
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2010, Article ID 764838, 7 pages
doi:10.1155/2010/764838

Research Article

Comparing an FPGA to a Cell for an Image Processing Application

Ryan N. Rakvic,1 Hau Ngo,1 Randy P. Broussard,2 and RobertW. Ives1

1Department of Electrical and Computer Engineering, U.S. Naval Academy, Annapolis, MD 21402-5000, USA
2Department of Systems Engineering, U.S. Naval Academy, Annapolis, MD 21402-5000, USA

Correspondence should be addressed to Ryan N. Rakvic, rakvic@usna.edu

Received 2 December 2009; Accepted 8 March 2010

Academic Editor: Yingzi Du

Copyright © 2010 Ryan N. Rakvic et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Modern advancements in configurable hardware, most notably Field-Programmable Gate Arrays (FPGAs), have provided an
exciting opportunity to discover the parallel nature of modern image processing algorithms. On the other hand, PlayStation3
(PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex
image processing algorithms at a high performance. In this research project, our aim is to study the differences in performance
of a modern image processing algorithm on these two hardware platforms. In particular, Iris Recognition Systems have recently
become an attractive identification method because of their extremely high accuracy. Iris matching, a repeatedly executed portion
of a modern iris recognition algorithm, is parallelized on an FPGA system and a Cell processor. We demonstrate a 2.5 times
speedup of the parallelized algorithm on the FPGA system when compared to a Cell processor-based version.

1. Introduction

For most of the history of computing, the amazing gains in
performance we have experienced were due to two factors:
decreasing feature size and increasing clock speed. However,
there are fundamental physical limits to this approach—
decreasing feature size gets more and more expensive and
difficult due to the physics of the photolithographic process
used to make CPUs, and increasing clock speed results
in a subsequent increase in power consumption and heat
dissipation requirements. Parallel computation has been in
use for many years in high performance computing; however,
in recent years, multicore architectures have become the
dominate computer architecture for achieving performance
gains. The signal of this shift away from ever increasing clock
speeds occurred when Intel Corporation cancelled develop-
ment of its new single core processors to focus development
on dual core technology. Executing programs in parallel
on hardware specifically designed with parallel capabilities
is the new model to increase processor capabilities while
not entering into the realm of extensive cooling and power
requirements.

The Cell processor is a joint effort by Sony Computer
Entertainment, Toshiba Corporation, and IBM that began
in 2000, with the goal of designing a processor with
performance of an order of magnitude over that of desktop
systems shipping in 2005. The result was the first-generation
Cell Broadband Engine (BE) processor, which is a multicore
chip comprised of a 64-bit Power Architecture processor
core and eight synergistic processor cores. A high-speed
memory controller and high-bandwidth bus interface are
also integrated on-chip [1].

The Cell processor, shown in Figure 1, has a unique
heterogeneous architecture compared to the homogeneous
Intel Core architecture. It has a main processor called the
Power Processing Element (PPE) (a two-way SMT PowerPC
based processor), and eight fully functional coprocessors
called the Synergistic Processing Elements, or SPEs. The
PPE directs the SPEs where the bulk of the computation
occurs. The PPE is intended primarily for control processing,
running operating systems, managing system resources, and
managing SPE threads. The SPEs are single-instruction,
multiple-data (SIMD), shown in Figure 1, processors with a
RISC core [2].



2 EURASIP Journal on Advances in Signal Processing

SPU SPU SPU SPU SPU SPU SPU SPU
SXU SXU SXU SXU SXU SXU SXU SXU

Local
store

Local
store

Local
store

Local
store

Local
store

Local
store

Local
store

Local
store

SMF SMF SMF SMF SMF SMF SMF SMF

Element interconnect bus (up to 96 bytes/cycle)

16 bytes/cycle

Power
processor
element

Synergistic processor elements

16 bytes/cycle 16 bytes/cycle (2x)

Power
processor unit

L2 cache
L1

cache
Power

execution
unit

32 bytes/cycle 16 bytes/cycle

64 bit power architecture with vector media extensions

Memory
interface

controller

Bus
interface

controller

Dual XDR Flex I/O

Figure 1: Cell BE high-level architecture diagram.

According to IBM, the Cell BE is capable of achieving
in many cases 10 times the performance of the latest PC
processors [3]. The first major commercial application of
the Cell processor was in Sony’s PlayStation3 game system.
The PlayStation3 has only 6 SPU cores available due to one
core being reserved by the OS and 1 core being disabled in
order to increase production yields. Sony has made it very
easy to install a new Linux-based operating system onto the
PlayStation3, thereby making the game system a popular
choice for experimenting with the Cell BE.

Historically programmers have thought in sequential
terms, and programming these multicore processors can be
difficult. Often times, this involves completely redesigning
an existing program from the ground up and implementing
complex synchronization protocols. Parallel programming is
based on the simple idea of division of labor—that large
problems can be broken up into smaller ones that can be
worked on simultaneously. Making it more challenging is
the fact that the SPEs in the Cell do not share memory with
the PPE. Additionally, they are not visible to the operating
system, thereby leaving all management of SPE code and data
to the programmer.

Another popular approach to parallelization is to use
Field Programmable Gate Arrays (FPGAs). FPGAs are
complex programmable logic devices that are essentially a
“blank slate” integrated circuit from the manufacturer and
can be programmed with nearly any parallel logic function.
They are fully customizable and the designer can prototype,
simulate, and implement a parallel logic function without
the costly process of having a new integrated circuit man-
ufactured from scratch. FPGAs are commonly programmed
via VHDL (VHSIC Hardware Description Language). VHDL

statements are inherently parallel, not sequential. VHDL
allows the programmer to dictate the type of hardware that
is synthesized on an FPGA. For example, if you would like to
have many ALUs that execute in parallel, then you program
this in the VHDL code.

In this work, we have parallelized a repeatedly executed
portion of an image processing algorithm with both an
FPGA and a Cell processor. In Section 2 we present the
Iris Recognition Algorithm and iris template matching. In
Section 3, we present an approach to iris matching utilizing
parallel logic with field-programmable gate arrays and cell
processors. In Section 4 we demonstrate this efficiency with
a comparison between the FPGA, the Cell processor, and a
sequential processor. We provide concluding statements in
Section 5.

2. Iris Recognition Algorithm

Iris recognition stands out as one of the most accurate
biometric methods in use today. One of the first iris
recognition algorithms was introduced by pioneer Dr. John
Daugmann [4]. An alternate iris recognition algorithm,
referred to as the Ridge Energy Direction (RED) algorithm
[5], will be the basis for this work. There are many iris
detection algorithms. What follows is a brief description
of the RED algorithm. Since this research is focused on
computational acceleration, we refer the reader to [6–12].

The iris is the colored part of the eye, protected by the
cornea that extends from the pupil to the white of the eye. Its
patterns remain stable over a lifetime. An example iris image
is depicted in Figure 2. Typically an iris image is captured in



EURASIP Journal on Advances in Signal Processing 3

1) Segment iris into polar coordinates

Vertical filtering

Horizontal filtering

Compare Template

2) Template generation
(directional filtering)

Figure 2: Red iris recognition algorithm. Visible is the associated
two dimensional encoding of the iris image into energy data [14].

the Near Infrared light spectrum. Most iris capture systems
have dedicated illumination and capture a 640 by 480 pixels
image containing eight bits per pixel. Once a digital image of
the iris is captured, the system begins processing the image
to transform it from a two-dimensional array of pixels to a
two dimensional encoded string of bits for comparison (see
“Segment Iris into Polar Coordinates” in Figure 2). In this,
the first step is to identify the iris among other facial elements
such as the eyelids, sclera (white part of the eye), pupil (dark
circle in the center of the eye), and eyelashes. The algorithm
finds the pupil by thresholding the image and using basic
features such as circularity to find the most circle-like object
in the thresholded image. The outer boundary is found using
local kurtosis which has near-zero values at the boundary.
Details of this segmentation method are described in prior
art [13]. Once these boundaries are located, the computer
can now extract only the meaningful portions of the iris.

Once the iris is segmented, the algorithm takes the iris
and divides it into m concentric annuli and n radial lines,
which results in anm×n representation of the iris. This step is
effectively a rectangular to polar coordinate conversion. The
energy of each pixel is merely the square of the value of the
infrared intensity within the pixel and is used to distinguish
features within the iris. The next step is to encode the iris
image from two dimensional brightness data down to a two
dimensional binary signature, referred to as the template
(“Template Generation” in Figure 2), to accomplish this, the
energy data are passed into two directional filters to deter-
mine the existence of ridges and their orientation. The RED
algorithm uses directional filtering to generate the iris tem-
plate, a set of bits that meaningfully represents a person’s iris.

To help perform this filtering, the energy data passed
from the iris segmentation process is made periodic in the
horizontal dimensions to account for edge effects when
performing the rectangular to polar conversion. The filter

�1 �1 �1 2 2 2 �1 � 1 �1
�1 �1 �1 2 2 2 �1 � 1 �1
�1 �1 �1 2 2 2 �1 � 1 �1
�1 �1 �1 2 2 2 �1 � 1 �1
�1 �1 �1 2 2 2 �1 � 1 �1
�1 �1 �1 2 2 2 �1 � 1 �1
�1 �1 �1 2 2 2 �1 � 1 �1
�1 �1 �1 2 2 2 �1 � 1 �1
�1 �1 �1 2 2 2 �1 � 1 �1

Filter centroid

...

9× 9 filter

Input image data
· · ·

Figure 3: 9× 9 filter computing the filtering of the top left portion
of hypothetical input energy data. In this instance, each coefficient
of the filter is multiplied by the corresponding image data within
the scope of the filter (filter kernel) where some of the data is
repeated from the opposite side. These filter coefficient and input
data products make up a partial result, the sums of which generate
a local result corresponding to the centroid of the filter.

passes over this periodic array taking in 81 (9 × 9) values at
a time (note, in [5], 11 × 11 is used). More specifically, the
result is computed by first multiplying each filter value by
the corresponding energy data value. Then a summation is
performed, and the result is stored in a memory location that
corresponds to the centroid of the filter. This process repeats
for each pixel in the energy data, stepping right, column-by-
column, and down, row-by-row, until the filtering is com-
plete as shown in Figure 3. Finally, the template is generated
by comparing the results of two different directional filters
(horizontal and vertical, see Figure 3) and writing a single
bit that represents the filter with the highest output at the
equivalent location. The output of each filter is compared
and for each pixel, a “1” is assigned for strong vertical
content or a “0” for strong horizontal content. These bits are
concatenated to form a bit vector unique to the “iris signal”
that conveys the identifiable information. In this study, we
assume that a template consists of 2048 bits, representing the
uniqueness of the iris.

A template mask is also created during this filtering
process. If both filter output values are not above a certain
threshold, then a mask bit is cleared for that particular
pixel location. The template mask is used to identify pixel
locations where neither vertical nor horizontal directions are
identified.

Once encoded, the iris recognition system must be able
to reliably match the newly created template with a database
of previously enrolled templates. The newly encoded iris is
compared to a database of previously created templates using
a fractional Hamming Distance (HD) calculation, which is
defined in (1). This is illustrated in Figure 4

HD =
∥
∥
(

template A⊗ template B
)⋂

mask A
⋂

mask B
∥
∥

‖mask A
⋂

mask B‖ .

(1)



4 EURASIP Journal on Advances in Signal Processing

2048 bit
template

HD

HD

...

Match ?

2048 bit
template

Figure 4: New template is compared with each template stored in a
database.

The ⊗ operator is the exclusive-or operation used to
detect disagreement between corresponding bit pairs in the
two templates,

⋂

represents the binary AND function, and
masks A and B identify the values in each template that
are not corrupted by artifacts such as eyelids/eyelashes and
specularities. The denominator of (1) ensures that only
valid bits are included in the calculation, after artifacts
are discounted. The lower the HD result, the greater the
match between the two irises being compared. The fractional
Hamming distance between two templates is compared to
a predetermined threshold value and a match or nonmatch
declaration is made.

The HD calculation, or iris matching, is critical to
the throughput performance of iris recognition since this
task is repeated many times, seen in Figure 4. Traditional
systems for HD calculation have been coded in sequential
logic (software); databases have been spread across multiple
processors to take advantage of the parallelism of the
database search, but the inherent parallelism of the HD
calculation has not been fully exploited.

3. Implementations

3.1. Sequential on a CPU. Currently, iris recognition algo-
rithms are deployed globally in a variety of systems ranging
from computer access to building security to national size
databases. These systems typically use central processing
unit- (CPU-) based computers. CPU based computers
are general purpose machines, designed for all types of
applications and are to first order programmed as sequential
machines, though there are provisions for multiprocessing
and multithreading. Recently, there has been an interest
in exploring the parallel nature of this application [15]. It
is challenging to exploit the inherent parallelism of many
algorithms in such architectures.

In particular, the matching portion of the algorithm
is important since it needs to be repeated many times
(depending on the number of iris comparisons necessary).
Illustrated in Figure 5 is optimized C++ code for computing
the fractional HD between two templates. The optimizations
in this code include the use of 32-bit logical operations and
the use of a lookup table for bit counting.

We would like to highlight the sequential nature of this
code. For example, since the XOR function is performed
32 bits at a time, a loop (for loop denoted) is necessary.
Since it is computing 2048 bits, this loop is executed 64

times. Also, note that the XOR and AND computations
are also performed sequentially. These instructions could
be scheduled to execute in parallel, but a modern CPU
has a limited number of functional units, therefore limiting
the amount of parallel execution. Summation of the bits
is performed using lookup tables. Finally, the HD score is
computed as a ratio of the number of differences between
the templates to the total number of bits that are not
masked.

Illustrated in Figure 6 is the associated assembly code
created for the hamming distance calculation. The code is
compiled for an Xeon Processor, and hence IA-32 assembly
code is produced [16]. For each C++ computation, there
are at least 5 assembly language instructions required.
For example, the AND computation that is in C++ code
generates 4 MOV instructions and one AND instruction. The
MOV instructions are required to move data to and from
memory. The AND instruction is a 32-bitwise computation
performed by an ALU functional unit in the processor.
As stated before, instruction execution bandwidth for a
processor is limited by the number of functional units
that it has. Loop instructions require overhead assembly
instructions to again move the proper data to and from
memory. For each iteration of the loop, there is required
a total of 38 assembly instructions. Therefore, this code
requires 64 loops × 38 assembly instructions to perform one
template match.

3.2. Parallel on an FPGA. Field Programmable Gate Arrays
(FPGAs) are complex programmable logic devices that
are essentially a “blank slate” integrated circuit from the
manufacturer and can be programmed with nearly any
parallel logic function. They are fully customizable and
the designer can prototype, simulate, and implement a
parallel logic function without the costly process of having
a new integrated circuit manufactured from scratch. FPGAs
are commonly programmed via VHDL (VHSIC Hardware
Description Language). VHDL statements are inherently
parallel, not sequential. VHDL allows the programmer to
dictate the type of hardware that is synthesized on an
FPGA. Ideally, if 2,048 matching elements could fit onto the
FPGA, all 2048 bits of the template could be compared at
once, with a corresponding increase in throughput. Here
we perform the same function as the aforementioned C++
code. However, we are doing this computation completely
in parallel. There are 2,048 XOR gates and 4,096 AND
gates required for this computation. In addition, adders are
required for summing and calculating the score.

This code is contained within a “process” statement.
The process statement is only initiated when a signal in
the sensitivity list changes values. The sensitivity list of the
process contains the clock signal and therefore the code
is executed once per clock cycle. In this code, the clock
signal is drawn from our FPGA board which contains a
50 Mhz clock. Therefore, every 20 ns, this hamming distance
calculation is computed. This code is fully synthesizable
and can be downloaded onto an FPGA for direct hardware
execution.



EURASIP Journal on Advances in Signal Processing 5

for(IntPtr1=(unsigned int *)&matrix[row][0],
IntPtr2=(unsigned int *)&InMatrix->matrix[0][0],
MaskPtr1=(unsigned int *)&Mask1->matrix[row][0],
MaskPtr2=(unsigned int *)&Mask2->matrix[0][0];
IntPtr1 <(unsigned int *)&matrix[row][ActualCols - 4];
IntPtr1++,IntPtr2++,MaskPtr1++,MaskPtr2++)
{

// AND two Masks using 32 bit pointers
Mask = *MaskPtr1 & *MaskPtr2;
// XOR templates, AND with Masks using 32 bit

pointers
XOR = (*IntPtr1 ^ *IntPtr2) & Mask;
// Sum lower 16 bits of XOR using lookup table
Sum += Value[XOR & 0x0000ffff];
// Sum upper 16 bits of XOR
Sum += Value[(XOR>>16) & 0x0000ffff];
// Sum lower 16 of Mask
MaskSum += Value[Mask & 0x0000ffff];
// Sum upper 16 of Mask
MaskSum += Value[(Mask>>16) & 0x0000ffff];

};

Score->matrix[row][0] = (float)Sum/(float)MaskSum;

Figure 5: C++ code for fractional Hamming Distance Computation.

3.3. Parallel on a CELL. We have also parallelized the
HD calculation on the Cell processor on the PlayStation3.
As stated before, SPE management is left entirely to the
programmer. We therefore have completely separate code
and compilations for the PPE and the SPEs. The code on
the PPE works as a slave master, spawning off threads of
work to the 6 individual SPEs. The work is divided up on iris
template matching boundaries, not within a template match.
Therefore, each SPE is individually responsible for 1/6th of
the HD comparisons. To maximize performance, the HD
calculation is vectorized on the SPEs, taking advantage of the
SIMD capabilities of the SPU’s.

4. Results

The CPU experiment is executed on an Intel Xeon X5355
[17] workstation class machine. The processor is equipped
with 8 cores, 2.66 GHz clock, and an 8 MB L2 cache.
While there are eight cores available, only one core is
used to perform this test, therefore allowing all cache
and memory resources for the code under test. The HD
code was compiled under Windows XP using the Visual
Studio software suite. The code has been fully optimized
to enhance performance. Additionally, millions of matches
were executed to ensure that the templates are fully cached
in the on-chip L2 cache. We report the best-case per match
execution time.

The PlayStation3 is used for our Cell experiments. Fedora
Core 8 was chosen for installation onto the PlayStation3.
Fedora Core 8 is not the most recent release of Fedora but was
chosen because it is the most recent release that has been fully
adapted to the PlayStation3. Additionally, the installation
procedures available online for FC8 are the most detailed and
complete of any Linux distribution. Furthermore, the IBM
SDK, which is required for writing code that runs on the
Cell’s SPUs, is specifically only released for the commercial
Red Hat Enterprise Edition Linux or the freely available
Fedora Core.

The FPGA experiment is executed on a DE2 [18] board
provided by Altera Corporation. The DE2 board includes
a Cyclone-II EP2C35 FPGA chip, as well as the required
programming interface. Although the DE2 board is utilized
for this research, only the Cyclone-II chip is necessary
to execute our algorithm. The Cyclone-II [19] family is
designed for high-performance, low-power applications. It
contains over 30,000 logic elements (LE) and over 480,000
embedded memory bits. In order to program our VHDL
onto the Cyclone-II, we utilize the Altera Quartus software
for implementation of our VHDL program. The Quartus
suite includes compilation, synthesis, simulation, and pro-
gramming environments. We are able to determine the size
required of our program on the FPGA, and the resulting
execution time. The optimized C++ code time is actually
faster than some of the times reported in the literature
for commercial implementations [20]. We attribute this
difference to improvements in CPU speed and efficiency
between the time of our experiments and the previous
reports. However, this indicates that our C++ code is a
reasonable target for comparison and that we may reasonably
expect similar improvements from application of FPGA
technology to other HD-based algorithms.

All VHDL code is fully synthesizable and is downloaded
onto our DE2 for direct hardware execution. As discussed
above, our code is fully contained within a “process”
statement. The process statement is only initiated when a
signal in its sensitivity list changes values. The sensitivity
list of our process contains the clock signal and therefore
the code is executed once per clock cycle. In this code, the
clock signal is drawn from our DE2 board which contains
a 50 MHz clock. Therefore, every 20 ns, our calculation is
computed.

Table 1 illustrates the execution times and acceleration
achieved for our implemented FPGA version on the Cyclone-
II EP2C35, a CELL-based version and an Xeon-based C++
version. The optimized C++ version takes 383 ns per match,
the CELL version with 6 SPEs takes 50 ns, and the FPGA takes
20 ns per match. The main result in this research is that the



6 EURASIP Journal on Advances in Signal Processing

Mask = *MaskPtr1 & *MaskPtr2;// AND Masks with 32 bit pointers

00401D63 mov ecx,dword ptr [ebp-24h]
00401D66 mov edx,dword ptr [ebp-28h]
00401D69 mov eax,dword ptr [ecx]
00401D6B and eax,dword ptr [edx]
00401D6D mov dword ptr [ebp-30h],eax

XOR = (*IntPtr1 ^ *IntPtr2) & Mask;

00401D70 mov ecx,dword ptr [ebp-1Ch]
00401D73 mov edx,dword ptr [ebp-20h]
00401D76 mov eax,dword ptr [ecx]
00401D78 xor eax,dword ptr [edx]
00401D7A and eax,dword ptr [ebp-30h]
00401D7D mov dword ptr [ebp-2Ch],eax

Sum += Value[XOR & 0x0000ffff]; // Sum lower 16 bits of XOR
using lookup table

00401D80 mov ecx,dword ptr [ebp-2Ch]
00401D83 and ecx,0FFFFh
00401D89 mov edx,dword ptr [ebp-34h]
00401D8C add edx,dword ptr [ecx*4+4519E0h]
00401D93 mov dword ptr [ebp-34h],edx

Sum += Value[(XOR>>16) & 0x0000ffff]; // Sum upper 16 bits XOR

00401D96 mov eax,dword ptr [ebp-2Ch]
00401D99 shr eax,10h
00401D9C and eax,0FFFFh
00401DA1 mov ecx,dword ptr [ebp-34h]
00401DA4 add ecx,dword ptr [eax*4+4519E0h]
00401DAB mov dword ptr [ebp-34h],ecx

MaskSum += Value[Mask & 0x0000ffff]; // Sum lower 16 bits of
Mask

00401DAE mov edx,dword ptr [ebp-30h]
00401DB1 and edx,0FFFFh
00401DB7 mov eax,dword ptr [ebp-38h]
00401DBA add eax,dword ptr [edx*4+4519E0h]
00401DC1 mov dword ptr [ebp-38h],eax

MaskSum += Value[(Mask>>16) & 0x0000ffff]; // Sum upper 16
bits of Mask

00401DC4 mov ecx,dword ptr [ebp-30h]
00401DC7 shr ecx,10h
00401DCA and ecx,0FFFFh
00401DD0 mov edx,dword ptr [ebp-38h]
00401DD3 add edx,dword ptr [ecx*4+4519E0h]

Figure 6: C++ code (highlighted) and IA-32 Assembly Code for Hamming Distance Calculations.

Table 1: FPGA versus CPU comparison for iris match execution.

Optimized Xeon
Code on PS3

CELL (with 6
SPEs)

Cyclone-II EP2C35
(50 MHz)

Cyclone-II estimated
@ 100 MHz

Stratix IV estimated
@ 500 MHz

Time per match (ns) 383 ns 50 ns 20 ns 10 ns (est) 2 ns (est)

Speedup over Xeon n/a 7.66 19.15 38.3 191.5

% usage of chip n/a n/a 73% n/a 7.3% (est)

HD calculation on a modest sized FPGA is approximately 19
times faster than a state-of-the-art CPU design and 2.5 times
faster than the image processing Cell processor. The Cell
processor greatly outperforms the Xeon machine and scales
really well across the cores, but still does not outperform a
modestly sized FPGA.

In the Cyclone-II FPGA, there are over 400,000 memory
bits available for on-chip storage. The iris templates must
be stored either in memory on the FPGA or off-chip. In
one instance of our implementation, we have implemented a

2048-bit wide memory in VHDL. We have added this to our
code to verify that a small database can be stored on chip.
One of the two templates compared is received from this
dual-ported, 2048-bit wide, single-cycle cache implemented
on our Cyclone-II FPGA. Therefore, once per clock cycle, a
2048-bit vector is fetched from on-chip memory, and the HD
calculation is performed. Again, therefore, the entire process
can be executed in 20 ns. We have successfully implemented
and tested the HD calculation with and without a memory
device.



EURASIP Journal on Advances in Signal Processing 7

Also reported in Table 1 is the utilization of the FPGA
resources. Our implementation of the Hamming Distance
algorithm utilizes 73% of our Cyclone-II FPGA. In terms of
on-chip memory usage, one of the two templates compared
is stored in the dual-ported, 2048-bit wide, single-cycle cache
implemented on our Cyclone-II FPGA. Each stored template
consumes 0.7% of on-chip memory. We have added this to
our code to verify that a small database of approximately 230
can be stored on chip.

The Cyclone-II is not built for performance and is
also not a state-of-the-art design. A projection of the
performance of a faster Cyclone-II (100 MHz) and a state-
of-the-art Stratix IV (500 MHz) FPGA is given in Table 1.
A still modest Cyclone version clocked at 100 MHz is able
to outperform the sequential version by a factor of 38.
The faster Stratix IV is projected to perform approximately
190 times faster than the sequential version. Additionally,
our implementation on the Stratix IV would only consume
approximately 7.3% of the chip. On-chip memory for
the Stratix-IV is also much larger with 22.4 Mbits of on-
chip storage. For example, a database consisting of 10000
irises can be stored on the Stratix-IV. We anticipate this
storage scaling trend to continue into the future, with larger
and larger database storage becoming available. If a larger
database is necessary, we propose an implementation where
a DRAM chip is provided as part of the package, and the
on-chip database is concurrently loaded while hamming
distances are being computed. In addition, with a larger
FPGA, it is possible to compute multiple matches in parallel.
This available parallelism is also demonstrated in Table 1.

5. Conclusion

The trend in modern computing is toward a multicore
design. In this research, we are interested in the performance
of a modern multicore, Cell processor, compared to an
FPGA for an image processing algorithm. We demonstrate
that a vital portion of an iris recognition algorithm can be
parallelized on both systems, and our results on an FPGA
are 2.5 times better than the CELL processor. FPGAs have
been on an impressive scaling trend over the last 10 years. We
expect this scaling trend to continue in the short term and we
even believe that an FPGA could potentially be a part of the
General Purpose Computer of tomorrow.

References

[1] “Synergistic processing in cell’s multicore architecture,”
http://www.research.ibm.com/people/m/mikeg/papers/2006
ieeemicro.pdf.

[2] Cell Broadband Engine Programming, IBM Developer Works,
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/
1741C509C5F64B3300257460006FD68D.

[3] “Cell Broadband Engine,” https://www-01.ibm.com/chips/
techlib/techlib.nsf/products/Cell Broadband Engine.

[4] J. Daugman, “Probing the uniqueness and randomness of
iriscodes: results from 200 billion iris pair comparisons,”
Proceedings of the IEEE, vol. 94, no. 11, pp. 1927–1935, 2006.

[5] R. W. Ives, R. P. Broussard, L. R. Kennell, R. N. Rakvic, and
D. M. Etter, “Iris recognition using the ridge energy direction
(RED) algorithm,” in Proceedings of the 42nd Annual Asilomar
Conference on Signals, Systems and Computers, pp. 1219–1223,
Pacific Grove, Calif, USA, November 2008.

[6] C.-H. Park, J.-J. Lee, M. J. T. Smith, and K.-H. Park, “Iris-based
personal authentication using a normalized directional energy
feature,” in Proceedings of Audio and Video Based Biometric
Person Authentication Conference, vol. 2688, pp. 224–232,
2003.

[7] Y. Chen, S. C. Dass, and A. K. Jain, “Localized iris image
quality using 2-D wavelets,” in Proceedings of the International
Conference on Biometrics (ICB ’06), pp. 373–381, Hong Kong,
January 2006.

[8] S. Shao and M. Xie, “Iris recognition based on feature extrac-
tion in kernel space,” in Proceedings of the IEEE Biometrics
Symposium, Baltimore, Md, USA, September 2006.

[9] R. P. Broussard, L. R. Kennell, and R. W. Ives, “Identifying dis-
criminatory information content within the iris,” in Biometric
Technology for Human Identification V, Proceedings of SPIE,
Orlando, Fla, USA, March 2008.

[10] G. Gupta and M. Agarwal, “Iris recognition using non filter-
based technique,” in Proceedings of the Biometrics Symposium,
pp. 45–47, Arlington, Va, USA, September 2005.

[11] R. W. Ives, L. Kennell, R. Broussard, and D. Soldan, “Iris
recognition using directional energy,” in Proceedings of the
IEEE International Conference on Image Processing (ICIP ’08),
San Diego, Calif, USA, October 2008.

[12] L. Masek, Recognition of human iris patterns for biometric
identification, M.S. thesis, The University of Western Australia,
Perth Crawley, Australia, 2003, http://www.csse.uwa.edu.au/∼
pk/studentprojects/libor/LiborMasekThesis.pdf.

[13] L. Kennell, R. W. Ives, and R. M. Gaunt, “Binary morphology
and local statistics applied to iris segmentation for recogni-
tion,” in Proceedings of the IEEE International Conference on
Image Processing (ICIP ’06), Atlanta, Ga, USA, October 2006.

[14] J. Daugman, “Statistical richness of visual phase information:
update on recognizing persons by iris patterns,” International
Journal of Computer Vision, vol. 45, no. 1, pp. 25–38, 2001.

[15] R. P. Broussard, R. N. Rakvic, and R. W. Ives, “Accelerating iris
template matching using commodity video graphics adapters,”
in Proceedings of the 2nd IEEE International Conference on
Biometrics: Theory, Applications and Systems (BTAS ’08),
Crystal City, Va, USA, September 2008.

[16] Intel Corporation, June 2008, http://www.intel.com/products/
processor/manuals/index.htm.

[17] Intel Corporation, June 2008, http://processorfinder.intel
.com/details.aspx?sSpec=SL9YM.

[18] Altera Corporation, June 2008, http://www.altera.com/
education/univ/materials/boards/unv-de2-board.html.

[19] Altera Corporation, June 2008, http://www.altera.com/
products/devices/cyclone2/cy2-index.jsp.

[20] J. Daugman, “How iris recognition works,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 14, no. 1, pp.
21–30, 2004.


	1. Introduction
	2. Iris Recognition Algorithm
	3. Implementations
	4. Results
	5. Conclusion
	References

