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This paper mainly addresses the problem of multipolar Synthetic Aperture Radar (SAR) and colorful optical images fusion
by regarding them as multichannel images. Based on traditional wavelet-based and model-based fusion algorithms, the paper
proposes a multi-channel image fusion algorithm based on a multi-multiturbo iterative method. Multi-multiframe is proposed to
represent the original image information with multiple outputs from better information-separating viewpoints, and turbo iterative
balances wavelet-based and model-based fusion. The approach is designed in this manner. First, Intensity-Hue-Saturation (IHS)
transformation is applied to the SAR and optical images. Then, different fusion processes are used on corresponding components.
Fusion based on multi-multi and turbo iterative is applied to the Intensity component whereas weighted fusion is applied to Hue
and Saturation components. To get the final result, inverse IHS transformation is applied. Experimental results show that the
proposed algorithm performs effectively in preserving useful complementary information between optical and SAR images.

1. Introduction

Synthetic Aperture Radar is a type of active remote sensor
radar working on microwave band. Because more and more
Synthetic Aperture Radar sensors are being used in many
fields, the volume of SAR images increases rapidly. Because
of the coherent imaging mechanism, SAR images are hard to
interpret due to their inherent multiplicative speckles.

With the development of image sensor technology,
multisensor image fusion has attracted serious concern in
image analysis, computer vision, and remote sensing, which
is widely applied to a variety of fields such as automatic target
recognition, intelligent robots, remote sensing, medical
image analysis and manufacturing. Pixel-level multisensor
image fusion can obtain more original information and has
a better detection performance.

Numerous reports document pixel-level image fusion
algorithm. They can usually be classified in four primary cat-
egories based on the technology used: space domain-based
methods [1–3], pyramid-based methods [4, 5], statistical
model-based methods [6], and other methods [7].

Space domain-based methods include average, weighted
average, max, min, and other linear or nonlinear, selection

or count algorithms on intension of every pixel from each
fusion source image [2, 3]. Principal component analysis
(PCA) is another classical algorithm [1]. It can be regarded as
a special space domain-based method whose weighted value
is produced automatically to remove the relativity existing
between the source images.

Pyramid-based methods always need a pyramid decom-
posed procedure at first. Then many algorithms can be
adopted in the same level data of different source images, to
produce a results pyramid. Finally, an inverse transformation
is applied to produce the fusion result [4, 5].

Another typical method is the statistical model-based
method which models the production process of multisensor
images and concomitant noises with a Local Linear Gen-
erative Model (LLGM). A Bayesian framework is used to
estimate the parameters of the model and the true scene from
the different sensor images [6].

Traditional image fusion algorithms are mainly applied
on gray image or single-polar SAR data. With the develop-
ment of advanced sensors for colorful optical images and
multiple-polar SAR data, the fusion of multi-channel images
is attracting more attention.
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Figure 1: Framework of Turbo code.

When processing color images, the Intensity component
is usually extracted by IHS transformation; the innovative
work is often conducted in the fusion step of different
intensity components derived from multiple sensors. The
result is obtained using inverse IHS transformation.

Due to the limited capacity for one image to cover com-
plete information of multi-channel images from multiple
sensors, fusion should be applied to multiple fusion outputs
according to the corresponding application, which surely
has advantages over a traditional multione fusion system.
What is more, traditional fusion algorithms generally have
their own insurmountable drawbacks such as wavelet and
model-based fusion algorithms. Traditional fusion based on
a wavelet can retain detailed information effectively, but it
can be too sensitive to noise because the noise usually appears
in the high-frequency domain. Model-based fusion methods
can provide a comparatively reliable result for noisy images
because it considers the noise effect; however, too much
detailed information may be neglected.

Based on the discussion above and our previews work
[8, 9], a multi-channel fusion algorithm based on a multi-
multiturbo iterative for the application of fusion of color
optical images and multi-polar SAR images is proposed in
this paper, which is essential for representing different con-
tent from better information-separating viewpoints. Wavelet
fusion could retain detailed information better because it is
sensitive to noise. Model-based fusion could control noise
effectively because it considers the noise while ignoring some
details. Turbo iterative is introduced here to balance wavelet
and model-based fusion.

The original information is temporarily represented by
multiple outputs on each iteration step, which leads to a
more reliable result to be used by following image processing.
IHS transformation and multi-multi based turbo iterative
are incorporated to address the fusion of color optical and
multi-polar SAR images.

The remainder of this paper is organized as follows.
Section 2 reviews Turbo fundamental and turbo iterative in
signal processing. Section 3 describes the traditional fusion
method. Section 4 illustrate turbo-based fusion framework
in details and Section 5 describes turbo iterative fusion
method of optical image and SAR image. In Section 6,
experimental results on real images are presented and
analyzed. Section 7 concludes the paper.

2. Turbo Iterative

2.1. Fundamental of Turbo Code. Turbo codes proposed by
Berrou et al. [10] are promising in the field of coding
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Û

Figure 2: Framework of turbo encoder.
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theory, which uses two encoders and a so-called turbo
iterative encoder to derive a satisfying performance for
several channels. Turbo code can approach the Shannon limit
and be realized. Figure 1 illustrates framework of generating
turbo code. Notice the application of the soft-input soft-
output (SISO) decoders.

The fundamental encoder of Turbo code is built using
two identical Recursive Systematic Convolutional (RSC)
codes with parallel concatenation. The two encoders are
separated by an interleaver. Only one of the systematic
outputs from the two component encoders is used, because
the systematic output from the other component encoder is
just a permuted version of the chosen systematic output.

Figure 2 illustrates the framework of a turbo encoder.
Because one input generates three outputs, the turbo rate is
1/3. Usually, the two encoders are the same in as shown in
Figure 2.

Figure 3 is an essential turbo encoder in which Binary
Phase Shift Keying (BPSK) can convert analog signals into
digital signals using plural wave combination of the devi-
ation phase to represent phase-shift keying of information.
(AWGN stands for Additive white Gaussian noise.)
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Considering the turbo code in Figure 3, each bit of
message sequence u is supposed to be independent uniform
distributed random variable:

Pr{ut = 1} = Pr{ut = 0} = 1
2
. (1)

Received sequences r0 and r1 are the input of first
decoder, represented as r′:

r′ = {· · · (rt,0, rt,1
)
,
(
rt+1,0, rt+1,1

)
, · · · }. (2)

The received sequences r̃0 and r2 from the deinterleaver
are the input of the second decoder, represented as r′′:

r′′ = {· · · (r̃t,0, rt,2
)
,
(
r̃t+1,0, rt+1,2

)
, · · · }. (3)

The turbo decoder framework is shown in Figure 4.
It consists of two subdecoders serially concatenated by an
interleaver and a deinterleaver. The interleaver here is same as
the interleaver in the turbo encoder. The algorithm applied in
the subdecoder is a maximum a posterior estimation (MAP).
r′as the input of MAP decoder 1 can get soft output which
is used to obtain likelihood of the information sequence of
MAP decoder 2 by the interleaver. Another input of MAP
decoder 2 is r′′. It also obtians soft output to improve the
likelihood of the information sequence of MAP decoder 1.

Compared to the one-time operation of a Serial Concate-
nated Convolutional Code (SCCC) decoder, a turbo decoder
can improve performance by way of iterative operation; the
feedback loop is the significant characteristic of a turbo-
decoder. (The name “turbo” is applied based on the working
principle of a turbo engine.)

After some iteration, the exchange between the two MAP
decoders cannot improve and further, so the output of MAP
decoder 2 is passed to the interleaver to generate a final
decision.

Common decoding algorithms include BCJR [11], MAP
[12], Max-Log-MAP [13], Log-MAP [14], and SOVA [15].

The Interleaver is a soft-input soft-output (SISO) device.
Its input has the same symbol set as its output, but in a
different order. Let’s use the example of a set {1, 2, . . . ,N}.
We can describe the interleaver’s mapping function as j =
π(i), i, j ∈ A, where i and j are the serial numbers of symbols

u: u1 u2 u3 u4 u5 u6 u7 u8

ũ: u2 u4 u1 u6 u3 u8 u5 u7

Figure 5: Mapping function of interleaver.

of the original sequence and the interleaver sequence,
respectively. We can represent the mapping function as
follows:

πN = (π(1),π(2),π(3), . . . ,π(N)). (4)

We use the following example to illustrate the inter-
leaver’s mapping function. Assume an 8-length pseudo-
random interleaver in which the input sequence is u =
(u1,u2,u3,u4,u5,u6,u7,u8). After interleaver we get

ũ = (ũ1, ũ2, ũ3, ũ4, ũ5, ũ6, ũ7, ũ8)

= (u2,u4,u1,u6,u3,u8,u5,u7).
(5)

The mapping function is shown in Figure 5. The inter-
leaver vector is represented as follows:

π8 = (π(1),π(2),π(3),π(4),π(5),π(6),π(7),π(8))

= (3, 1, 5, 2, 7, 4, 8, 6).
(6)

2.2. Turbo Iterative in Signal Processing. The framework of
signals optimal estimation on turbo iterative is illustrated in
Figure 6.

According to the principles of signal processing, some
independent constraint subspaces are established at signal
space or label space. Optimization is done at independent
constraint sub-spaces separately. Then iteration is conducted
with information exchanged in signal space or label space.

Usually, the global optimization of classical signal esti-
mation is hard to attain. The common solution is to
approximate using Simulated Annealing or Monte Carlo
methods, but the optimizations in sub-spaces are usually easy
to calculate. To improve the performance, optimizations are
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done in independent constraint sub-spaces for complicated
signal estimation problems. Turbo iterative can help to solve
these problems.

The essence of turbo interative is to guarantee two
uncorrelated component codes and make better use of the
information by exchanging it during the iteration. The
essence has been introduced into image processing before
[8, 16]. The main concepts of turbo iterative are threefold.
First, the interleaver obtains two orthogonal checking codes
a from the same information code. Second, the orthogonal
checking codes are decoded using the turbo iterative method,
and extrinsic information is exchanged. Third, so-called “soft
information” and “reliability” (or “marginal probability”)
are exchanged during iteration. The framework of signal
processing based on the turbo iterative method is shown in
Figure 7.

Three steps can summarize the turbo iterative framework
used in signal processing. First, two orthogonal signal spaces
are set up. The two orthogonal signal spaces are linked
by original signals and the models of original signals.
Second, soft estimation is done on the two orthogonal signal
spaces, respectively. Posterior probability is output at the
second step. Third, “soft information” and “reliability” are
exchanged between the two orthogonal signal spaces.

Why does the turbo iteration method work? To begin
with, each system takes the results of the other system into
consideration. This characteristic can greatly improve the
performance. Next, iterations on more than one system can
produce global optimization. Furthermore, the systems work
independently so the computational complexity is linear.
When complementary systems are applied, the information
will exchange at the turbo iterations. Good information will
be retained and noise will be cast off.

3. Traditional FusionMethods

In this section, we review traditional fusion methods such as
the pyramid-based and the model-based fusion methods.

3.1. Description of Pyramid-BasedMethods. In [5], a uniform
pyramid-based fusion framework is presented as illustrated
by Figure 8. The framework comprises five parts. The
first part is multiscale decompositions (MSD). The mostly
widely-used MSD methods include pyramid transformation
(PT), discrete wavelet transformation (DWT), and discrete
wavelet frame (DWF). The second part is activity level
measurement that includes pixel-based, window-based, and
region-based methods. The third part includes three types
of grouping. The last two parts are combining methods and
consistency verification.

There are multiple choices in the processes shown in
Figure 8. Different combinations of each part can form
different fusion methods.

One of the typical pyramid-based methods is wavelet-
based fusion method. The rapid multiresolution analysis
algorithm based on wavelet proposed by Mallat [4] is
popularly used in two-dimensional image processing and
analysis. Assume LL0 is the original image, for certain scaling
and wavelet functions, the wavelet decomposition can be
processed as shown in (7).

In the following equation, ∗ means convolution, ↓
means downsampling and i indicates the decomposition
level. Here h and g is a particular pair of analysis filters. One
approximation image (LL) and three detail images (LH, HL,
and HH) are obtained here.

Corresponding coefficients of the source images at each
level are then fused, respectively, based on certain fusion
rules, which can be a simple weighted fusion or a PCA
method. The output image can be obtained using an inverse
wavelet transformation:

LLi+1 = h2↓1 ∗ h1↓2 ∗ LLi,

LHi+1 = h2↓1 ∗ g1↓2 ∗ LLi,

HLi+1 = g2↓1 ∗ h1↓2 ∗ LLi,

HHi+1 = g2↓1 ∗ g1↓2 ∗ LLi.

(7)

3.2. Description of Model-Based Methods. The wavelet-based
fusion method deals with the high frequency range of both
image details and noise. Thus, the wavelet-based method is
sensitive to noise. To overcome the limitation of the wavelet-
based method, Sharma [6] proposed a model-based method
to overcome the noise problems. A model is set up on
true scene images at first, then parameters of the model
are estimated based on the source images. Finally, Bayesian
theory is used to estimate the fusion scene. We denote the
true scene as s and sensor image can be modeled as follows:

Ai

(⇀
l

)
= βi

(⇀
l

)
s
(⇀
l

)
+ αi

(⇀
l

)
+ εi

(⇀
l

)
. (8)

In the equation, Ai is the ith sensor image,
⇀
l = (x, y, k)

is the location of the pixel coordinates (x, y) with pyramid
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Figure 8: Generic framework for pyramid-based fusion schemes refers to [5].

level k if a multi-scale analysis is adopted. αi is the sensor bias
of the ith sensor, which captures the effects of dysfunctional
sensor elements. βi is the sensor gain of the ith sensor,
which captures the effects of local polarity reversals and
complementary features. εi is the sensor noise with zero
mean and variance σ2

ε . The parameters here are assumed
independent of the true scene s.

Assuming the noise existing in sensors is irrelative to each
other, the variance σ2

ε is a diagonal covariance matrix, and σ2
εi

can be estimated by the difference. Ai(t) is the ith image with
t level of pyramid. Ai(t) stands for the mean of the ith image
with t level of pyramid:

σ2
εi(t) = A2

i (t)− Ai
2
(t). (9)

Then, the problem of fusion is transformed to a Bayesian
framework to estimate the true scene s. At first, the local
image formation model parameters and the local sensor
noise covariance are needed to estimate. The latter can
be estimated from all the images of each sensor. Least
squares factor analysis estimation is adopted to estimate the
parameters αi and βi. μA is the mean of all sensor images data.
We assume that the scene s is at each location with mean
s0(
−→
l ) and variance σs(

−→
l ). s0(

−→
l ) of different local regions is

with mean μs0 and variance σs0

αLS = μA − βμs0 ,

βLS = λ1/2

σs,s0

Ur,
(10)

where U is an eigenvector, and λ is an eigenvalue of the noise-
corrected covariance matrix(

∑
A−

∑
ε). The parameter r =

±1 determines the polarity of contrast in the fused image.
σ2
s,s0
≡ σ2

s + σ2
s0

is the total variance of s, σ2
s0

is local variance.
We assume μs0 = 0 and ‖β‖ = 1, what is reasonable [6].

The parameters estimation can be simplified to

αLS = μA, (11)

βLS = eig

⎛
⎝∑

A

−
∑
ε

⎞
⎠ = eig

⎛
⎝∑

A

⎞
⎠. (12)

Finally, the true scene s can be obtained by two algori-
thms: maximum a posteriori (MAP) and maximum likeli-

hood (ML):

ŜMAP

=
(
β1(A1 − α1)/σ2

ε1
+ β2(A2 − α2)/σ2

ε2
+ S0/σ

2
S

)
(
β2

1/σ2
ε1

+ β2
2/σ2

ε2
+ 1/σ2

S

) .
(13)

Assume a flat prior, that is, σ2
s = ∞, the MAP will be ML:

ŜML =
(
β1(A1 − α1)/σ2

ε1
+ β2(A2 − α2)/σ2

ε2

)
(
β2

1/σ2
ε1

+ β2
2/σ2

ε2

) . (14)

All the estimation is done in the local analysis window R, on
the assumptions that they all hold true over a spatial region
[6].

4. Turbo-Based Fusion Framework Description

In this section, we review a multi-single turbo iterative
framework and a multi-multi turbo iterative.

4.1. The Framework of Multisingle Turbo Iterative. As shown
in Section 3, the wavelet-based method is used to find the
changes in different source imagery and merge them into
a single result; so we can expect that it should be sensitive
to noise. In contrast, a statistical model-based method is
useful to surmount system noise, but it depends on prior
information obtained from the fusion result. Interestingly
enough, when we look closely, we can see that these two
totally different methods can in fact be complementary.
Hence, the turbo iterative method is introduced to combine
the two methods as illustrated in Figure 9.

First, a wavelet-based method is used to create a
fundamental result that includes almost all of the detail
information of the source imagery including noise. In this
way, it can be used as a sample to estimate the ideal
fusion result image’s statistical information such as mean
and variance. Next, the model-based method is adopted and
the MAP estimate is used with the information obtained
from the previous step. The resulting image is returned to
the input of the wavelet-based method as one of the fusion
source images. One iterative procedure is finished at this step.

When the iteration completes, we can see that the
optimum level of details are extracted and noise can be
controlled.
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The iterative algorithm is named turbo iterative for its
consistency with the concept of turbo codes, which exhibit
exceptional behavior in channel coding [10, 17–19]. The
elaborate selection of two orthogonal algorithms is reflected
in the design of the interleaver in turbo codes. It can be
proved that through the iterative process and the information
exchange of two different algorithms that the output image
can converge to match the true scene in a more efficient
manner with less influence by noise.

In (12), β is a vector. The input s is a vector that includes
certain different images. The output ŝ is one image.

So in this case, the turbo iterative method employs a
multi-single framework.

4.2. The Framework of Multi-Multiturbo Iterative. Image
fusion should include multiple outputs of different informa-
tion from multiple viewpoints on a certain scene rather than
a fixed result. A multi-multifusion system is presented for
this case.

The object of a multi-multisystem is to obtain multiple
images of the same scene from different viewpoints. Equation
(8) can be rewritten as follows:

Ai

(⇀
l

)
= βi

(⇀
l

)
si

(⇀
l

)
+ αi

(⇀
l

)
+ εi

(⇀
l

)
. (15)

Here, the parameter β is a matrix and s is a vector.
Considering the assumptions mentioned above, the

simplified parameters estimation can be⎛
⎝α1

α2

⎞
⎠ =

⎛
⎝μA1

μA2

⎞
⎠,

⎛
⎝β1

β2

⎞
⎠ =

⎛
⎝U1

U2

⎞
⎠.

(16)

With the estimation of α and β, s will be

ŝi ML =
⎡
⎣βT −1∑

ε

β

⎤
⎦−1⎛⎝βT −1∑

ε

(A− αi)

⎞
⎠. (17)

5. Optical andMultipolar Sar Fusion
Based on Turbo

This section introduces the proposed fusion algorithm on
multi-channel images.
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Figure 10: Framework of multi-multi turbo iterative.

5.1. Data Processing. IHS transformation is a useful tool
in processing color images. No matter which mathematical
description is chosen, the principle is separating the spectral
information H and S of an RGB image, while isolating the
intensity component I. This paper adopts the model derived
as follows [20]:

θ = arccos

⎧⎪⎨
⎪⎩ 1/2[(R−G) + (R− B)][

(R−G)2 + (R− B)(G− B)
]1/2

⎫⎪⎬
⎪⎭,

H =
⎧⎨
⎩
θ if B ≤ G,

360− θ if B > G,

S = 1− 3× [min(R, G, B)]/(R + G + B),

I = R + G + B
3

.

(18)

The pseudocolor SAR image is formed from several
single-polar images by assigning RGB values to single-polar
images like HH, HV, and VV. The approach mimics the way
an optical image is formed by assigning RGB values to three
gray images.

The IHS transformation also could be applied to multi-
polar SAR images while retaining complete information.
The IHS transformation can be applied to optical and SAR
images, then the corresponding IHS components would be
derived.

5.2. Fusion Based on Multi-Multi Turbo Iterative Using
Wavelet-Based and Model–Based Fusion Methods. Wavelet-
based fusion and model-based fusion are two unrelated
algorithms that offer their own advantages. Using the
turbo iterative, we can iterate these two methods until the
difference between the two results is under some threshold.
Prior information such as mean and covariance from each
wavelet-based fusion could be incorporated by the following
model-based fusion. The framework of the multi-multi
turbo iterative algorithm is presented by Figure 10.

5.3. Framework of the Proposed Algorithm. After the prepro-
cessing step, we apply the fusion based on the multi-multi
turbo iterative method to the intensity components Io and Is
to produce I. With the spectral information H and S obtained
from the optical image, the result can be generated by inverse
IHS transformation. The flowchart of the proposed fusion
scheme is shown in Figure 11. The pseudo-code of the optical
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Table 1: Pseudocode of optical and SAR image fusion based on
multi-multi turbo iterative.

Input Optical image A and SAR image B.

Step 1 Do IHS transformation on A and B. Get IHS sub-
variables.

Step 2 Do multi-multi turbo iterative fusion on I

(a) I subvariables of optical and SAR images are input to
wavelet-based fusion part and get the fused image.

(b) Prior is estimated with fused images of (a) step.

(c) Prior is passed to multi-multimodel-based fusion
part and get the fused image passed to wavelet-based
fusion.

(d) Go to (b) to iterative until convergence.

Step 3 Do weighted sum fusion on H and S.The process is done
weighted sum on H and S.

Step 4 Inverse IHS transformation.

image and SAR image fusion based on multi-multi turbo
iterative is shown as Table 1.

6. Experiments and Analysis

6.1. Experiment 1. Pyramid and model-based fusion with
a multi-single turbo iterative method was applied to the
fusion between SAR and visible-band imagery, and between
different polarization SAR imagery. The traditional methods
were also performed as a contrast. The experiment was
carried out successfully on a software platform we developed
for the implementation, interpretation, and evaluation of
SAR image fusion. To evaluation the results, we elected dif-
ferent objectivity evaluation indices [21–24]. Interpretation
algorithms (such as target extraction) were performed on
the source images and the fusion result image. Entropy,

Table 2: Evaluation of fusion methods.

Entropy
Interaction

Correlation Gradient
entropy

HH 7.9

HV 7.18

Average 8.29 0.33 0.94 62.9

PCA 3.53 0.03 0.3 2.4

Pyramid 8.83 1.01 0.96 109

Model 8.74 1.03 0.95 96.1

Turbo 8.94 1.11 0.96 115

interaction entropy, correlation, and gradient algorithm
indices were used to evaluate the fusion method.

Entropy measures the degree of information contained in
a fused image, and describes the capability of detail retention.
Interaction entropy evaluates the similarity between two
images, thus reflecting the differences of the same pixels in
compared sensor images. The larger the value of interaction
entropy obtained, the more information is retained after
fusion. Correlation indicates the degree of image change
after fusion. Because the rate of change can be described by
gradient, it can reflect the degree of slight contrast of two
images to some extent. Thus, it can be used to evaluate the
definition of an image.

As seen in Table 2, almost all the fusion methods applied
can enhance the evaluation indices to some extent, but
the turbo iterative-based method advanced in this paper
demonstrates a higher level of performance. The different
fusion result images on two polarization band SAR images
are presented in Figure 12. It can be seen that the turbo-based
algorithm can achieve a more balanced result retaining more
details and removing noises.
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(a) (b)

(c) (d) (e)

Figure 12: Fusion of two (a) HH, (b) HV, (c) pyramid-based, (d) model-based and, (e) turbo iterative-based.

Table 3: CFAR evaluation result on the source and fusion result images.

Source image PCA Wavelet-based Model-based Turbo-based

Actual target 13 13 13 13 13

Detect target 10 10 13 12 12

False alarm detected 6 2 5 5 4

Correct detect rate 76.9% 76.9% 100% 92.3% 92.3%

False alarm rate(/km2) 30 10 25 25 20

Next, we performed a Constant False Alarm Rate (CFAR)
detection algorithm on the SAR image and the fusion
results with optical image (Figure 13). The CFAR detection
algorithm is a signal processing algorithm which minimizes
the false alarm probability of radar automatic detection
system with clutter interference using detection strategies
and detection thresholds. The chosen region is 256∗256
pixels. The actual corresponding area is 0.2 km2.

The white window marks on the target location. We
manually selected the actual targets at first to establish a
baseline. The scene includes 13 known objects (targets)
including roads, car parks, and cars.

We then counted the detected targets and the False Alarm
Detected. The Correct Detected Rate is calculated by using
Detect Target divided the Actual Target. The False Alarm Rate
is calculated by using False Alarm Detected divided the area.
Table 3 shows that almost all the traditional fusion methods
can decrease the undetected target, but only by increasing the
False Alarm Rate. PCA can decrease the False Alarm Rate,
but only by incurring a high undetected target rate. Only
the turbo-based algorithm can both decrease the undetected
target rate and the False Alarm Rate.

6.2. Experiment 2. Experiment 2 was conducted to com-
pare the performance of the wavelet-based fusion method
with the multi-multi turbo iterative method. The data
was collected at a test site in Oberpfaffenhofen, Ger-
many. Figure 14(a) shows high-resolution optical data.
Figure 14(b) shows a polarimetric SAR image of the same
scene acquired by the E-SAR sensor of DLR [25]. RGB values
were assigned to HH, HV and VV. Figure 14(c) shows the
results when the intensity components are fused using the
traditional wavelet-based algorithm. Figure 14(d) shows the
result of the proposed algorithm. To make it clear, Figure 14
presents two small cuts from the experiment images to be
compared. Areas in orange and blue rectangles represent
areas 1 and 2.

In the compared wavelet-based fusion, we chose the
Daubechies Symmetric Spline (DBSS) (2,2) and the decom-
position level is 0–4. The weight coefficient assigned to the
spectral components H and S is 0.7 in the proposed fusion
algorithm.

From the experimental results, we can see that many
areas appear more clear in the optical than in the SAR image,
but other objects (such as forest areas) are less differentiated
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(c) (d)

(e) (f)

Figure 13: CFAR detection area on the source image and fusion result image, (a)optical image, (b) SAR image, (c) CFAR on source SAR
image, (d) CFAR on wavelet-based fusion result, (e) CFAR on model-based fusion result and, (f) CFAR on turbo-based fusion result.

Table 4: Quantitative indices for fusion results.

Entropy Average gradient Spectral correlation Spectral distortion

Optical image
R 6.9762 5.3615

G 6.5477 4.5747

B 6.7032 4.4927

SAR image
HH 5.7606 4.2545

HV 5.1637 3.8020

VV 5.3065 3.7237

Multi-channel wavelet-based fusion
R 6.6887 4.6801 0.7714 0.4206 43.5341 1.2169

G 6.4407 3.9598 0.6937 0.3596 46.7885 0.2077

B 6.5275 3.9109 0.7418 0.2486 46.3082 0.4584

Fusion based on multi-channel multi-multi and turbo iterative
R 6.3761 5.5314 0.9824 0.5187 29.9419 0.2236

G 5.9635 5.3521 0.9310 0.4561 32.1052 0.0031

B 5.9946 5.3181 0.9481 0.3654 30.7845 0.0474

in the optical image. The optical image is also seriously
affected by the smog as seen on area 1. Apparently, the SAR
image is not affected by the smog at all, and something
invisible in the optical image appears in the SAR images,
such as the point objects seen in area 2. Different textures

are also easily differentiated. The wavelet-based fusion result
could contain most complementary information, but with
too much noise. The proposed algorithm gives a result
containing important complementary information with less
noise.
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(a) (b)

(c) (d)

Figure 14: (a) Airborne optical image and its two small cuts. (b) L-band polarimetric SAR image. (c) Fusion results when the intensity
components are fused with wavelet fusion. (d) Fusion results based on multi-channel multi-multi and turbo iterative.
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Figure 15: Comparative quantitative indicators for different algo-
rithms

Area 2 is chosen to be evaluated by quantitative indicators
and the results are shown in Table 4. A comparative graph is
presented in Figure 15. In Table 4, the first column of spectral
correlation and distortion is for the optical image and the
second is for the SAR image. The spectral correlation and
distortion are two indicators that reflect the degree of spectral
retention. The notions of entropy and average gradient are
the same with Table 2. To make it clear, in the graph, the
values of entropy and average gradient represent the average
of all components in each image.

Table 4 and Figure 15 illustrate that the proposed fusion
algorithm performs better on the average gradient producing
better clearness than the source images and wavelet-based
fusion.

Furthermore, compared with wavelet-based fusion, this
method considerably improves on spectral correlation and
distortion. The entropy value here could be explained by the
effect of the noise.

In conclusion, from the objective and subjective evalu-
ation, the fusion based on multi-channel multi-multi and
turbo iterative performs well, which could provide useful
data for the further image processing such as classification
or object identification.

7. Conclusion

This paper presented an effective multi-channel fusion
algorithm based on the multi-multi turbo iterative.

Motivated by the idea that original information of
multiple images is hard to be covered by one image, this
paper proposes a multi-multi turbo iterative based fusion
method for colorful optical and multiple polarimetric SAR
images.

The experiments showed that our approach has the
following advantages.

(1) Turbo iterative is introduced here to balance the
wavelet-based fusion method (which can retain more
detailed information and is sensitive to noise) and the model-
based fusion (which can effectively control noise).

(2) The original information is temporarily represented
by multiple outputs during each iteration process, which
leads to a more reliable result that can be used by further
image processing. Although the final output is a single image,
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it surely has advantages over traditional fusion which regards
the single image as the only object.

(3) IHS transformation and multi-multi based turbo
iterative are incorporated to address the fusion of color
optical and multi-polar SAR images. The application to color
images absolutely covers more source images from different
sensors. What’s more, because of the multiple information
contained in color images (such as multiple polarimetric
information contained in SAR data) the multi-multi turbo
iterative method can surely provide a much more useful
result for further image processing.
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