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This paper presents an algorithm for modeling and tracking vehicles in video sequences within one integrated framework. Most
of the solutions are based on sequential methods that make inference according to current information. In contrast, we propose a
deferred logical inference method that makes a decision according to a sequence of observations, thus processing a spatio-temporal
search on the whole trajectory. One of the drawbacks of deferred logical inference methods is that the solution space of hypotheses
grows exponentially related to the depth of observation. Our approach takes into account both the kinematic model of the vehicle
and a driver behavior model in order to reduce the space of the solutions. The resulting proposed state model explains the trajectory
with only 11 parameters. The solution space is then sampled with a Markov Chain Monte Carlo (MCMC) that uses a model-driven
proposal distribution in order to control random walk behavior. We demonstrate our method on real video sequences from which
we have ground truth provided by a RTK GPS (Real-Time Kinematic GPS). Experimental results show that the proposed algorithm
outperforms a sequential inference solution (particle filter).

1. Introduction

Efficient target tracking is a critical component in many
computer vision applications such as visual surveillance
or robotics. The object-tracking procedure is intended to
estimate the state (position, velocity, . . .) of an object at each
time given an observation sequence.

Tracking methods can be divided into two major cat-
egories: The first category relates to sequential inference
tracking (also called online or causal tracking), for which the
state of the object at a given time step has been estimated
as a function of the record of past and current observations
and the record of past states. The second concerns deferred
logical inference (also called offline or noncausal tracking),
for which the state estimation at a given point in time uses
the entire observation sequence.

Sequential tracking is needed when the tracker’s output
controls real-time processes, which cannot be delayed (such
as robotic applications). Sequential tracking is also needed
when it is not possible to record the observation data, due
to its size, or due to regulations. Much work has been done
on sequential visual tracking (model-based approaches [1–
3] or learning-based approaches [4–6]). Therefore, most of

the applications use sequential methods even though it is not
necessary.

For other situations, deferred tracking is much more
appealing, as it is not causal. This allows the optimisa-
tion process to operate over a larger data set (the whole
observation sequence), thus allowing to hope for better
results. Deferred visual multiobject tracking have already
been successfully experienced on pedestrian tracking in [7]
and with a MCMC search in [8].

The solution presented in this paper is a spatio-temporal
deferred logical inference approach. One of the main
challenges of such methods is that the solution space of
hypotheses grows exponentially related to the (duration)
depth of observation. In the specific case of vehicle tracking,
priors on both driver behavior and the road geometry can be
used. Moreover, the trajectory of the object to be tracked is
driven by a kinematic model. Therefore, we propose an 11-
dimensional reduced state vector of the vehicle trajectory.

Since we use a probabilistic framework, the tracking
problem can be seen as the estimation of the distribu-
tion of the state vector posterior distribution, given a
video sequence. We propose a Markov Chain Monte Carlo
(MCMC) method to sample the posterior distribution.
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MCMC have been already used in visual tracking. In [9, 10],
a MCMC based particle filter is presented for multiobject
tracking and an extension is proposed to handle a varying
number of objects (Reversible Jump Markov Chain Monte
Carlo, RJMCMC). In [8], the RJMCMC algorithm is used
in a deferred logical inference framework to track several
vehicles offline from a video sequence.

In MCMC methods, the random walk behavior is driven
by proposal distributions. We use priors on driver behav-
ior and road geometry to define efficiently the proposal.
Exploration is achieved with the Metropolis-Hasting rule
according to a global likelihood function.

We use a likelihood function based on a background
subtraction algorithm. A discrete set of positions of the
vehicle into the video sequence is generated from the
trajectory state. A generic 3D model of a vehicle is then
projected into each image and then compared to a back-
ground/foreground map of the video sequence. We propose
an efficient implementation of the likelihood function using
a line integral image to decrease computation time.

Experiments have been done to compare, on real video
sequences, the deferred logical inference approach with a
classic sequential particle filter.

The remaining of the paper is organized as follows.
Section 2 presents the probabilistic framework proposed to
solve the tracking problem. Section 3 provides a detailed
description of the vision likelihood function. A set of exper-
imental results along with both qualitative and quantitative
analysis is presented in Section 4, before we conclude in
Section 5.

2. ProposedMethod

This section describes the core of the method, based on a
probabilistic framework. Figure 1 represents an illustration
of the algorithm. Given a video sequence and an initial
state, the method samples the posterior distribution of the
trajectory using a random walk method (MCMC). In the
following, we begin by presenting the state vector associated
to the trajectory model. Then, we give an overview of the
Monte Carlo Markov Chain algorithm used to sample the
posterior distribution. Finally, we show how to generate
new proposals by sampling from an object-specific proposal
distribution.

2.1. State Vector Reduction. In a spatio-temporal deferred
logical inference approach, the solution space of hypotheses
grows exponentially related to the number of observation
frames. Estimating a single vehicle planar trajectory along
a 100 frame sequence, involves a state space of dimension
300 (planar position and orientation are estimated for each
frame). Conducting a Monte-Carlo search in such a space
is computationally intractable! To avoid this problem, we
do not consider the vehicle position sequence as the state
vector, but we implement a trajectory generator, lying on
driver behavior priors, road geometry priors, and vehicle
kinematic priors. The vehicle trajectory generator detailed
in the following, generates trajectory samples, defined in
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Figure 1: Given a video sequence and an initial state, the method
samples the posterior distribution of the trajectory using a random
step method (MCMC).

a 11-dimensional state space by driver temporal command
parameters. This method drastically reduces the dimension
of the state space, thus improving computational efficiency.

2.2. Driver Command and Vehicle Priors. The driver com-
mands are the steering wheel angle, and the vehicle longitu-
dinal acceleration, from which we deduce the vehicle speed
through integration. The experiments presented below have
been conducted on a mid-velocity curve. While traveling
such a curve, a light vehicle driver’s command law is
commonly modelled by a trapezoid, with steering wheel
angle velocities lying between 1.5 and 4 degrees per second,
and with absolute longitudinal accelerations lying between
1 m·s−2 and 3 m·s−2. In order to take into account a
wider range of driver commands, and the steering system
nonlinearities due to frictions and mechanical compliances,
we use a more compliant model: we model the steering
command with a double sigmoid (one for entering the curve,
and one for releasing from it).

As the experiments presented below have been conducted
on the second half of the curve, a single sigmoid is used to
define the steering angle generator, from parameters defined
in Section 2.2 (cf. Figure 2)

fδ(θδ , k)
.= θδ,2

1 + exp
[
θδ,3
(
θδ,4 − k

)
/
∣
∣θδ,2

∣
∣] + θδ,1,

k = time.

(1)

The same reasoning applies to the vehicle speed generator
fv(θv, k), calculated as fδ(θδ , k), swapping index δ into index
v.
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Figure 2: Graphic representation of the sigmoid parameters.

To model the vehicle, we use a plain kinematic model, as
described in Section 3.1. This model allows us to iteratively
generate xk, yk, and αk, for every time step k.

The vehicle trajectory generator is represented by a
random state vector X

.= (l, θδ , θv)T with

(i) l
.= (x0, y0,α0) represents the initial position and

orientation of the vehicle (into a world reference
frame),

(ii) θδ
.= (θδ,1, . . . , θδ,4) are the parameters of a sigmoid

function δk = fδ(θδ , k) representing the discrete
temporal evolution of the steering angle,

(iii) θv
.= (θv,1, . . . , θv,4) are the parameters of a sigmoid

function vk = fv(θv, k) representing the discrete
temporal evolution of the vehicle velocity.

2.3. MCMC. We want to estimate p(X | Z), the posterior
probability density for a model’s parameters X, given some
observed data Z. Monte-Carlo methods assume that the
posterior distribution can be approximated by a set of N
samples:

p(X | Z) ≈
{
X(n)

}N

n=1
. (2)

Sampling from p(X | Z) is a hard problem and many
methods have been proposed. Metropolis-Hasting is a ran-
dom walk algorithm designed to approximate a stationary
distribution. At each step, a state X∗ is proposed according
to a proposal density q(X∗ | X). The proposal state is then
accepted or rejected according to an acceptance ratio defined
by the Metropolis-Hasting rule

α = min

(

1,
p(Z | X∗)
p(Z | X)

× q(X | X∗)
q(X∗ | X)

)

. (3)

Metropolis-Hasting rule can be used to build a Markov
Chain which approximates the posterior distribution p(X |
Z). The resulting method is called Markov Chain Monte
Carlo. Moreover, the Nb first elements of the chain are
removed (burn-in) in the final sampling set. An estimate of
the state is given by a maximum likelihood rule applied to
the particle set

X̂
.= arg max

X

N∑

n=1

δ
(
X−X(n)

)
, (4)

where δ is the Dirac function.

Input: The first element of the chain X0 and its weight
proportional to its likelihood: π(X0) ∝ P(Z | X0)
for n = 1 to N + NB do

- Choose a move m ∈ {1, . . . ,M} among all the parameter
of the state X according to prior q′(m).
- Draw a proposal X∗ from the distribution q(X∗ | X)
with X = Xn−1

- Evaluate its joint likelihood: p(Z | X∗)
- Compute the acceptance ratio using Metropolis-Hasting
rule:

α = min

(

1,
p(Z | X∗)
p(Z | X)

× q(X | X∗)
q(X∗ | X)

)

- Add a nth element to the chain Xn = X∗ with
probability α, (otherwise Xn = Xn−1).

end for
Burn-in: delete the NB first elements of the chain.
Output:N-element Markov Chain of state hypothesis:
{Xn}n=NB+1,...,NB+N

Algorithm 1: MCMC algorithm.

2.4. Proposals. At iteration n, the MCMC generates a new
proposal by sampling from a proposal distribution q(X∗ |
X(n−1)) defined by

q
(
X∗ | X(n−1)

)
=

∑

m∈{1;...;M}
q′(m)q

(
X∗ | X(n−1),m

)
, (5)

where q′(m) is a prior distribution used to select the
parameter index of X to be modified (M denotes the size
of X). A parameter-specific proposal distribution is then
defined by

q(X∗ | X,m)
.= p
(
X∗m | X (n−1)

m

)∏

j /=m

δ
(
X∗j − X (n−1)

j

)
. (6)

Here, only the mth component (m is selecting with the prior
distribution q′(m)) of the state vector is moved at iteration
n; the other parameters remain unchanged. The MCMC is
summarized in Algorithm 1.

3. Observation

This section presents the observation function defined to
compute the likelihood p(Z | X = X(n)) probability to
observe the video sequence, given a sample X(n). Figure 3
illustrates the observation process. A discrete set of positions
of the vehicle into the video sequence is generated from
the trajectory sample X. A generic 3D model of a vehicle
is then projected into each image and compared to a
background/foreground map of the video sequence.

We propose an efficient implementation of the likelihood
function using a line integral image to decrease computation
time.
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Figure 3: Illustration of the likelihood function. A discrete set of
positions of the vehicle into the video sequence is generated from
the trajectory sample. A generic 3D model of a vehicle is then pro-
jected into each image and compared to a background/foreground
map of the video sequence.

3.1. Building a Discrete Set of Vehicle Positions. Let X define
a discrete set of temporal positions and orientations of the
vehicle, associated to a sample X of the posterior distribution

X
.= {xk}Kk=1, (7)

with xk
.= (xk, yk,αk)T is a vector which gives the position

and orientation of the vehicle at time k into a world reference
frame Rw associated to a planar ground. xk can be computed
in a recursive way using a simple kinematic model of the
vehicle. Here, we used a bicycle model (cf. Figure 4)

xk = xk−1 + T · vk−1 · cos(αk−1),

yk = yk−1 + T · vk−1 · sin(αk−1),

αk = αk−1 + T · vk−1

L
· tan(δk−1),

(8)

where T is the sample time used for the video acquisition
and L denotes the wheelbase (distance between front and rear
wheels). δk and vk are given by the steering angle and velocity
parametric functions presented into Section 2.2.

The likelihood function p(Z | X) can be written by

p(Z | X) = p(z1; z2; . . . ; zK | x1; x2; . . . ; xK ) (9)

and assuming independence of random variables

p(Z | X) =
K∏

k=1

p(zk | xk). (10)
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δ

Figure 4: The bicycle model synthesizes the displacement of a
four-wheel vehicle, through the displacement of two wheels whose
centers are connected by a rigid axis of length L. Ackerman’s theory
serves to estimate the steering angle of the front axis of a vehicle
traveling at low speed.
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Figure 5: Example of a simple three-dimensional geometric model
used for a vehicle. It is composed of two cubes. The coordinate
system associated with the cube and the other system associated
with the scene are related according to pure translation. The plane
(Oxy) of the world coordinate system and component axes are
merged with the GPS coordinate system.

3.2. Computing p(zk | xk). Since the video sequence comes
from a static camera, vehicle extraction is achieved using
a background/foreground extraction approach. We use a
nonparametric method [11], based on discrete modelization
of the background probability density of the pixel color
(RGB). The algorithm provides a set of binary images I

.=
{Ik}Kk=1, where Ik(u) = 1 if the pixel u

.= (ux,uy)T is
associated to foreground and Ik(u) = −1 if the pixel is
associated to background.

A simplified three-dimensional geometric model of
the vehicle is used, as depicted in Figure 5. This model
is composed of two nested parallelepipeds. In a general
case, the model may be more complex and contain PM

parallelepipeds. Let M(R0) = {M(R0)
i }i=1,...,NM

represent the
model’s set of cube vertices (NM = 8 × PM), expressed
within a coordinate system associated with model R0. This
coordinate system is selected such that the 3 axes all lie in the
same direction as that of the world coordinate system Rw.

Each point of the vehicle model is projected onto the
image via the following equation

m̃i ∝ Cc·(Rw)T(R0)(xk) · M̃(R0)
i , (11)

with M̃ homogeneous coordinates associated with point
M; Cc is the camera projection matrix, and (Rw)T(R0)(xk)
the homogeneous transformation matrix between the world
coordinate system and the system associated with the 3D
model (cf. Figure 5).
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The set M(Ri) = {mi}i=1,...,NM
is thus built based on the

projection of 3D model points within the image.
For a given position xk , the likelihood is linked to

the difference between the number of foreground and
background pixels inside the vehicle model projection in the
image. This computation performed for each particle spends
SIGNIFICANT processing time, and we are proposing
herein a fast likelihood calculation method based on an
approximation of the 3D model projection in the image
through its convex hull.

Let E(M(R0); xk)
.= {ei}i=1,...,Ne

(ei = (xei , y
e
i ) as

coordinates of ei in the image plane) be the list of convex
hull points. (Calculation of the convex hull is not developed
in this article; the calculation procedure is conducted using
a classical algorithm with a complexity expressed in O(N ·
logN).) We will now define Ek

.= E(M(R0); xk) in order
to streamline notations. The likelihood calculation may be
performed efficiently by use of a line-by-line integral image
defined by

IΣk
((
x, y

)T) =
x∑

i=1

Ik
((
i, y
)T)

. (12)

Points ei are categorized by pairs featuring the same y-
coordinate values, such that

Ek =
{
(
xe1, ye

)
,
(
xe2, ye

)
,
(
xe3, ye + 1

)
,
(
xe4, ye + 1

)
, . . .

(
xeN−1, ye +

Ne

2

)
,
(
xeN , ye +

Ne

2

)}
.

(13)

Convex hull coding within the set Ek necessitates a
shape discretization along the image lines. Moreover, special
attention needs to be paid to coding the upper and lower
extremities. On the other hand, it is not at all necessary
to sort points positioned on the same line. A compliance
measurement relative to a convex hull is computing from the
integral image by application of the following relation:

a(Ek) =
Ne/2∑

j=1

[
2 ·
(
IΣk
(
e2 j

)
− IΣk

(
e2 j−1

))
−
(
xe2 j − xe2 j−1

)]
.

(14)

Figure 6 describes the principle behind the likelihood
calculation method using the integral image. A line-by-line
scanning is performed as part of this method.

Finally, the likelihood expression is written by

p(zk | xk) ∝ C−1
Ek

max(0, a(Ek)) (15)

with the normalization constant CEk

.= ∑Ne/2
j=1 |xe2 j − xe2 j−1|

defining the surface of the convex hull.

4. Experimental Validation

In this section, experimental results are presented to high-
light the relevance of our tracker. We compare the Offline
proposed approach to a sequential stochastic filter (particle
filter).
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Figure 6: Illustration of the vision likelihood computation. The
3D model of the vehicle (shown in green/clear) is reprojected onto
the image generated from the background-shape extraction. This
projection is approximated by its convex hull (shown in red/dark
on the right image). The likelihood calculation proceeds in a line-
by-line integral image of the log-likelihood ratio.

4.1. Experimental Details

4.1.1. Initialisation. The first sample of the MCMC must
be initialized using priors. We use a data driven method
to compute the initial position of the vehicle on the road
(x0, y0). A nonparametric blob detector [11] is applied to
the background/foreground image I0. The initial velocity is
provided by a specific sensor. Other parameters are initialized
using priors given by vehicle or driver behavior. The dimen-
sions of the geometric model are defined for each vehicle
with a stochastic process on width and length parameters
and using the likelihood computation (cf. Section 3.2). If
dimensions seem to be incoherent, a standard vehicle is
chosen.

4.1.2. Proposals. A key point of the method concerns the
control of the random walk behavior using proposal distri-
butions. Parameter-specific proposals are defined. Since both
lower and upper bounds can be defined for all parameters, we
choose proposals according to a Beta distribution

P
(
X∗m | X (n)

m

)
∝ (

X∗m
)ξ1−1 · (1− X∗m

)ξ2−1 (16)

parameters ξ1 and ξ2 are computed such as the maximum of
the distribution is obtained for X∗m = X (n)

m .

4.1.3. Details about the Sequential Method. Behavior of the
proposed method is compared with a sequential particle
filter. The state vector is defined as Xk

.= (xy , yx,αx, vx, δx)T .
Dynamics are controlled by the kinematic bicycle model with
a zero centered normal law applied to both the steering angle
and velocity variation. Moreover, the likelihood function
is slightly modified by removing the normalizing constant.
The particle set is resampled at each iteration using a SIR
algorithm.

4.2. Results. In order to compare the two methods, a vehicle,
equipped with a RTK GPS accurate to within one centimeter,
has been used. (A calibration between the GPS reference
frame and the camera has been achieved but details are
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Table 1: Position error (the true position is given by a RTK GPS) for the proposed deferred logical inference method and a sequential particle
filter.

Method Position error (m) Position std. (m) Orientation error (degrees) Orientation std. (degrees)

Sequential filter 0.27 0.26 3.67 3.36

Deferred logical inference 0.20 0.22 1.12 0.97
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Figure 7: Percentage of correct position/orientation related to the tolerance. (a) position absolute tolerance. (b) orientation (yaw angle)
absolute tolerance.

not presented in this paper.) This vehicle traveled through
the test section 20 times along various trajectories at speeds
ranging from 40 to 80 km/hr. The error was quantified as the
average distance between each estimated vehicle position and
the straight line passing through the two closest GPS points.
For each test, at least five vehicle runs were carried out,
which enabled deriving a very rough statistic on the recorded
measurements. For the tests actually conducted, the vehicle
has been tracked in a curve over a distance of approximately
100 m (minimum radius = 130 m).

All the experiments presented here have been done using
200 particles for the two methods.

Table 1 presents the average error and related standard
deviations for the two tested methods. The proposed
deferred logical inference provides a lower global error than
the sequential particle filter.

Figure 7 plots the estimation accuracy as a percentage
of correct positions (vertical axis) versus an error tolerance
(horizontal axis) for both methods. On the left graph the
error tolerance is the position absolute error, ranging from
0 to 50 cm, while on the right graph the error tolerance is
the vehicle orientation (yaw angle) absolute error, ranging
from 0 to 5 degrees. The curve associated to the proposed
method outperforms the sequential particle filter both for the
position and the orientation estimation. Moreover, the right
graph emphasizes the benefit of the deferred method, which
integrates the vehicle and driver priors in every generated

trajectory, thus bringing more time consistency than the
sequential method.

Figure 8 illustrates the two methods on a real sequence.
Curves on the right column show zooms on local trajectories.
The middle column illustrates the image projection of the
vehicle position for the sequential method. The right column
illustrates the image projection of the vehicle position for
the deferred method. It is of high interest to notice the
noisy estimation provided by the sequential method, where
the estimated trajectory does not seem to match the vehicle
kinematic model. The reason for this weak consistency is
that the maximum a posteriori estimate may be found
on different particles at every time step. In contrast, the
spatio-temporal deferred approach ensures faithfulness to
the model, thus explaining the observed improvement.

5. Conclusion

We have presented a solution for estimating vehicle tra-
jectories using a single static color camera. A spatio-
temporal deferred logical inference solution which takes
into account both vehicle kinematics and driver behavior
has been proposed, using a stochastic approach to estimate
the posterior distribution of the trajectory. By choosing a
MCMC, the random walk evolution is controlled by injecting
priors on both driver and vehicle behavior and on geometric
knowledge about the road. Moreover, a global likelihood
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Figure 8: Snapshots illustrating the two methods. Left column: zoom on local trajectories. Middle column: the bounding box illustrates
the position of the vehicle estimated with the sequential method. Right column: the bounding box illustrates the position of the vehicle
estimated with the sequential method.

function using background/foreground binary extraction
has been proposed, with an efficient implementation.

Experiments have been achieved to demonstrate that the
proposed method outperforms a classic sequential particle
filter solution using statistics performed on real video
sequences. Two points explain this improvement. First, the
spatio-temporal deferred approach processes over the whole
data set, thus ensuring time consistency. Second, the spatio-
temporal deferred approach, unlike the sequential approach,
ensures total faithfulness to the model at any time step,
because the maximum a posteriori estimate may be found
on different particles at every time step.

The method discussed in this paper is currently operating
24 hours a day with various weather conditions to provide
statistics on curve trajectories. For the purpose of covering

the entire curve, the system is composed of three color
cameras with very little overlap. The system has successfully
analyzed observations recorded under actual traffic condi-
tions over several-day periods.
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