (n1− k), i = j /= k,

xp(n1− i)x∗p (n2− i)x∗p (n1− k)xp
(
n2− j

)
, otherwise.

(36)

The best pilot positioning scheme is therefore

p = argmin
p

Tr

⎛
⎝
⎛
⎝
L−1∑

i=0
Ri + σ2I

⎞
⎠DH

p Dp

⎞
⎠. (37)

This expression is deterministic and depends only on the
BE functions, block size, noise variance, channel order (L),

Doppler rate, and pilot sequence. It is therefore possible
to find the best pilot positioning for a particular set of
parameters by evaluating (37) for various p. As we did
in the previous section, we limit the positioning patterns
for patterns in which the pilots are grouped in groups of
length L, and these groups are spread evenly throughout
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the block. This positioning strategy coincides with the pilot
positioning in [39] for L = 1, with the pilot positioning in
[30] for L = L and with the pilot positioning in [29] for
L = 2L + 1. In addition, every group of pilots is a Barker
sequence of length L. Barker sequences are known to enable
good channel estimation because of their autocorrelation
properties. Define the positioning metric as the value to be
minimized in (37). A typical behavior of this positioning
metric is shown in Figure 2 (based on (37) and in agreement
with simulation results).

The optimal positioning strategy is shown to be depen-
dent on the Doppler rate and the number of pilots in the
block. As can be seen from Figure 2, for low Doppler rates it
is better to use group of pilots as also indicated by [29, 30]
(although the difference is not very significant, at least for
short delay spreads). For high Doppler rates and a small
number of pilots, however, it turns out that using L =
1 leads to much better results. This is because there is a
tradeoff between accurate estimation of the multipath at
specific points in time (that is better achieved by grouping
the pilots) and tracking the channel time variations (that
is better achieved by spreading the pilots throughout the
block). Our results indicate that for high velocities using
L = 1 leads to a lowermetric value as this means better ability
to track time variations. Note that this result is obtained
for severe ISI channel with three equal energy paths (and
similar result was obtained for channel with 5 equal energy
paths). We have also simulated channels with less severe ISI
(that is, decaying power profiles), and the advantage of using
L = 1 was even larger, as could be expected. The switching
point (Doppler rate beyond which it is advantageous to use
L = 1) is dependent mainly on the percentage of pilots in
the block. For larger number of pilots, the switching point
will occur at higher Doppler rate. The reason is that for
large number of pilots there will be sufficient number of
groups in the block to allow tracking of path time variations
even when the group size is kept 2L + 1, so both multipath
profile and time variations could be estimated accurately.
We, however, are interested in the smallest number of pilots
that enables good performance, and in these conditions,
L = 1 is advantageous even for moderate Doppler rates
(see Figure 2). This conclusion is somewhat surprising as it
is different from previous conclusions in [29, 30]. However,
these previous works used different channel models and
performance criteria. Moreover, both works considered only
pilot groups equal to 2L + 1 [29] or L [30] or longer, to
facilitate their analysis.

6. Simulation Results

6.1. Performance of the Proposed Equalization Scheme. Next,
we present simulation results for our proposed equalization
scheme. We use a sequence of 217 QPSK symbols that is
sent through a doubly selective channel as described in
Section 2.1. The normalized Doppler frequency is fnd =
0.002, and coherence time, defined as the time over which
the channels response to a sinusoid, has a correlation greater
than 0.5 is 9/(16π fnd) = 96 symbols. A modified Jakes fading

model is used to model the time variations of each of the
channel paths [40]. The pilots are positioned according to
the optimal scheme found in the previous section (L = 1).
The number of basis functions for all simulated BE sets is

Q = 2
⌈
Nbem fnd

⌉
+ 1, (38)

where Nbem = 2N . This number was tested numerically to
enable good accuracy description of the channel with the
BE complex exponents and polynomial functions (below 1%
error). This is also the number of basis functions used in
[30]. For the selection of eigenvectors as the functions set,
we could have decreased this number slightly.

We present simulation results for the following equaliza-
tion algorithms.

(i) Maximum Likelihood equalization using perfect
channel knowledge.

(ii) Maximum likelihood equalization with channel esti-
mation based only on the pilots. This is identical to
the first iteration of the proposed algorithm.

(iii) Time-varying BW algorithm with BE based on
complex exponential functions (13) (BW-BE-exp).

(iv) Time-varying BW algorithm with BE based on com-
plex exponential functions (13) and initial channel
guess identical to the true channel (BW-BE-exp &
perfect init.). The difference between the error curve
of this simulation and the previous one will indicate if
we have an issue of convergence to a local maximum.

(v) Time-varying BW algorithm with BE based on poly-
nomial functions (14) (BW-BE-poly). This might be
considered a significant improvement of [27].

(vi) Time-varying BW algorithm with BE based on
optimal basis functions (BW-BE-eig).

(vii) Non-time-varying BW algorithm based on dividing
the data blocks into shorter blocks in which channel
is assumed to be constant (BW-SB). This is essentially
the method of [23].

(viii) The BW-RLS method in [26] (called APP-SDD-RLS
in [26]). This method was initialized using the same
initialization scheme we used for the BW-BE meth-
ods. After the parameters of the BE are found, the
actual channel responsed estimate is computed for
every time instance. Finally, the BCJR algorithm uses
this estimate to calculate the transitions probabilities
which are the starting point for the BW-RLS in [26].

(ix) Per-survivor processing with RLS channel estimator
[8, 9].

(x) Iterative Viterbi-based equalization with BE-based
channel estimation. Reduced complexity variants of
this algorithm appeared in [14, 18].

Simulation results for various signal-to-noise ratios (SNR)
are presented in Figure 3 for block size of 256 symbols,
20 pilots (about 8% pilots), and multipath channel with
three symbol-spaced paths with power profile [0,−3,−3] dB.
The proposed BE-based EM algorithm performance is very
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close to the performance of a nonblind ML equalizer with
perfect channel knowledge for both complex exponentials
and polynomial BE functions. The BW-RLS method and
the BW-SB have similar performance. This is not surprising
as the BW-RLS method can be considered a non-time-
varying BW that operates on a (exponentially weighted)
sliding block whose length is proportional to the forgetting
factor used. The BW-RLS can be therefore considered as a
generalization of the BW-SB. The PSP-RLS method exhibits
poor performance in these scenarios as the RLS component
is not able to track the fast fading. The performance of Vit-BE
is closer to our proposed methods although still significantly
inferior. This is because the channel estimation part uses
only hard decisions and does not weight the probability
of different hypothesis for the transmitted sequence. The
training based ML equalizer has the worst performance as
the number of pilots is not sufficient for reliable channel
estimation. It is therefore evident that the proposed semi-
blind approach can reduce the number of required pilots
significantly thereby increasing the available bandwidth for
information.

Similar results were obtained for different channel pro-
files and delay spreads. For example, Figures 4 and 5 present
the performance of the proposed algorithm for two equal
power taps and four equal power taps, respectively. It is
clearly shown that the proposed algorithm outperforms all
previously proposed schemes that were simulated.

Results for block size 256 and SNR = 12dB are shown
in Figure 6 for various numbers of pilot symbols (the zero
pilot percentage point in the figure corresponds to totally
blind case and uses random initial guess). It is shown that in
these conditions, our proposed method requires about 12%
pilots to achieve close to optimal performance while Vit-BE
requires up to 20% pilots to reach comparable performance
and the other methods performance is even worse. Training-
based equalization does not produce reliable results because
the fast fading channel necessitates an excessive number of
pilots for reliable estimation and tracking of the channel
throughout the block in these conditions.

Results for various block sizes are shown in Figure 7.
The performance of the proposed method improves with
increasing the block size even though this means more
functions are needed for modeling the time behavior of the
channel. The reason is that the larger block size enables
better filtering out of the noise as well as benefiting from
more pilots in the block. All simulated methods reach a
saturation point beyond which it is not beneficial to increase
the block size further. The proposed method is shown to
reach this point for smaller blocks thereby enabling latency
reduction. From other simulation results (not shown here as
they resemble the results presented so far), it is concluded
that the proposed methods of BW-BE are superior over all
simulated previously proposed methods in a large range of
block sizes, pilot percentages, and channel profiles.

Finally, although a detailed convergence analysis is
beyond the scope of this paper, a histogram of the number
of iterations required to achieve convergence is plotted in
Figure 8. This plot is for SNR = 12dB and under the same
conditions as in Figure 3. Convergence is determined based

on the Q function value, defined in (8). Convergence is
assumed when the ratio of two Q function values of two
consecutive iterations is sufficiently close to one, that is, less
than 1 + 10−10. The maximum number of iterations allowed
in this plot is 30. It is shown that about 75% of the blocks
converge with 8 iterations or less and 90% of the blocks
require 15 iterations or less for convergence. These results
can be used to evaluate the computational complexity of the
proposed algorithm.

7. Conclusion

A novel method for maximum likelihood semi-blind joint
channel estimation and equalization for doubly selective
channels is proposed. This method is based on expectation
maximization (EM) principle combined with a BE model
of the doubly selective channel. It is shown that the
main drawback of the proposed approach is its possible
convergence to local maxima. To alleviate this problem, we
propose an initialization scheme to the equalization based on
a small number of pilot symbols. We discuss the selection
of basis functions set and find the optimal basis set. We
further derive a pilot positioning scheme targeted to reduce
the probability of convergence to a local maximum. The
resulting algorithm is shown to be significantly superior over
previously proposed equalization schemes and to perform in
many cases close to an ML equalizer with perfect channel
knowledge.

Appendices

A. Comparison of the proposedmethod to [27]

In this appendix, we highlight the differences between the
algorithm proposed in [27] and the algorithm presented in
this paper. For simplicity, we discuss only the non-time-
varying case as the generalization to time-varying case is
straightforward.

The channel estimation is updated in the BW algorithm
at each iteration with:

ĥ(l+1) =
⎛
⎝
N−1∑

n=0

ML−1∑

k=0
p
(
sk,n | y, θ(l)

)
sHk,nsk,n

⎞
⎠
−1

×
N−1∑

n=0

ML−1∑

k=0
p
(
sk,n | y, θ(l)

)
sHk,nyn.

(A.1)

In [27], the channel is updated in two stages. First,
the expectations of the Hidden Markov Model states are
computed with

mk =
∑N−1

n=0 p
(
sk,n | y, θ(l)

)
yn

∑N−1
n=0 p

(
sk,n | y, θ(l)

) , (A.2)

where mk is the expected received value when in state k.
In the second stage, the channel coefficients are updated by
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fitting them to the values ofm = [m0, . . . ,mML−1]
T in a least

squares sense, that is,

ĥ = argmin
h
|Sh−m|2, (A.3)

where S is anML × Lmatrix whose rows are the states of the
trellis, that is, S = [sT0 , . . . , s

T
ML−1]

T . The well-known solution
is

SHSĥ = SHm. (A.4)

Using the definition of S and plugging (A.2) into (A.4), we
obtain

ML−1∑

k=0
sHk skĥ =

ML−1∑

k=0
sHk

∑N−1
n=0 p

(
sk,n | y, θ(l)

)
yn

∑N−1
n=0 p

(
sk,n | y, θ(l)

) . (A.5)

Comparing (A.5) to (A.1), we see that the two methods are
not equivalent. Moreover, the method in [27] converges to
the true BW only when

∑N−1
n=0 p(sk,n | y, θ(l)) is constant

for all values of k. This is likely to happen for long blocks.
However, for short block it is not necessarily true and in this
case the approach presented in [27] leads to a suboptimal
solution.

B. Extension to correlated channel’s paths

In this appendix, we extend the proposed equalization
algorithm for the case of correlated channel’s paths. First,
let us assume for simplicity we have only two paths in the
channel and rewrite (6) in the concatenated form

[
h(0)

h(1)

]
=

[
B 0
0 B

][
g0
g1

]
= Bg. (B.1)

For the correlated case we can still have

h = Bg, (B.2)

where now h = [h(0)T ,h(1)T , . . . ,h(L−1)T]T and h(i) is a a
vector of sizeN that represents the ith channel tap amplitude
time variations. The size of the matrix B now is LN × Q.
The main difference in the correlated case compared to
the uncorrelated case is that the matrix B is no longer
block diagonal and the off diagonal elements represent the
correlation between the taps. In this description, there is a
common coefficients set used for all channel taps and the
difference between taps is due to different basis functions for
each tap (the basis functions for the ith tap are the rows iN to
(i+1)N−1 in the matrix B). The criterion for basis selection,
similar to (15), is

B = argmin
B

E
∣∣∣h− Bg

∣∣∣
2

s.t. rank
[
B
]
= Q, (B.3)

Obviously, Q needs to satisfy Q ≤ Q ≤ QL and will vary
according to how much the taps are actually correlated.
In the uncorrelated case, we will have Q = QL and in
fully correlated case Q = Q. With uncorrelated taps, the
autocorrelation matrix E[hhH] is block diagonal and there

are L blocks along the diagonal, each is equal to Rcorr as
defined in (5). The eigenvectors matrix in this case will also
form a block diagonal matrix with L identical blocks whose
first Q rows are the basis functions of the individual taps. In
this case, the basis functions for each tap are identical and
we return to the description of the channel response given in
(9). In the correlated case, we have

hn = Bng, (B.4)

where

Bn =
[
bTn ,b

T
N+n, . . . ,b

T
(L−1)N+n

]T
, (B.5)

where bi is the ith row in the matrix B. The matrix Bn is then
built from the L rows in B that correspond to time instant n.
This description can then be used in the derivation of the EM
procedure and the resulting updating equations are

ĝ(l+1) =
⎛
⎝
N−1∑

n=0

ML−1∑

k=0
p
(
sk,n | y, θ(l)

)
BH
n s

H
k,nsk,nBn

⎞
⎠
−1

×
N−1∑

n=0

ML−1∑

k=0
p
(
sk,n | y, θ(l)

)
BH
n s

H
k,nyn,

(B.6)

(
σ2

)(l+1) =
N−1∑

n=0

ML−1∑

k=0
p
(
sk,n | y, θ(l)

)∣∣yn − sk,nBng
∣∣2.

(B.7)

C. Proof of the proposed BW
initializationmethod

In this appendix, we prove the equivalence between the
initialization method of the BW based on symbols priors,
discussed in Section 3.3 and the initialization method shown
in (21). First, define the group n = {n,n−1, . . . ,n−L+1}, that
is, the time instances on which the transition sk,n depends. In
addition, define the group G as the group of all transitions
in the trellis that are consistent with the pilots. Our branch
metric initialization is

γk,n =
⎧
⎨
⎩
C, sk,n ∈ G,

0, otherwise.
(C.1)

The probability of a transition in the trellis is the sum
of probabilities of all paths going trough this transition. The
probability of every path that is consistent with the pilots is
CN and

p
(
sk,n

) =
⎧
⎨
⎩
MN−|p⋃

n|CN , sk,n ∈ G,

0, otherwise,
(C.2)
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where |x| is the size of the group x. We can now establish the
identity

ML−1∑

k=0
p
(
sk,n | y, θ(l)

)
sHk,nsk,n = CNMN−|p⋃

n| ∑

sn,k∈G
sHk,nsk,n

= CNMN−|p⋃
n|ML−|p⋂

n|zHn zn
(C.3)

= CNMN−|p|zHn zn, (C.4)

where zn = [xp(n), xp(n − 1), . . . , xp(n − L + 1)] and xp(n)
is defined in (31). The identity (C.3) follows from the fact
that the constellation has zero mean and (C.4) follows from
|a⋃

b| = |a| + |b| − |a⋂
b|. Similarly, we have

ML−1∑

k=0
p
(
sk,n | y, θ(l)

)
sHk,nyn = CNMN−|p|zHn yn. (C.5)

Using (C.4) and (C.5), we can now show the equivalence.
First, we have

N−1∑

n=0

ML−1∑

k=0
p
(
sk,n | y, θ(l)

)
BH
n s

H
k,nsk,nBn

=
N−1∑

n=0
BH
n

⎛
⎝
ML−1∑

k=0
p
(
sk,n | y, θ(l)

)
sHk,nsk,n

⎞
⎠Bn

= CNMN−|p|
N−1∑

n=0
BH
n z

H
n znBn

= CNMN−|p|AH
p Ap,

(C.6)

where the last identity follows directly from the definition of
the matrices. Similarly, we have

N−1∑

n=0

ML−1∑

k=0
p
(
sk,n | y, θ(l)

)
BH
n s

H
k,nyn

=
N−1∑

n=0
BH
n

⎛
⎝
ML−1∑

k=0
p
(
sk,n | y, θ(l)

)
BH
n s

H
k,nyn

⎞
⎠

= CNMN−|p|
N−1∑

n=0
BH
n z

H
n yn

= CNMN−|p|AH
p y.

(C.7)

By combining the results from (C.6) and (C.7), it can be
verified that (21) is identical to (B.6) for this particular choice
of branch metrics.
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