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We propose a novel feature, local histogram of figure/ground segmentations, for robust and efficient background subtraction
(BGS) in dynamic scenes (e.g., waving trees, ripples in water, illumination changes, camera jitters, etc.). We represent each pixel
as a local histogram of figure/ground segmentations, which aims at combining several candidate solutions that are produced by
simple BGS algorithms to get a more reliable and robust feature for BGS. The background model of each pixel is constructed
as a group of weighted adaptive local histograms of figure/ground segmentations, which describe the structure properties of the
surrounding region. This is a natural fusion because multiple complementary BGS algorithms can be used to build background
models for scenes. Moreover, the correlation of image variations at neighboring pixels is explicitly utilized to achieve robust
detection performance since neighboring pixels tend to be similarly affected by environmental effects (e.g., dynamic scenes).
Experimental results demonstrate the robustness and effectiveness of the proposed method by comparing with four representatives

of the state of the art in BGS.

1. Introduction

Background subtraction (BGS) has attracted significant
attention due to its wide variety of applications, including
intelligence video surveillance, human machine interfaces,
and robotics. Much progress has been made in the last two
decades. However, designing robust BGS methods is still
an open issue, especially considering various complicated
variations that may occur in dynamic scenes, for example,
trees waving, water rippling, moving shadow, illumination
changes, camera jitters, and so forth. To solve them, most
top-performing methods rely on more sophisticated features,
more elaborate modeling techniques, prior information
on the scenes and foreground objects, more costly post
processing schemes (e.g., Graph Cuts on Markov Random
Field), and more higher-level feedbacks (e.g., detection or
tracking). In the literatures, for a scene, we actually can get a
lot of output via a number of BGS algorithms using different
features and modeling strategies. Since each kind of BGS
algorithm has its strength and weakness and is particularly

applicable for handling a certain type of variation, many
methods often use sequential coarse-to-fine frameworks to
fuse the output of a number of BGS algorithms. However,
when a foreground pixel is not detected by coarse level
subtraction due to some reasons, for example, similar color,
those methods will not classify this pixel as foreground.
The following question naturally arises: instead of using
sequential coarse-to-fine fusion frameworks, is there another
more powerful way for fusing the output of a number of BGS
algorithms to achieve more robust BGS results in dynamic
scenes? Our answer is yes.

In this paper, we propose an approach that uses local
histogram of figure/ground segmentations to fuse a set
of candidate solutions that are produced by simple BGS
algorithms in order to get a final robust and accurate BGS
result, especially under dynamic scenes. More specifically, for
one incoming video frame, we first obtain a set of candidate
figure/ground segmentations via fast and simple BGS algo-
rithms. Then, we represent each pixel in the video frame as a
local histogram of figure/ground segmentations via combing



these proposal solutions. Finally, the background model of
each pixel is constructed as a group of weighted adaptive local
histograms of figure/ground segmentations, which capture
apparent coocrurence statistics of neighboring pixels.

Our method has the following advantages. (1) We can
use multiple complementary BGS algorithms to build back-
ground models for a scene. This avoids the pitfalls of purely
single BGS approaches. (2) The proposed feature, local
histogram of figure/ground segmentations, fuses the output
of a number of BGS algorithms to encode spatial correlation
between neighboring pixels. This avoids a basic assumption
sharing by most BGS algorithms: there exists a common
underlying low-level visual property (e.g., intensities, colors,
edges, gradients, textures, and optical flow) which is shared
by the consecutive pixels in the same position, and can thus
be extracted and compared to the background model. This
assumption, however, may be too restrictive, especially under
difficult conditions such as dynamic scenes. The proposed
method does not require the temporal continuity of the
background images, but the correlation of image variations
at neighboring pixels. Therefore, we can robustly detect
foreground objects in dynamic scenes, as illustrated by our
results in Section 5.

The rest of the paper is organized as follows. Section 2
reviews related work in the BGS literature. The local
histogram of figure/ground segmentations is then described
in Section 3. The BGS approach based on local histogram
of figure/ground segmentations is presented in Section 4.
Experimental results are given in Section 5. Finally, we
conclude this work in Section 6.

2. Related Work

One popular technique is to model each pixel color in a
video frame with a Gaussian distribution [1]. This model
does not work well in the case of dynamic scenes. To
deal with this problem, Gaussian Mixture Model (GMM)
[2] is used to model each pixel. But it cannot adapt to
the case where the background has quick variations [3].
Numerous improvements of the original method developed
by Stauffer and Grimson [2] have been proposed over the
recent years and a good survey of these improvements is
presented in [4].

Rather than extending the GMM, a number of nonpara-
metric approaches have been proposed to model background
distribution in complex environments where background
statistics cannot be described parametrically. In W4 system
[5], the background scene is statically modeled by the mini-
mum and maximum intensity values and maximal temporal
derivative for each pixel recorded over some period. A
nonstatistical clustering technique to construct a background
model is presented in [6]. The background is encoded on a
pixel-by-pixel basis and samples at each pixel are clustered
into the set of codewords. Elgammal et al. [7] are among the
first to utilize the kernel density estimation (KDE) technique
to model the background color distribution, which has been
successful applied in BGS literature. Another significant
contribution of this work is the incorporation of spatial
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constraints into the formulation of foreground classification.
In the second phase of their approach, pixel values that could
be explained away by distributions of neighboring pixels
are reclassified as background, allowing for greater resilience
against dynamic backgrounds. In [8], the background and
foreground models are first constructed via KDE technique
separately, which are then used competitively in a MAP-
MREF decision framework. Mittal and Paragios [9] propose
the use of variable bandwidths for KDE to enable modeling
of arbitrary shapes of the underlying density in a more
natural way. Parag and Elgammal [10] use a boosting method
(RealBoost) to choose the best feature to distinguish the
foreground for each of the areas in the scene. However,
one key problem with kernel density estimation techniques
is their high computational requirement due to the large
number of samples needed to model the background. A
Bayesian framework that incorporates spectral, spatial, and
temporal features to characterize the background appearance
is proposed in [11]. Under this framework, the background
is represented by the most significant and frequent features,
that is, the principal features, at each pixel.

Some authors model the background using texture
features. Heikkild and Pietikdinen [12] propose an approach
based on the discriminative LBP histogram. However, simple
grayscale operations make LBP rather sensitive to noise
and it is also not so efficient on uniform regions. Yao and
Odobez [13] propose a multiple layer background model
which makes use of the LBP texture feature and color feature.
In [14], the background is firstly divided into three types
of regions—flat, sketchable and textured region according
to a primal sketch representation. Then, the three types of
regions are modeled, respectively, by Mixture of Gaussians,
image primitives and LBP histograms. Finally, the geometry
information obtained from camera calibrations is used to
further reduce false alarms.

Some approaches treat pixel value changes as a time
series and consider a predictive model to capture the most
important variation based on past observations. In [15,
16], an autoregressive model is proposed to capture the
properties of dynamic scenes. Monnett et al. [17] model
the background as a dynamic texture, where the first few
principal components of the variance of a set of background
images comprise an autoregressive model. In [18], a Hidden
Markov Model approach is adopted.

A number of attempts have been made to utilize statistics
of neighborhoods for BGS. Seki et al. [19] propose a BGS
method based on the cooccurrence of image variations,
which can be regarded as narrowing the background image
variations by estimating the background image pattern in
each image block from the neighboring image patterns in
the input image. In [20], scene is coarsely represented as the
union of pixel layers and foreground objects are detected
by propagating these layers using a maximum-likelihood
assignment. However, the limitations of the method are
high-computational complexity and the requirement of an
extra offline training step. Ko et al. [21] have developed
a BGS scheme that analyzes the temporal variation of
intensity or color distributions, instead of either looking
at temporal variation of point statistics, or the spatial
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FiGURE 1: The process of constructing local histogram of figure/ground segmentations to form a final representation for each pixel. In the

figure, t denotes a frame number.

variation of region statistics in isolation. Dalley et al. [22]
introduce a new image generation model that takes into
account the spatial uncertainty of dynamic background
textures. In their model, they allow pixels to be generated
from nearby Gaussians. Mahadevan and Vasconcelos [23]
view BGS as a problem of saliency detection: background
points are those considered not salient by suitable com-
parison of object and background appearance and dynam-
ics. Other methods (e.g., [24]) firstly use BGS to get a
set of candidate foreground pixels; then, use foreground
analysis to remove false alarm pixels of detected foreground
regions.

Other efforts dealing with background modeling include
motion-based approach [25], region-based algorithms [26,
27], hierarchical method [28], and methods using edge
features [27, 29]. Cevher et al. [30] present a method to
directly recover background subtracted images using the
compressive sensing theory when the objects of interest
occupy a small portion of the camera view, that is, when they
are sparse in the spatial domain.

3. The Proposed Feature

In this section, we describe the proposed feature, local
histogram of figure/ground segmentations, whose goal is
to combine several candidate solutions that are produced
by simple BGS algorithms to get a more reliable and
robust feature for BGS. Figure 1 illustrates the procedure
for representing each image pixel as a local histogram
of figure/ground segmentations. For one incoming video
frame, we first obtain a set of candidate BGS maps via several
BGS algorithms. Then, for each initial BGS map, we calculate
a local histogram of figure/ground segmentations computed
on a neighboring region centered on each pixel. Finally,
these local histograms of figure/ground segmentations of
each initial BGS map are concatenated together to form a
final representation for each pixel.

Below we give a detailed description about each compo-
nent in this feature extraction framework.

3.1. Initial Figure/Ground Segmentations. In this paper, to
instantiate the proposed feature, we incorporate the KDE-
based method of [7] and the LBP-based method of [12]
to get initial figure/ground segmentations. Due to the
incorporation of spatial constraints into the formulation of
foreground classification, the KDE-based method [7] can
effectively adapt to smooth behaviors and gradual variations
in the background. However, there are still some problems
which lead to poor performance when infrequent motions
occur, such as ripples or trees rustling periodically (but
not constantly) due to wind gusts (please see Figure 3).
Furthermore, when a foreground pixel is not detected by
pixel level subtraction due to similar color, the method will
not classify this pixel as foreground. Instead of using only the
pixel color or intensity information to make the decision,
Heikkila and Pietikainen [12] have utilized discriminative
texture features (LBP histogram) in dealing with the BGS
problem. The texture-based method often gives good results
for textured regions but is useless in textureless regions.
Moreover, simple grayscale operations make LBP rather
sensitive to noise and it is also not so efficient on uniform
regions.

The motivation of embedding both KDE-based method
(using color feature) and LBP-based method (using texture
feature) in our feature extraction framework for BGS is to
fuse multiple complementary features. Since each kind of
feature has an interesting property, which is particularly
applicable for handling a certain type of variation, we want
to efficiently exploit it in order to make more reliable the
final fusion procedure. For instance, texture features may
be considered for obtaining invariance to textured regions,
while they might not be very suitable for textureless regions.
On the other hand, color information should overcome
texture feature’s limitation.

3.2. Local Histogram of Figure/Ground Segmentations. The
main goal of using local histogram of figure/ground segmen-
tations is to make up for deficiencies in each individual BGS
algorithm, thus achieving a better overall BGS performance
than each single BGS algorithm could provide.
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FIGURE 2: One simple example of constructing local histogram of figure/ground segmentations to form a final representation for a pixel

using a 33 neighborhood.

Based on the initial figure/ground segmentations, we
represent a pixel in a video frame as the feature of local
histogram of figure/ground segmentations via the following
steps. First, for each initial BGS map, we calculate a local
histogram of figure/ground segmentations computed over
a squared fixed-size¢ N X N neighborhood around each
pixel. For efficient calculation, integral histogram [31] is
used here. Then, these local histograms of the figure/ground
labels of each initial BGS map are concatenated together to
form the final representation of each pixel. Specifically, let
S denote the number of initial BGS maps. The preliminary
feature extraction step thus yields to S (2-bin) histograms.
The S histograms are then concatenated together to form
a final 2S-bin histogram, which is then normalized to sum
to one, so that it is also a probability distribution. Figure 2
shows the procedure for representing an image pixel as a
local histogram of figure/ground segmentations using a 33
neighborhood.

To the best of the authors’ knowledge, none of the earlier
studies have utilized discriminative local histogram of fig-
ure/ground segmentations in dealing with the BGS problem.
Only some hierarchical coarse-to-fine strategies may have
been considered. In this paper, we propose an approach
that uses discriminative local histogram of figure/ground
segmentations to capture background statistics.

4. Background Subtraction (BGS)

In this section, we introduce background modeling mecha-
nism based on local histograms of figure/ground segmenta-
tions described above. The goal is to construct and maintain
a statistical representation of the scene that the camera sees.
We consider the local histograms of figure/ground
segmentations of a particular pixel over time as a pixel
process, and model the background for this pixel as a group
of weighted adaptive local histograms of figure/ground
segmentations, {Hyy, Hoy, ..., Hyt ), where n is the number
of model histograms and t is the current frame number.

Each model histogram has a weight between 0 and 1 and all
the n weights sum up to one. The weight of the iTh model
histogram is denoted by w;;.

At the initialized stage, each bin of the # local histograms
is set as 0. The weight of each histogram is set as 1/n.
Then, the BGS procedure continues in the following iterative
fashion until the end of video:

(i) foreground detection.

(ii) background updating.

Below we give some detailed descriptions about these two
components, and the whole BGS algorithm is summarized
finally.

Foreground Detection. At the beginning phase of detection,
we sort the model histograms in decreasing order according
to their weights and the first B model histograms are chosen
as the background model:

b
B = argmhin (Zwi,t > Tn)s (1)

i=1

where T, is a measure of the minimum portion of the
data that should be accounted for by the background.
Actually, the weight w;; of each model histogram encodes
the accumulation of supporting evidence for the background
distributions. We are interested in the local histograms which
have the most supporting evidence over the time. Equation
(1) takes the “best” histograms until a certain portion T,
of the recent data has been accounted for. An incoming
histogram Vof the given pixel is checked against the existing
n model histograms until a match is found. In our paper, the
similarity between two histograms V; and V; is calculated by
the Bhattacharya distance:

K
Dy(Vi, V2) = >\ ViiVai, (2)
i=1
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FiGgure 3: Comparison results of the KDE algorithm and its variation using local histogram of figure/ground segmentations on the two
dynamic scenes. The first two columns are from a scene contains ripples in the water. The last two columns are from a scene contains heavily
swaying trees. The first row contains original video frame. The second and third row contains the detection results of the KDE algorithm

and its variation, separately.

Initialization:
(1) Initialize candidate BGS algorithms.

for t = 2 to the end of the video

for each pixel.

end for

(2) Initialize the local histograms, their corresponding weights and the rest parameters.

(1) Generate a set of proposal BGS map (i.e., proposal solutions) via a heterogeneous set of candidate BGS algorithms.
(2) Construct local histogram of figure/ground segmentations for each candidate BGS algorithms.
(3) Concatenate local histograms of figure/ground segmentation from candidate BGS algorithms to form a final representation

(4) Detect foreground based on the concatenated histograms of figure/ground segmentations.
(5) Update background model of each candidate BGS methods.
(6) Update background model of the concatenated histograms of figure/ground segmentations.

ALGoRITHM 1: Local histogram of figure/ground segmentations for dynamic background subtraction.

where K is the number of histogram bins. Please note that
the larger the Dp(Vy,V3), the higher the probability of
matching. Other similarity measures like L2 distance, Chi
square distance or log-likelihood statistic could also be used.
If the similarity is larger than a threshold T for at least
one background model, the pixel is classified as background.
Otherwise, the pixel is labeled as foreground.

Background Updating. In the background updating phase, if
none of the n model histograms match the current histogram
V, the model histogram with lowest weight is replaced with
the current histogram V and a low prior weight 8. In our
experiments, a value of § = 0.05 is used and a match is
defined as the similarity above a threshold T;. The weights
of the n model histograms at time ¢ + 1 are adjusted with the
new data as follows:

Wigr1 = (1 — Q)wje + aMji1, (3)

where « is the learning rate and M, is 1 for the model
which matched and 0 for the remaining models. After this
approximation, the weights are renormalized. The bigger
the weight, the higher the probability of being a back-
ground histogram. The adaptation speed of the background
model is controlled by the learning rate parametera. The
bigger the learning rate, the faster the adaptation is. The
unmatched model histograms remain the same. The model
histogram which matches the new observation is updated as
follows:

Hito = (1 - a)Hi; +aV. (4)

Finally, a summary of our local histogram of fig-
ure/ground segmentations-based BGS algorithm is described
as Algorithm 1.
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TaBLE 1: The parameter values of the five BGS algorithms.
Method Parameter Values
K =5 (the number of Gaussian components), T = 0.8 (the minimum portion of the background model), a = 0.01
GMM (2] (learning rate), and f = 2.5 (a match is defined as a pixel value within f standard deviations of a distribution).
LBPpr = LBPs, (P equally spaced pixels on a circle of radius R), Rregion = 9 (defines the region for histogram
calculation), K = 5 (the number of LBP histograms), T = 0.8 (the minimum portion of the background model),
LBP [12] Tp = 0.65 (the threshold for the proximity measure), a, = 0.01 (learning rate for updating histogram), and «a,, = 0.01
y g g g
(learning rate for updating weight).
N = 100 (the number of samples for each pixel), W = 50 (time window for sampling), T' = 10e — 8 (the probability
threshold for a pixel to be a foreground), a = 0.3 (the parameter determining the relative pixel values considered as
KDE [7] shadowed), SDEstimationFlag = 1 (estimate suitable kernel bandwidth to each pixel), and UseColorRatiosFlag = 1 (use
normalized RGB for color).
Bayesian R* G* B* X %Y =26 % 26 % 26 * 21 * 31 (the number of bins used to approximate the background/foreground
Model [8] model), T = —5 (the log-likelihood ratio threshold), and « = 0.01 (learning rate).
n = 3 (the number of model histograms for each pixel), T,, = 0.7 (the minimum portion of the background model),
Ours T, = 0.65 (the histogram similarity threshold), « = 0.01 (learning rate), and N X N = 9 x 9 (the size of local squared
region).
5. Experiments background models, one can use any postprocessing scheme

Our algorithm is implemented using C++, on a computer
with Intel-Pentium Dual 2.00 GHz processor. The running
time of the whole BGS algorithm is determined by the
slowest candidate BGS method and the fusion time since all
candidate BGS methods are run in parallel. It achieves the
processing speed of 10fps at the resolution of 160 x 120
pixels (the running time could be reduced substantially using
multiple cores). For performance evaluation, we compare
our approach against four representatives of the current state
of the art in BGS—the widely used Gaussian mixture model
of [2], the texture-based method of [12], the nonparametric
kernel density estimator of [7], and the Bayesian model
of Sheikh and Shah [8]. In the rest of our experiments,
we refer to the four compared algorithms as GMM, LBP,
KDE, Bayesian Model separately. We have tested the five BGS
algorithms using dozens of challenging video sequences from
the existing literatures as well as our own collections. Both
qualitative and quantitative comparisons are done to evaluate
the five BGS algorithms.

For comparisons, we acknowledge the fact that the BGS
results of the four compared BGS algorithms may be worse
than is reported in the corresponding papers; this could be
because our parameter values were not tuned per each video
sequence. However, our study is still valid for comparison
due to the following reasons. First, we used the typical
parameter values given in the papers. Second, only the
fusion algorithm is different between our method and the
compared methods (e.g., LBP and KDE), and everything
else is kept constant. This allows us to isolate the BGS
methods, which provide initial figure/ground segmentations,
to make sure that it is the cause of the performance
difference. In our experiments, the significant parameter
values of the five algorithms are listed in Table 1. Please
refer to [2, 7, 8, 12] for more details about these methods.
It must be emphasized that, after the construction of the

(e.g., morphological processing or Graph Cut smooth) to
give more fine-tuned results. Thus, the informativeness of
the results could be obscured by the varying abilities of these
operations. Therefore, when comparing these algorithms, we
use only the morphological operations.

5.1. Efficacy of Local Histogram of Figure/Ground Segmen-
tations for Background Modeling. In this subsection, we
illustrate the efficacy of local histogram of figure/ground
segmentations for dynamic background modeling by using
two image sequences including ripples in the water [34] and
heavily swaying trees [35], as shown in Figure 3.

We compare the performance of the KDE algorithm
with its alternative modification using the local histogram
of figure/ground segmentations. More specifically, the vari-
ation of the KDE algorithm takes the initial figure/ground
segmentations obtained by the KDE algorithm as input to
a BGS algorithm, in which each pixel’s background model
is constructed as a group of weighted adaptive 2-bin local
histograms of figure/ground segmentations. As is clearly
shown in Figure 3, the KDE algorithm generates many false
detections due to the quick variations in the dynamic scenes.
On the other hand, by making use of local histogram
of figure/ground segmentations, the variation of the KDE
algorithm has almost no false detections in spite of the
dynamic motions.

To more clearly illustrate why local histogram of fig-
ure/ground segmentations contains substantial evidence
for dynamic BGS, we plot in Figure 4(b) the evolving
curves of the intensity values, background probabilities
obtained by KDE, initial figure/ground labels obtained by
KDE, the distances between the current local histogram
of figure/ground segmentations and the corresponding
background histogram (obtained by the modeling proce-
dure described in Section 4), and the final labels obtained
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FIGURE 4: Evolving curves of the intensity values, background probabilities obtained by KDE, initial figure/ground labels obtained by KDE,
the distances between the current local histogram of figure/ground segmentations and the corresponding background histogram, and the

final labels obtained by KDE’s variation for a dynamic pixel A. (a) O

utdoor scene with blue rectangle showing the location of the sample

pixel A. (b) The corresponding curves mentioned above, for the dynamic pixel A, respectively.

by KDE’s variation separately, for the pixel A shown in
Figure 4(a). In Figure 4(b5), it is obvious to see that the
distance obtained by our method is no larger than 0.35, that
is, the fluctuation of the distance distribution is relatively
compact and small. Thus, comparing to KDE (please see
Figures 4(b2) and 4(b3)), this property significantly eases
the selection of parameter values for judging a pixel is
foreground or not. Therefore, we can get more robust
and stable results as shown in Figure 4(b6). On the other
hand, for the other four curves mentioned above, relatively
high fluctuation of the corresponding value appears due to

the quick variations and the nonperiodic motions of the
dynamic pixels. In particular, let us take a look at the KDE
background probability curve (Figure 4(b3)) with vertical
axis from 0 to 10e — 8 to further explain the label fluctuation
phenomenon caused by KDE. It is well known that setting
the probability threshold for a pixel to be a foreground
is a tradeoff between sensitiveness and accuracy, that is,
the smaller the value the less false positive and more false
negative. In this case, the label curve (Figure 4(b4)) obtained
by KDE still drastically and frequently changes, even though
the probability threshold is set as small as 10e — 8.
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FIGURrE 5: Qualitative comparison results of the five BGS algorithms on the Ducks sequence. The first column contains the original video
frames. The second column contains the corresponding ground truth frames. The last five columns contain the detection results of the

GMM, LBP, KDE, Bayesian Model and our method, respectively.
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FiGURE 6: Qualitative comparison results of the five BGS algorithms on the Fountain sequence. The first column contains the original video
frames. The second column contains the corresponding ground truth frames. The last five columns contain the detection results of the

GMM, LBP, KDE, Bayesian Model and our method, respectively.

Based on the above analysis, the efficacy of local
histogram of figure/ground segmentations for background
modeling is verified.

5.2. Qualitative Comparisons. Qualitative comparison results
of the five BGS algorithms on several challenging video
sequences of dynamic scenes are presented in this subsection.

Figure 5 shows qualitative comparison results of the five
BGS algorithms on the Ducks sequence from [36]. The Ducks
sequence is from an outdoor scene that contains two ducks
swimming on a pond, with dynamic background composed
of subtle illumination variations along with ripples in the
water and heavily swaying trees. This is a very difficult scene
from the background modeling point of view. The upper
part of the scene contains heavily swaying trees. This leads
to the failure of classical background modeling methods
that rely only on the pixel color information (i.e., GMM).
Since some simple statistics of neighborhoods have been
considered in KDE, the results obtained by KDE have greatly
improved. However, there are still some false foreground

pixels under this difficulty condition, due to the quick
variations and the nonperiodic motions of the waving trees.
The challenges in the lower part of the scene are that the
background is composed of subtle illumination variations
along with ripples in the water and the color of the ducks
and background is similar. The LBP performs well on the
upper part of the scene but generate some false background
and foreground pixels in the lower part of the scene, which
is textureless. The reason is that simple grayscale operations
make LBP rather sensitive to noise, even using the modified
version of LBP with the thresholding constant &’ set to 3,
as suggested by the original study. Since Bayesian Model
constructs the entire background/ foreground model with
a single adaptive binned kernel density estimation using
quantized feature space (i.e., R* G * B % X *x Y), it generates
some false background pixels in the lower part of the scene
where the color of the ducks and background is similar.
Our method gives good results because it explicitly considers
the meaningful correlation between pixels in the spatial
vicinity and uses multiple complementary features to build
background models for scenes.
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FIGURE 7: Qualitative comparison results of the five BGS algorithms on the Camera Jitter sequence. The first column contains the original
video frames. The second column contains the corresponding ground truth frames. The last five columns contain the detection results of the

GMM, LBP, KDE, Bayesian Model, and our method, respectively.

Manual GMM

~ Original

=
ez}
]

.\ -

KDE Bayesian model Ours

FIGURE 8: Qualitative comparison results of the five BGS algorithms on the Jump sequence. The first column contains the original video
frames. The second column contains the corresponding ground truth frames. The last five columns contain the detection results of the

GMM, LBP, KDE, Bayesian Model, and our method, respectively.

Figure 6 shows qualitative comparison results of the
five BGS algorithms on the Fountain sequence from [36].
The Fountain sequence contains three sources of dynamic
motion: (1) the fountain, (2) the tree branches oscillate, and
(3) the shadow of the trees branches on the grass below.
It is obviously to see that, for GMM and LBP, most of
the false foreground pixels occur on the background areas
occupied by the fountain. GMM generates large number of
false foreground pixels due to the nonperiodic motions of
the fountain. The reason for the failure of LBP is that it does
not work very robustly on flat image areas such as fountain,
where the gray values of the neighboring pixels are very
close to the value of the center pixel. KDE generates some
false foreground pixels on shadow areas. Bayesian Model
generates some false background pixels on image areas where
the color of foreground and background is similar. It can be
seen that our method has almost no false detections in spite
of the dynamic motions.

Figure 7 shows qualitative comparison results of the five
BGS algorithms on the Camera Jitter sequence from [36].
The Camera Jitter sequence contains average camera jitter
of about 14.66 pixels. Since the nominal motion of the

camera do not repeat exactly, GMM handles this difficulty
condition poorly, that is, producing many false foreground
pixels. While the rest methods manage the situation relatively
well, due to considering the meaningful correlation between
pixels in the spatial vicinity.

Figure 8 shows qualitative comparison results of the
five BGS algorithms on the Jump sequence from [37]. The
challenges in the Jump sequence are that the background
is composed of waving trees and the color of the two
moving persons and background is similar. This is a very
difficult scene from the background modeling point of
view. Benefitting from fusion the output of a number
of complementary BGS algorithms, the proposed method
performs much more robust than the other four, while the
GMM, LBP or KDE generates some false detections under
this difficulty condition, due to the quick variations of the
waving trees. It also can be seen that the Bayesian Model
produces some false background pixels on image areas where
the color of foreground and background is similar.

In Figure 9, we show the results of our method using
other four dynamic outdoor sequences. The first sequence
is from Wallflower [32] which contains heavily swaying



10

EURASIP Journal on Advances in Signal Processing

FIGURE 9: Some detection results by our method. The first row contains the original video frames. The second row contains the corresponding

detection results.

trees. The other three dynamic outdoor sequences are from
our own collections, which include large-area waving leaves
and ripples in the water. The challenges in these four
dynamic scenes are that the backgrounds are continuously
changing and have quick variations. Our method successfully
handles these situations and the moving objects are detected
correctly.

5.3. Quantitative Comparisons. In order to provide a quanti-
tative perspective about the quality of foreground detection
with our approach, we manually mark the foreground
regions in every frame from the Ducks, Fountain, Camera
Jitter and Jump sequence to generate ground truth data,
and make comparison between the five BGS algorithms.
In the most BGS work, quantitative evaluation is usually
done in terms of the number of false negatives (the number
of foreground pixels that were missed) and false positives
(the number of background pixels that were marked as
foreground). However, it is found that when averaging the
measures over various environments, they are not accurate
enough. In this paper, a new similarity measure presented
by Li et al. [11] is used to evaluate the detection results of
foreground objects. Let A be a detected foreground region
and B be the corresponding ground truth, the similarity
between A and B is defined as
ANB

S4.B) = 4 5)
S(A, B) varies between 1 and 0 according to their similarity. If
A and B are the same, S(A, B) approaches 1, otherwise 0 if A
and B have the least similarity. It integrates the false positive
and false negative in one measure.

The corresponding quantitative comparison is reported
in Figure 10. For the Ducks and Jump Sequence, our
method outperforms the comparison methods. In the case
of Fountain and Camera Jitter sequence, our method is
comparable to KDE and it outperforms the rest algorithms.
It should be noticed that, for our method, most of the false
detections occur on the contour areas of the foreground
objects. This is because the meaningful correlation between
pixels in the spatial vicinity is exploited. That is why the
performance of KDE and our method is comparable in

the Fountain and Camera Jitter sequences, in which the
objects of interest occupy a large portion of the camera
view. In these two sequences, the number of errors of
our method caused by contour inaccuracy may be more
than that of KDE caused by dynamic scenes at some
video frames. According to the overall results, the proposed
method outperforms the comparison methods for the used
test sequences in most cases. The reason for the superior
performance is that our algorithm is able to handle dynamic
scenes via local histogram of figure/ground segmentations.
Rather than relying only one BGS algorithm and taking the
risk that that algorithm is suboptimal for handling every
type of variations, our local histogram of figure/ground
segmentations-based approach fuses the output of a number
of complementary BGS algorithms and reaps the advantage
of encoding spatial correlation between neighboring pixels.

5.4. Sensitivity to Parameters. Since our method has rela-
tively many parameters, there naturally arise the following
questions. (1) How sensitive our method is to small changes
of its parameter values? (2) How easy or difficult is it to
obtain a good set of parameter values? To answer these
questions, we calculate the similarity measures for different
parameter configuration. Because of a huge amount of
different combinations, only one parameter is varied at
a time. The measurements are made for several image
sequences. The results for the Fountain sequence of Figure 6
are plotted in Figure 11, in which the final similarity measure
is achieved by averaging the similarity measures obtained
from all frames. Obviously, for all parameters, a good value
can be chosen across a wide range of values. The same
observation is identical for all the test sequences. This
property significantly eases the selection of parameter values.
Furthermore, the experiments have shown that a good set
of parameters for a sequence usually performs well also for
other sequences (please see Figures 5-9).

5.5. When Does the Overall Approach Break Down? Finally,
one requirement of our algorithm is that there must exist at
least one BGS algorithm that produces an accurate enough
suggestion in a particular region, thus one would naturally
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Figure 10: Quantitative comparison results of the five BGS algorithms on the Ducks, Fountain, Camera Jitter and Jump sequence. The
similarity measure used to evaluate the detection results of foreground objects is defined in (5).

miss an experimental exposition of the limitations of the
approach. In what scenario the overall approach breaks
down? What happens if all complementary BGS algorithms
fail?

To explore the performance of the proposed approach
under these conditions, we perform a set of experiments
in which the challenges included in the testing sequences
are cast shadow and light Switch. Figure 12 shows some
failed BGS examples of our methods. Like most of the
other methods, our method is not capable of handling
the cast shadow and light switch problem. This is because
the two complementary BGS algorithms (i.e., the KDE
method of [7] and the LBP method of [12]) embedding
in our method are both unable to handle these cases. To
address these cases, one potentially useful idea that is not
investigated in the paper, is to utilize some higher level
processing that could be used to detect sudden changes in
background.

6. Conclusion

We explore in this paper the method of fusing a set
of candidate solutions that are produced by simple BGS
algorithms in order to get a final robust and accurate BGS
result, especially under dynamic scenes. Our study shows that
the local histogram of figure/ground segmentations is helpful
to achieve robust moving objects detection in dynamic
scenes such as waving trees, ripples in water, illumination
changes, camera jitters. The key contribution of this work
is to formulate the fusion of a set of candidate solutions
inside a novel feature extraction framework. To instantiate
this framework, we incorporate the KDE method of [7]
and the LBP method of [12] to get initial figure/ground
segmentations. The background model of each pixel is
constructed as a group of weighted adaptive local his-
tograms of figure/ground segmentations, which describe the
structure properties of the surrounding region. Therefore,
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FiGure 11: The similarity measures as a function of different parameter values for the Fountain sequence of Figure 6. While one parameter
is varied, other parameters are kept fixed at the values given in Table 1. For each parameter configuration, the final similarity measure is

achieved by averaging the similarity measures obtained from all frames.

FIGURE 12: Some failed detection results by our method. The first row contains the original video frames. The second row contains the
corresponding detection results. Challenges in the first two and the rest columns are light switch and cast shadow. The two image sequences

are from [32, 33], respectively.

our method cannot only use multiple complementary BGS
algorithms to build background models for scenes, but also
exploit the spatial correlation between neighboring pixels.
Extensive comparison experiments on several challenging
video sequences demonstrate the advantage of the proposed

method over four representatives of the current state of the
art in background subtraction.

Currently, the proposed method has relatively many
parameters. This may be a weakness. However, at the same
time, it allows the user extensive control over method
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behavior. Moreover, the experimental results have shown a
proper set of parameters can be easily found for a given
application scenario.
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