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A new cosine cepstrum model-based scheme is presented for the parameter estimation of a minimum-phase autoregressive (AR)
system under low levels of signal-to-noise ratio (SNR). A ramp cosine cepstrum (RCC) model for the one-sided autocorrelation
function (OSACF) of an AR signal is first proposed by considering both white noise and periodic impulse-train excitations. Using
the RCC model, a residue-based least-squares optimization technique that guarantees the stability of the system is then presented
in order to estimate the AR parameters from noisy output observations. For the purpose of implementation, the discrete cosine
transform, which can efficiently handle the phase unwrapping problem and offer computational advantages as compared to the
discrete Fourier transform, is employed. From extensive experimentations on AR systems of different orders, it is shown that the
proposed method is capable of estimating parameters accurately and consistently in comparison to some of the existing methods
for the SNR levels as low as −5 dB. As a practical application of the proposed technique, simulation results are also provided for
the identification of a human vocal tract system using noise-corrupted natural speech signals demonstrating a superior estimation
performance in terms of the power spectral density of the synthesized speech signals.

1. Introduction

The parameter estimation of autoregressive (AR) systems
under noisy conditions has been extensively studied in
areas of signal processing, communication, and control.
For example, estimating the AR or linear predictive coding
(LPC) parameters of a vocal tract (VT) system from an
observed noisy speech plays an important role in speech
coding, synthesis, and recognition [1]. Numerous system
identification methods have been developed for both noise-
free and noisy AR systems. The maximum likelihood (ML)
methods are asymptotically consistent but their convergence
performance relies heavily on the initialization process of
the methods [2, 3]. In [3], Xie and Leung have proposed a
genetic algorithm to be employed to solve the ML estimation
problem at a low SNR, where they consider an AR system
driven by chaos. The Yule-Walker (YW) methods have
been widely employed to identify the AR systems [2].

The estimation performance of noise compensation-based
identification schemes, such as the low-order Yule-Walker
(LOYW) method, depend heavily on the accuracy of a priori
knowledge of the noise corrupting the signal [2]. Although
the high-order Yule-Walker (HOYW) method does not
require a priori estimate of the noise variance, it suffers from
a singularity problem and has a large estimation variance [4].
To reduce the estimation variance, a least-squares HOYW
(LSYW) method can be used [2]. However, in the presence
of a reasonable level of noise, the estimation variance of
the LSYW method is still large. In order to overcome this
problem, in [5], Davila has proposed a signal/noise subspace
YW (SSYW) method by introducing a noise compensation in
the LOYW method. In [6], by deriving a method of removing
the noise-induced bias from the standard least-squares (LS)
estimator, Zheng has proposed a method known as the
improved least-squares fast-converging (ILSF) algorithm.
Both the SSYW and ILSF methods are computationally fast
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and provide estimation results that are quite satisfactory for
low levels of signal-to-noise ratio (SNR).

Identifying AR systems from cepstral coefficients has
been attempted only by a few researchers [7, 8]. In [7], a
homomorphic LPC (HLPC) method has been proposed for
both the white noise and periodic impulse-train excitations
in a noise-free environment. The HLPC method cannot
guarantee the stability of the estimated AR model. The
ramp-cepstrum method proposed in [8] overcomes this
problem even in a noisy environment. The method employs
conventional cepstrum of a correlation function to formulate
a ramp-cepstrum for the estimation of the AR parameters.
Since conventional cepstrum is based on Fourier analysis,
even for applications dealing with real data it involves
complex computation and phase unwrapping operation
during its implementation via the discrete Fourier transform
(DFT) and inverse DFT (IDFT). In comparison to the DFT,
the discrete cosine transform (DCT) is much better in many
applications dealing with real signals, for example speech
enhancement and speech recognition [1, 9], since it avoids
complex computations. Also DCT requires relatively less
number of coefficients to represent the signal/image data as
compared to DFT. Moreover, it uses a very simple algorithm
for phase unwrapping. Nevertheless, the DCT has rarely
been employed for system identification problems [10]. In
[10], the real spectrum computed by the DCT is employed
to obtain an AR model describing the squared Hilbert
temporal envelope of a sequence. In this paper, motivated
by the advantageous features of DCT, we develop an AR
system identification technique in the cepstral domain where
DCT rather than DFT is employed. To this end, unlike the
conventional cepstrum determined via Fourier and inverse
Fourier transforms, a cosine cepstrum is first formally
defined through cosine and inverse cosine transforms, and
then utilized to develop a theory for the AR parameter
estimation.

The objective of this paper is to develop an effective
cosine-cepstrum-based methodology for the identification
of AR systems from very heavily noise-corrupted samples
of the output observations. The main idea of the proposed
methodology is to achieve the above stated goal by having
a transformed version of the corrupted signal for model-
fitting so that the process of transformation itself is noise-
robust, and by developing a corresponding target model
for the purpose of fitting. In the proposed technique, the
noise-robust approach of obtaining the transformed signal
is to use the ramp cosine cepstrum (RCC) of one-sided
autocorrelation function (OSACF) of an AR signal for both
white noise and periodic impulse-train excitations. With
this transformation for the signal, we are able to develop
the corresponding target model, referred to as the RCC
model, for the estimation of the system parameters. The
motivation behind using the OSACF for the cosine cepstrum
computation is to reduce the effect of the noise. Unlike
conventional methods, we deal with both white noise and
periodic impulse-train excitations. By employing the RCC
model, a residue-based least-squares (RBLS) optimization
scheme is presented for the estimation of the AR parameters.
For the purpose of implementation, the DCT, which is

capable of handling the phase unwrapping problem and
offers computational advantages over the DFT, is employed
in the proposed method. The proposed method is tested for
the estimation of the AR parameters of different synthetic AR
systems and also for the identification of a human vocal tract
system using natural speech signals.

The paper is organized as follows. In Section 2, the
problem of AR system identification in the presence of noise
is formulated in the cepstral domain. In Section 3, first, a
ramp cosine cepstrum model based on a one-sided ACF
of an AR signal for the two types of input excitations is
derived and then the DCT is employed for the realization
of the derived model. Section 4 presents a residue-based
least-squares optimization scheme for the AR parameter
estimation using the proposed ramp cosine cepstrum model
under noisy conditions. The performance of the proposed
method is demonstrated in Section 5 through extensive
computer simulations for both synthetic and natural speech
signals. Finally, in Section 6, salient features of the proposed
algorithm are summarized with some concluding remarks.

2. Problem Statement

The input-output relationship of a real causal stable linear
time-invariant autoregressive (AR) system can be described
as

x(n) = −
M∑

k=1

akx(n− k) + w(n), (1)

where w(n) and x(n) are, respectively, the excitation and the
response of the AR system, {ak} the AR parameters to be
estimated, and M the system order assumed to be known
in this paper. Note that when the system order is unknown,
different standard techniques, available in the literature [2],
can be employed to estimate the order. The system output in
(1) can be considered as a convolution of the input w(n) and
the impulse-response h(n) of the system, represented as

x(n) = h(n)∗w(n). (2)

The transfer function of the AR(M) system described by (1)
can be written as

H(z) = 1
A(z)

= 1
∏M

k=1

(
1− pkz−1

) , (3)

where A(z) = 1 +
∑M

k=1 akz
−k is the AR polynomial and

pk = rke jωk represents the kth pole with a magnitude rk
and angle ωk. In most of the system identification problems,
w(n) is modeled to be a stationary zero-mean white Gaussian
noise with an unknown variance σ2

w. For some practical
applications, such as speech signal processing, seismology,
and communication, however, the excitation may have other
forms [1, 11–13]. For example, in speech signal processing,
a periodic impulse-train is often used as an excitation of
the vocal tract system [1, 11, 13]. As such, in this paper,
both the white Gaussian noise and the periodic impulse-train
excitations are considered as input to the AR system.
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Cepstrum analysis has become a very important tool in
signal processing, especially in different speech processing
applications. It has been proposed as a method for separating
signals that have been combined through convolution [1,
11]. For an N-point real sequence {s(n)}N−1

n=0 , in general, the
cepstrum of s(n) can be defined as [9]

γs(n) = T −1[ln[T [s(n)]]], (4)

where T [ · ] and T −1[ · ], respectively, represent a trans-
form and its inverse operator. When T is a z-transform, for
example, T [s(n)] = S(z) = |S(z)|e∠S(z), and the natural
logarithm yields

ln[S(z)] = ln[|S(z)|] + j∠S(z). (5)

Definition in (4) is valid provided s(n) is deterministic.
Since a numerical computation of (5) provides only the
principal or wrapped phase, a phase unwrapping algorithm
is necessary to restore the phase continuity [11, 14].

In the current system identification problem, the system
response x(n), as described in (2), is a convolution of the
input and the impulse-response of the system. In such a
situation, (2) can be expressed in the cepstral domain by
applying (4), where T [ · ] is either z-transform or Fourier
transform, as

γx(n) = γh(n) + γw(n), (6)

where γh(n) is the cepstrum of the impulse response and
γw(n) represents the cepstrum of one realization of the input
signal. Utilizing such an advantage of homomorphic decon-
volution, cepstrum domain methods have been proposed
for system identification in [7, 15, 16]. For example, in [7],
in order to estimate the AR parameters, a mean-squared
error minimization involving (6) is used by employing the
Cholesky decomposition. However, as mentioned in [7], the
problem of this method is that the stability of the estimated
AR model is not guaranteed. It is to be noted that all the
cepstral domain methods mentioned above deal only with
the noise-free environment.

In the presence of additive noise v(n), the observed signal
y(n) is given by

y(n) = x(n) + v(n), (7)

where v(n) is assumed to be a zero mean stationary process
and is independent of w(n). In [17], the behavior of the
cepstral coefficients in the presence of additive noise has
been investigated for the purpose of speech recognition by
assuming that the noise spectrum can be obtained during
the experiment, and it has been shown that the cepstral
vector of noisy data can be expressed as the sum of the
cepstral vector of its clean version and a scaled deviation
vector. In our identification problem, however, we handle
a more common and critical situation where only noisy
observations are available. Given one realization of input

excitation and the observation noise, using the definition in
(4), the complex cepstrum of y(n) can be expressed as

γy(n) = T −1{ln[T [x(n)]]} + T −1
{

ln
[

1 +
T [v(n)]
T [x(n)]

]}

= γx(n) + γu(n),

(8)

where γu(n) arises because of the noise. The term γu(n)
determines as to how the noise affects γy(n) and it vanishes
altogether in the absence of noise. In order to estimate the AR
system parameters from γy(n), the effect of γu(n) has to be
reduced. It is difficult to obtain an accurate estimate of γx(n)
from γy(n), since the cepstrum decomposition techniques
are very sensitive to the noise level [17, 18]. In this paper,
in order to reduce the effect of noise in extracting the
AR parameters, first, we avoid computing cepstrum directly
from the noise-corrupted observations by using a one-sided
ACF, and then develop a ramp cosine cepstrum (RCC) model
for a model-fitting based least-squares optimization in the
cepstral domain. Moreover, in the proposed method, the
DCT, instead of the conventional DFT, is employed for
computing the cepstrum so as to overcome the problem of
phase unwrapping and to achieve computational savings in
dealing with real signals.

3. Proposed Ramp Cosine Cepstrum (RCC)
Model Based on One-Sided ACF

In the cepstral analysis, cepstral coefficients are, generally,
computed from an observed signal or from an estimate of
its nonparametric power spectral density (PSD) [2, 19]. In
this section we propose to develop a ramp cosine cepstrum
model utilizing a one-sided ACF (OSACF) of x(n), which can
be defined as

ψx(τ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φx(τ), τ > 0

0.5φx(τ), τ = 0

0, τ < 0

(9)

where φx(τ) is the conventional two-sided ACF of x(n)
which, in general, is estimated as [2, 13]

φx(τ) = 1
N

N−1−|τ|∑

n=0

x(n)x(n + |τ|), 0 ≤ |τ| < N , (10)

where N is the data length. This equation provides an
accurate estimate of φx(τ) when N is sufficiently large. Some
important properties of the OSACF of x(n) relevant to the
development of the proposed model can be summarized as
follows.

(1) As φx(τ) is a symmetric two-sided sequence, the
corresponding OSACF ψx(τ) is related to φx(τ) by

φx(τ) = ψx(τ) + ψx(−τ). (11)

(2) For a real signal x(n), its OSACF ψx(τ) is also real.
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(3) The function ψx(τ) retains the pole-preserving prop-
erty of φx(τ).

(4) The OSACF exhibits a higher noise immunity than
the conventional ACF does [20]. Since the spectral
envelope of the OSACF of noisy observations, in
comparison to the conventional two-sided conven-
tional ACF, strongly enhances the highest power
frequency bands corresponding to the spectral peaks,
a large attenuation of the noise components lying
outside the enhanced frequency bands would occur.

Taking the z-transform of both sides of (11) results in

Φx(z) = Ψx(z) + Ψx

(
1
z

)
. (12)

The Fourier domain representation of (11) is given by

F
[
φx(τ)

] = 2Re
[
F
[
ψx(τ)

]]
, (13)

where F [ · ] represents the Fourier transform and the
operator Re[ · ] gives the real part of a complex number. As
we are interested to perform cepstrum domain computation
with ψx(τ), the relation in (13) favors the use of the cosine
transform, which is the real part of the Fourier transform.
The cosine transform, denoted as Fc[ · ], of a real signal
{ψx(n)}N−1

n=0 can be written as

Ψc
x(ω) = Fc

[
ψx(n)

] = Re
[
F
[
ψx(n)

]] =
N−1∑

n=0

ψx(n) cosωn.

(14)

From (4) and (14), one can define the cosine cepstrum of a
real signal {ψx(n)}N−1

n=0 as

cψx (n) = F −1
c

[
ln
[
Fc
[
ψx(n)

]]]
, (15)

where F −1
c [ · ] denotes the inverse operator for the cosine

transform, that is, for a given frequency domain spectrum
Ψc

x(ω), the inverse cosine transform can be defined as

F −1
c

[
Ψc

x(ω)
] = 1

2π

∫ π

−π
Ψc

x(ω) cosωndω. (16)

In the following, we will develop a ramp cosine cepstrum
model for the estimation of the AR parameters under the
white Gaussian noise and periodic impulse-train excitations.
To this end, we first show that the cosine cepstrum cψx (n)
can be expressed in terms of the system poles. Using (13) and
(14), cψx (n) in (15) can be expressed as

cψx (n) = F −1
c

[
ln
[
F
[
φx(n)

]]]
+ F −1

c

[
ln
[

1
2

]]
. (17)

Here, F [φx(n)] = Φx(ω) is by definition the PSD of the real
signal x(n), and it can be shown that Φx(ω) is real, even, and
nonnegative. From (2), the PSD of the output x(n) for the
linear time-invariant system with the transfer function H(z)
given by (3) can be expressed as

Φx(ω) = H(ω)H(−ω)Φw(ω) = |H(ω)|2Φw(ω), (18)

where Φw(ω) is the PSD of the input signal. Using (18),
cψx (n) in (17) can be written as

cψx (n) = F −1
c [ln[H(ω)]] + F −1

c [ln[H(−ω)]]

+ F −1
c [ln[Φw(ω)]] + F −1

c

[
ln
[

1
2

]]
.

(19)

It is observed from (19) that the effect of input excitation
w(n) has been made additive by using the homomorphic
deconvolution. Now, we consider each of the four terms in
(19) individually. From (3), ln[H(z)] can be expanded as

ln[H(z)] = −
M∑

i=1

ln
(
1− piz

−1) =
M∑

i=1

∞∑

n=1

pni
n
z−n, (20)

where |z| > |pi|. Using (16), the inverse cosine transform of
ln[F [h(n)]], with h(n) being real and minimum phase, can
be calculated by

F −1
c [ln[H(ω)]] = 1

2π

∫ π

−π

⎡
⎣

M∑

i=1

∞∑

m=1

pmi
m

e− jωm

⎤
⎦ cosωndω

= 1
2π

M∑

i=1

∞∑

m=1

pmi
m

∫ π

−π
e− jωm cosωndω.

(21)

Noting that

∫ π

−π
e− jωm cosωndω =

⎧
⎨
⎩
π, m = n

0, m /=n,
(22)

we have

F −1
c [ln[H(ω)]] = 1

2

M∑

i=1

pni
n

, n > 0. (23)

Similarly, the inverse cosine transform of ln[H(−ω)] can be
obtained as

F −1
c [ln[H(−ω)]] = 1

2π

∫ π

−π

⎡
⎣

M∑

i=1

∞∑

m=1

pmi
m

ejωm

⎤
⎦ cosωndω

= 1
2

M∑

i=1

pni
n

, n > 0.

(24)

It is observed from (16) that for a constant value of
Ψc

x(ω), F −1
c [Ψc

x(ω)] = 0 for all n > 0. Thus for n > 0,
the last term on the right side of (19) vanishes. Let us now
consider the remaining third term of (19) that depends
on the characteristics of the input excitation w(n). In the
following section we consider separately the white Gaussian
noise and a periodic impulse-train as an input excitation.

3.1. White Noise Excitation. For a zero mean white Gaussian
noise with a variance σ2

w, Φw(ω) = σ2
w. Thus, the third term

on the right side of (19) reduces to

F −1
c [ln[Φw(ω)]] = F −1

c

[
ln
[
σ2
w

]] = 0, n > 0. (25)



EURASIP Journal on Advances in Signal Processing 5

Hence, for the white noise excitation, the cosine cepstrum
cψx (n) in (19) can finally be expressed as

cψx (n) =
M∑

i=1

pni
n

, n > 0. (26)

It can be observed from this equation that cψx (n) decays
rapidly with increasing n, thus making it difficult to use
cψx (n) for the estimation of the system poles. In order to
overcome this problem, we propose an easy-to-handle ramp
cosine cepstrum (RCC) for the OSACF of x(n), defined as

χx(n) = ncψx (n) =
M∑

i=1

pni , n > 0. (27)

Since the poles in a system could appear as real or as complex
conjugate pair, (27) can be rewritten as

χx(n) =
κ∑

i=1

α(ωi)rni cos(ωin), n > 0, (28)

where κ is the number of real poles plus the number of
complex conjugate pole pairs, ri and ωi are, respectively,
the magnitude and the argument of pi. In (28), α(ωi) is
introduced to distinguish real and complex poles and is given
by

α(ωi) =
⎧
⎨
⎩

1, ωi = 0 or ωi = π,

2, 0 < ωi < π.
(29)

The model given by (28) is termed as the AR ramp cosine
cepstrum (RCC) model for the OSACF of x(n). This model
will be used in the next section to formulate an objective
function for the least-squares fitting problem in a noisy
environment.

3.2. Periodic Impulse-Train Excitation. In the derivation of
the RCC model with the white noise excitation, it was
observed that the term containing the effect of white noise
excitation becomes zero for n > 0, since the PSD of the
input w(n) is a constant. However, the situation is more
complicated in the case of a periodic impulse-train excitation
wi(n) where the corresponding PSD is no longer a constant.
Next, we analyze the effect of the third termF −1

c [ln[Φwi(ω)]]
of (19), which is now denoted as ĉφwi(n), on cφx (n).

A periodic impulse-train excitation {wi(n)}N−1
n=0 with a

given period T can be expressed as [13]

wi(n) =
μ−1∑

k=0

δ(n− kT), (30)

where μ = �N/T�, �·� denoting the ceiling operator, is
the total number of impulses within the finite duration of
excitation. Using (10), an estimate of the ACF of wi(n) is
obtained as

φwi(τ) = 1
N

μ−1∑

l=0

(
μ− l

)
δ(|τ| − lT), 0 ≤ |τ| < N. (31)

It is observed from (31) that φwi(τ) decays with increasing
values of τ and has nonzero values at τ = 0 and at integer
multiples of T for the case of finite data operation with 0 ≤
|τ| < N . Thus, φwi(τ) can be expressed alternately as

φwi(τ) =
⎧
⎪⎨
⎪⎩
f
(
τ

T

)
, |τ| = 0,T , 2T , . . . ,

(
μ− 1

)
T ,

0, otherwise,
(32)

where

f (τ) =
⎧
⎪⎨
⎪⎩

μ− |τ|
N

, |τ| ≤ μ− 1,

0, otherwise.
(33)

Note that f (τ) is an even symmetric triangular sequence and
from (32) and (33), it is evident that f (τ) can be obtained by
down-sampling φwi(τ) with a factor T . Thus the z transform
of φwi(τ) can be expressed as

Φwi(z) = F
(
zT
)

, (34)

where F(z) is the z transform of f (n) and the sequence
N f (n) can be generated through a convolution between
a rectangular pulse train of width μ and its time reversal
sequence. An expression for F(z) can be obtained as

F(z) = 1
N

(zμ − 1)2

zμ−1(z − 1)2 , z /= 0, 1. (35)

Based on the relation between φwi(τ) and f (τ), as described
in (32), (33), and (34), it can be shown that

ĉφwi(n) =
⎧
⎪⎨
⎪⎩
ĉ f

(
n

T

)
, n = 0,T , 2T , . . . ,

(
μ− 1

)
T ,

0, otherwise,
(36)

where

ĉ f (n) = F −1
c [ln[F(ω)]]. (37)

It is evident from (36) that ĉφwi(n) assumes nonzero values at
n = 0 and at integral multiples of T for n ≥ 0. Thus, the third
term on the right side of (19) reduces to

F −1
c

[
ln
[
Φwi(ω)

]] = 0, 0 < n < T. (38)

Note that the RCC given by (27) for the white noise excitation
can be modified for the impulse-train excitation as

χx(n) = ncψx (n) =
M∑

i=1

pni , 0 < n < T. (39)

From (27) and (39), it is observed that the RCC model
derived for the white noise excitation is also valid for the case
of periodic impulse-train excitation when 0 < n < T .
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3.3. Computation of RCC Model via DCT/IDCT. The RCC
model derived in the previous subsections is obtained from
the cosine cepstrum of the OSACF of x(n), where the
logarithm operation is performed on the cosine transform
of ψx(m). As explained earlier, the difficulty in the complex
cepstral analysis is the necessity to unwrap the phase to
make it a continuous function of ω. A major advantage of
using cosine transform lies in its binary phase information,
i.e., 0 or π which, as shown later, can significantly simplify
the phase unwrapping process. From the implementation
point of view, different types of discrete cosine-transforms
(DCTs) can be employed. It is known that the DCT is
far superior to the DFT for the transformation of real
signals. For a real signal, DFT gives complex spectrum and
leaves nearly one-half of data unused. In contrast, the DCT
generates real spectrum of real signals and thereby makes
the computation of redundant data unnecessary. Being a
real function, the DCT offers an added advantage that it
requires only a simple phase unwrapping algorithm. Also, as
the DCT is derived from the DFT, all the desirable properties
of DFT are preserved, and fast algorithms for its computation
exist. As a result, using a DCT and inverse DCT (IDCT)
pair, a complex-cepstrum corresponding to (15) can be
implemented as follows

χx(n) = ncψx (n), n > 0,

cψx (n) = IDCT
[
ln
(
DCT

[
ψx(n)

])]
, n > 0.

(40)

For a real sequence ψx(n) with n = 0, 1, . . . ,N − 1, the most
commonly used DCT-IDCT pair is defined as

DCT
[
ψx(n)

] = Ψx(k) = ρ(k)
N−1∑

n=0

ψx(n) cos
(

(2n + 1)kπ
2N

)
,

k = 0, 1, . . . ,N − 1,
(41)

IDCT[Ψx(k)] = ψx(n) =
N−1∑

k=0

ρ(k)Ψx(k) cos
(

(2n + 1)kπ
2N

)
,

n = 0, 1, · · · ,N − 1,
(42)

where ρ(k) is a normalization coefficient defined as

ρ(k) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
1
N

, for k = 0,
√

2
N

, for k = 1, 2, . . . ,N − 1.

(43)

Since the bases of the cosine transform are real functions,
the principal phases of DCT coefficients can only be 0 or π.
Accordingly, we can represent the phase as exp(− jπ) when
the cosine transform is negative sign and as exp(− j0) when it
is positive. With this representation, the logarithm operation
in (40) can be easily carried out and (40) can be expressed as

σx(n) = Re
[
IDCT

[
ln|Ψx(k)| + jπξ

]]
, n > 0, (44)

where

ξ =
⎧
⎨
⎩

0, if Ψx(k) ≥ 0,

−1, if Ψx(k) < 0.
(45)

Thus, this representation clearly supports a simple phase
unwrapping. On the other hand, in the case of using
DFT for the computation of cepstrum, complicated phase
unwrapping algorithms as proposed in literature [11, 14]
need to be used, since the phase in this case has no longer
binary values.

4. The RCCModel-Based Parameter Estimation

4.1. Effect of Additive Noise. In the presence of noise, the
observed signal gets heavily corrupted especially when the
signal-to-noise ratio (SNR) is very low. In this paper, a
more general noisy environment is considered where it is
assumed that the noise variance is unknown and noise-only
data is not available. In Section 2, the effect of noise on
cepstral coefficients has been described for the case when
cepstrum is computed in the signal domain. It is well-known
that the autocorrelation of a noisy signal offers more noise-
robustness in comparison to the noisy signal itself [20]. Thus,
the RCC model that we have developed based on the OSACF
ψx(τ) of noise-free signal can be used as a target function
even when RCC is computed based on the OSACF of the
noisy observation of the signal. In what follows, our objective
is to investigate the effect of the noise on the RCC computed
from noisy observations. In the presence of an additive noise
v(n), the ACF of the noisy observation y(n) can be expressed
as

φy(τ) = φx(τ) + φn(τ), (46)

where

φn(τ) = φv(τ) + φxv(τ) + φvx(τ). (47)

Here, φv(τ) is the ACF of noise v(n), and φxv(τ) and φvx(τ)
are crosscorrelation terms. Equation (46) is valid for both the
estimated and the theoretical ACFs. It can be observed that
φn(τ) corrupts φx(τ) in an additive fashion like the signal.
The effect of φn(τ) cannot be neglected, especially when
the SNR is very low. Note that the effect of crosscorrelation
terms on ψx(τ) is negligible when v(n) and w(n) are assumed
to be uncorrelated. However, at a very low SNR, this is
not so when the length of the observed data is finite. Even
for an uncorrelated additive white Gaussian noise, all the
lags of the noisy ACF are corrupted at a very low SNR.
Under such a noisy condition, the conventional correlation
based methods employing directly φy(τ) cannot provide a
good estimation performance. This motivates us to switch
to the cepstral domain where the logarithmic smoothing
would help in preserving the RCC model under heavy noisy
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conditions. The OSACF ψy(τ) of noisy observations y(n) can
be obtained as

ψy(τ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φy(τ), τ > 0,

0.5φy(τ), τ = 0,

0, τ < 0.

(48)

From (46) and (48), the OSACF of y(n) can be written as

ψy(τ) = ψx(τ) + ψn(τ), (49)

where ψn(τ) indicates the effect of noise on ψy(τ) and it can
be expressed in a form similar to that of ψx(τ) given by (9).
Thus, in the presence of noise, the cosine cepstrum of ψy(τ)
can be expressed as

cψy (n) = F −1
c

[
ln
[
Fc

[
ψy(n)

]]]
= cψx (n) + cψn(n), n > 0,

(50)

where

cψn(n) = F −1
c

{
ln

[
1 +

Fc
[
ψn(n)

]

Fc
[
ψx(n)

]
]}

. (51)

Therefore, the ramp cosine cepstrum of ψy(τ) can be
expressed as

χy(n) = χx(n) + χε(n), n > 0. (52)

Here, the term χε(n) arises because of the noise. Like γu(n)
in (8), χε(n) would vanish in the absence of noise. Now,
the RCC model derived in Section 3 can be used in (52) for
a ramp cosine cepstral model fitting to minimize the error
between χy(n) and χx(n). By this approach the RCC model
parameters, and thus the AR parameters are estimated.

Since, in the presence of additive white Gaussian noise,
the zero lag of the noisy ACF φy(n) is most severely corrupted
in comparison to other lags, if the zero lag is kept as it is
during the computation of the RCC of the OSACF, it may
result in a more erroneous value of RCC. On the other hand,
excluding the zero lag, although it may reduce the effect of
noise, would remove the average power of the observed data
y(n). Since φy(0) > |φy(τ)| for τ /= 0, we replace φy(0) by
ηφy(0) with {|φy(1)|/φy(0)} ≤ η < 1 in order to reduce
the effect of noise. This is suitable especially for a difficult
situation where noise variance and/or noise-only data are
not available. The process can efficiently suppress the level
of cψn(n) while leaving the shape of cψy (n) similar to that of
cψx (n).

4.2. Ramp Cosine Cepstral Fitting: Residue-Based Least-
Squares Optimization. As discussed in the previous sub-
section following (52) that a ramp cosine cepstral fitting
approach can be developed to determine the RCC model
parameters from the RCC of the OSACF of noisy observa-
tions. We now propose a residue-based least-squares (RBLS)
fitting scheme to estimate the model parameters in (28)
and (39). Then, the AR parameters can be obtained from
the RCC model parameters {ri} and {ωi}. Each of the κ

component terms in (28) contains a pair (ri, ωi). In order to
estimate each of the κ such pairs, Nc values of χy(n) are used,
where Nc < T for the periodic impulse-train excitation. The
objective function to determine the values of one pair (ri, ωi)
is defined as the total squared error between the (l − 1)th
residual function Rl−1(n) and the lth component of the RCC
model, that is

Jl =
Nc∑

n=1

∣∣∣Rl−1(n)− α(ωl)rnl cos(ωln)
∣∣∣

2
, l = 1, 2, . . . , κ,

(53)

where the residual function is updated as follows

R0(n) = χy(n),

Rl(n) = Rl−1(n)− α(ωl)rnl cos(ωln), l = 1, . . . , κ− 1.
(54)

Note that {rl} and {ωl} are independent variables and α
depends on {ωl} as seen from (29). We would like to
find the optimal solution for {rl} and {ωl} by a search
algorithm based on the computation of (53) and (54). In
order to reduce the computational burden, a two-step search
algorithm is adopted. In the first step, a coarse-search based
on the DCT spectrum of the OSACF of the observed data is
employed to find out the initial estimate of {ωl} and {rl}, l =
1, 2, . . . κ. In the second step, a fine-search is carried out
around each initially estimated pair of {ωl} and {rl} to obtain
a more accurate estimate. In the fine-search, a neighborhood
centered at each initial estimate of {rl} and {ωl} is searched
with a prescribed search resolution in a bounded region. A
pair of {r′l } and {ω′l } that globally minimizes Jl is selected as
the estimate of a desired pole. It can be observed from (54)
that, in order to determine the lth residual function Rl(n),
the computed values of {rl} and {ωl} are utilized. Proceeding
in this manner, the AR parameters can be determined
using (3) once all the M poles have been estimated. In the
proposed search scheme, restricting the search range of rl
within the stable region inherently guarantees the stability
of the estimated AR system. Another advantage of the RBLS
scheme is that in each fine-search, instead of the entire RCC
model with all κ constituent terms, only one such term is
estimated in (53), and in this fashion each term of the RCC
model is sequentially obtained. This is done with a view to
convert a multivariable optimization problem into a set of
two-variable optimization scheme which makes the problem
much simpler.

5. Simulation Results

In this section, extensive simulations are carried out in order
to demonstrate the effectiveness of the proposed technique
in identifying the AR systems in the presence of noise.
We investigate the identification performance for synthetic
AR signals as well as natural speech signals corrupted by
additive noise. The estimation performance of the proposed
method in terms of the accuracy and consistency of the
estimated parameters is obtained and compared with that
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of the existing methods including the improved least-squares
fast-converging (ILSF) method [6], the signal/noise subspace
Yule-Walker (SSYW) method [5], and the modified least-
squares Yule-Walker (MLSYW) method [2].

5.1. Results on Synthetic AR Systems

5.1.1. White Noise Excitation. A noisy signal is generated
according to (1) and (7) with N = 4, 000 and σ2

w = 1, where
the variance of the white Gaussian noise σ2

v is appropriately
set based on a specified level of SNR defined as

SNR = 10 log10

∑N−1
n=0 x(n)2

∑N−1
n=0 v(n)2 dB. (55)

From the noisy observations, first, the OSACF ψy(τ) is
computed using (48) and (10). Note that for the purpose of
implementing the cosine cepstrum, generally the continuous
frequency ω is sampled as ω = 2πk/M for k = 0, 1, . . . ,K − 1
resulting in a K-point Discrete Cosine Transform (DCT).
According to the description provided in Section 3.3 for
the noise-free observations, DCT-IDCT-based ramp-cosine
cepstrum (RCC) is computed using ψy(τ). The RCC
model parameters are then determined using the residue-
based least-squares optimization technique introduced in
Section 4.2. In the proposed optimization scheme, the search
range for rl is chosen in the range [0.5, 0.99], that allows
the identification of systems even with a very fast decaying
autocorrelations. The initial estimates of ωl are obtained
from the location of the peaks of the smoothed DCT of the
OSACF of y(n). The search range for ωl is in a range of 0.1π
chosen symmetrically around the neighborhood of the initial
estimates. Search resolutions of Δr = 0.01 and Δω = 0.01π
are used for rl and ωl, respectively. It has been experimentally
found that, in order to obtain a better estimate of the M
unknown AR coefficients, the number of RCC samples to be
considered in the model-fitting operation should be higher
than M. In our experiment, the number of RCC samples is
taken as Nc = 10M.

As discussed in Section 4.1, in order to reduce the effect
of the most corrupted zero lag on the OSACF of the noisy
observations, the value of η is chosen as |φy(1)|/φy(0). Sev-
eral experiments, each consisting of NT = 100 independent
trials, are conducted to find the means and variances of
the estimated AR parameters under noisy observations in
which the SNR varies from −5 dB to 15 dB at steps of 2.5 dB.
The performance measurement criteria considered in our
simulation study are (1) the mean of estimated parameters,
(2) the standard deviation from the mean (SDM), (3) the
standard deviation from the given value, that is, the true
value (SDT), and (4) the average sum-squared error (ASSE)
given by

ASSE = 1
NTM

NT∑

m=1

M∑

k=1

[âk(m)− ak]2, (56)

where âk(m) represents the estimated parameter at the mth
trial and ak the corresponding true value of the parameter.
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Figure 1: Effect of noise level on the ASSE for a white noise-excited
system.

Different AR systems are investigated in order to cover a
wide range of possible locations of poles, their numbers and
types (i.e., real or complex conjugate). Tables 1 and 2 show
the estimation results for the AR(3) and AR(4) systems at
an SNR level of −5 dB, respectively. The AR(3) system with
A(z) = 1−2.6770z−1 + 2.5894z−2−0.8970z−3 contains a real
pole and a pair of complex conjugate pole, and the AR(4)
system with A(z) = 1 + 0.4998z−1 − 0.01z−2 − 0.7853z−3 −
0.5999z−4 contains two real poles and a pair of complex
conjugate poles. As the real and complex types of poles
exhibit quite different behaviors, in our experiments various
combinations of real and complex poles are considered to
show the capability of the proposed algorithm in dealing
with real life situations. In each table, the second column
lists the true values of the AR parameters and the remaining
four columns list the estimated values of corresponding
parameters obtained from the proposed and the three other
methods. The values for the SDM and SDT corresponding to
estimated AR coefficients are also given below the estimated
parameter value. The last row of each table provides the
ASSE measure in dB. Table 1 shows that at SNR = −5 dB,
when the other methods fail to identify the system, the
proposed method successfully estimates the parameters quite
accurately. It is seen from Table 2, although some of the other
methods provide an acceptable performance, the estimation
accuracy achieved by the proposed method is much higher.
It is seen from these tables that the proposed method exhibits
a superior estimation performance with respect to all the
four performance indices at such a low level of SNR. Very
small values of SDM and SDT obtained from the proposed
technique indicate a high degree of estimation consistency
and accuracy.

Figure 1 shows the ASSE values as a function of SNR
levels for the AR(3) system obtained by each of the four
methods with the true parameters as specified in Table 1. It is
observed from Figure 1 that the ILSF and the SSYW methods
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Table 1: Estimated parameters at SNR = −5 dB for AR(3) system with white noise excitation.

True parameters Estimated parameters

Proposed method ILSF method SSYW method MLSYW method

a1 −2.6770
−2.6658 −1.3437 −0.9891 −1.0753

(±0.0349) (±0.5077) (±0.6716) (±0.1074)

(±0.0367) (±1.4267) (±1.8166) (±1.6053)

a2 2.5894
2.5517 0.4403 −0.1136 0.1118

(±0.0760) (±1.0037) (±0.7117) (±0.1799)

(±0.0859) (±2.3719) (±2.5760) (±2.7071)

a3 −0.8970
−0.8763 0.0868 0.2214 0.5107

(±0.0439) (±0.6053) (±0.3641) (±0.1013)

(±0.0496) (±1.1551) (±1.1762) (±1.4114)

ASSE (dB) −24.93 4.25 5.13 6.05

Table 2: Estimated parameters at SNR = −5 dB for AR(4) system with white noise excitation.

True parameters Estimated parameters

Proposed method ILSF method SSYW method MLSYW method

a1 0.4998
0.5042 0.3655 0.3830 1.0445

(±0.0289) (±0.2595) (±0.3086) (±0.0923)

(±0.0293) (±0.2922) (±1.6859) (±1.2579)

a2 −0.0100
−0.0283 −0.0066 0.0040 0.0452

(±0.0219) (±0.0600) (±0.0651) (±0.0704)

(±0.0285) (±0.0601) (±0.0672) (±0.0747)

a3 −0.7853
−0.7580 −0.7759 −0.8221 −0.7559

(±0.0507) (±0.0893) (±0.0857) (±0.0956)

(±0.0665) (±0.0899) (±0.0882) (±0.0972)

a4 −0.5999
−0.5648 −0.4597 −0.4211 −0.3229

(±0.0374) (±0.2732) (±0.2874) (±0.3113)

(±0.0513) (±0.3071) (±0.2982) (±0.3257)

ASSE (dB) −24.95 −13.27 −12.71 −9.13

give estimation accuracy comparable to that provided by the
proposed method for SNR levels above 10 dB. However, the
proposed method performs significantly better for levels of
SNR as low as −5 dB.

Figure 2 depicts the superimposed plots of the estimated
poles from 20 independent realizations obtained by the four
methods at SNR = −5 dB along with their true locations
for an AR(5) system with parameters {ak} = {1, −3.2229,
5.2862, −5.0095, 2.7875, −0.7362}. Clearly, the estimated
values obtained using the proposed method in comparison
to that achieved by the other methods are much less scattered
around the true values indicating a very high estimation
accuracy. Similar to AR(3), AR(4), and AR(5) systems
described above, the performance of the proposed method
has been investigated for a number of other AR systems
with different orders. As an illustration of the effectiveness
of the proposed RCC method with larger model orders, an
AR(12) system is considered with parameters {ak} = {1,
−2.1953, 3.7702,−5.7045, 7.9177,−9.0049, 9.2872,−8.8448,
7.5863, −5.3168, 3.4542, −1.9537, 0.8162}. In Figure 3, the
superimposed plots of the estimated poles of the AR(12)

system obtained by the four methods at SNR = −5 dB along
with their true locations are shown. Similar to Figure 2 that
portrays the estimation accuracy of the proposed method
for the case of AR(5) system, Figure 3 clearly exhibits the
effectiveness of the proposed method in estimating poles
of the high-order AR system. As expected, the estimation
accuracy of this large order AR system is somewhat reduced,
but the performance of the proposed RCC method still
remains considerably superior to that provided by the other
techniques.

5.1.2. Impulse-Train Excitation. We now consider the prob-
lem of AR system identification with periodic impulse-train
excitations of different periods for various levels of noise. An
impulse-train is generated using (30) with a known value
of T . We choose the number of RCC samples less than T ;
thus, Nc = min(T − 1, 10M). A noisy AR signal is generated
according to (1) and (7) withN = 4, 000. The simulations are
carried out for NT = 100 independent trials and the results
averaged.
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Figure 2: Superimposed pole plot of AR(5) system at SNR = −5 dB. ×: true poles and ∗: estimated poles. (a) Proposed, (b) ILSF, (c) SSYW,
and (d) MLSYW method.

Tables 3 and 4 provide the estimation results for the
impulse-train excited AR(3) and AR(4) systems with T =
220 at SNR = −5 dB, respectively. It is seen from these tables
that the proposed method provides quite accurate estimation
of the AR parameters with very small values of SDM and
SDT, whereas the other methods are unable to identify the
systems at SNR = −5 dB. Similar result is observed for
the AR(5) system that was considered for the white noise
excitation.

The ASSE resulting from using the various methods
under the impulse-train excitation for the estimation of the
same AR(3) system as the one considered for the white noise
excitation is shown in Figure 4. It is seen from the figure
that, the proposed RCC method provides a significantly
better performance even at a very low SNR, whereas the

performance of other methods deteriorates at low levels of
SNR.

It is to be mentioned that, we have also compared
the proposed ramp cosine cepstrum (RCC) method with
our ramp cepstrum (RC) method previously developed in
[8] which employs conventional cepstrum of a correlation
function via DFT and IDFT. It has been observed that the
estimation performance of the RCC method is slightly better
than our previous RC method at a very low SNR of around
−5 dB, and remains comparable for other levels of SNR.
Although the two methods exhibit quite a similar estimation
performance, yet the RCC method based on the DCT-IDCT
implementation offers significant computational advantages
as opposed to the RC approach.
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Figure 3: Superimposed pole plot of AR(12) system at SNR = −5 dB. ×: true poles and ∗: estimated poles. (a) Proposed, (b) ILSF, (c)
SSYW, and (d) MLSYW method.

Table 3: Estimated parameters at SNR = −5 dB for AR(3) system with impulse train excitation.

True parameters Estimated parameters

Proposed method ILSF method SSYW method MLSYW method

a1 −2.6770
−2.6816 −0.9615 −1.0776 −1.0588

(±0.0311) (±1.0657) (±0.6890) (±0.0962)

(±0.0290) (±2.0196) (±1.7414) (±1.6211)

a2 2.5894
2.5644 −0.2284 0.1767 −0.1307

(±0.0702) (±1.7218) (±0.7101) (±0.1728)

(±0.0671) (±3.3022) (±2.5150) (±2.7256)

a3 −0.8970
−0.8732 0.4773 0.2489 0.5269

(±0.0398) (±0.8970) (±0.3625) (±0.0987)

(±0.0387) (±1.6411) (±1.2019) (±1.4273)

ASSE (dB) −25.14 5.23 6.27 5.87
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Table 4: Estimated parameters at SNR = −5 dB for AR(4) system with impulse train excitation.

True parameters Estimated parameters

Proposed method ILSF method SSYW method MLSYW method

a1 0.4998
0.4822 0.3845 0.3719 0.1483

(±0.0432) (±0.2824) (±0.3122) (±0.4145)

(±0.0456) (±0.2914) (±0.3134) (±0.4225)

a2 −0.0100
−0.0591 0.0151 0.0247 0.0608

(±0.0501) (±0.0705) (±0.0607) (±0.0615)

(±0.0540) (±0.0743) (±0.0699) (±0.0938)

a3 −0.7853
−0.7483 −0.8134 −0.8428 −0.7973

(±0.0651) (±0.0602) (±0.0402) (±0.0387)

(±0.0730) (±0.0664) (±0.0701) (±0.0407)

a4 −0.5999
−0.5568 −0.4196 −0.4663 −0.2965

(±0.0658) (±0.2953) (±0.2885) (±0.1842)

(±0.0660) (±0.3107) (±0.2992) (±0.3549)

ASSE (dB) −22.84 −11.35 −10.71 −8.27
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Figure 4: Effect of noise level on the ASSE for an impulse-train
excited system.

5.2. An Application for Vocal Tract System Identification. As a
practical application of the proposed method, the identifica-
tion of a vocal tract system is performed from natural speech
signals. Since, in this case, the true system parameters are not
known, for the purpose of evaluating the estimation accu-
racy, nonparametric PSD is used. In addition, an estimate
of the poles under a noise-free condition is also obtained by
using some commonly used technique for the LPC analysis,
such as the MLSYW method. The corresponding wide-band
spectrogram of the noise-free speech gives information on
possible pole locations. In order to estimate the vocal tract
system parameters, some English natural voiced phonemes
from the TIMIT and the North Texas standard databases
[21, 22] with a sampling frequency of 16 KHz are used as the
noise-free output observations. Instances of the phonemes

for the TIMIT database are extracted from the database
according to the given transcriptions, and the North Texas
is a database containing natural vowels. Low-pass filtering
up to a certain high-frequency range, such as 6 KHz, is not
performed in order to observe the accuracy of the pole
estimation over the entire range of frequency. With the
estimated parameters of the vocal tract considered as an
AR system and the pitch-period (or the excitation signal),
a speech phoneme can be synthesized using an appropriate
value of the vocal tract filter gain, which is determined based
on the RMS power level and the peak PSD of the natural
speech frames [1]. For computing synthesized speech signals
by different methods, the same excitation signal is used
for a particular phoneme. In order to verify the estimation
accuracy, first, the PSD of the synthesized speech is compared
with that of the noise-free natural speech, and then the
estimated poles at a noisy condition are compared with that
obtained in a noise-free condition by using the MLSYW
method. Figure 5(a) shows a comparison of the PSDs of
the vocal tract system obtained from the different methods
considered in noisy environments with respect to noise-free
PSD. Considering the fact that the choice of the order of
the vocal tract filter depends on the spectral characteristics
of the specific phoneme, an AR(10) model is used for a
naturally spoken sound /ε/ of the word “head” uttered by
a female speaker. In this case, the vowel duration is 128 ms
with 2048 samples. In order to test the performance of the
methods in estimating the AR parameters of a vocal tract
system, twenty independent experiments were performed by
adding to the same original speech 20 different realizations
of white Gaussian noise, thus obtaining 20 realizations of
noisy observations each with a SNR value of −5 dB. These
20 realizations of the noisy observations are then used one by
one in twenty independent experiments. In each experiment,
one set of AR parameters is obtained by employing a given
method of parameter estimation. The AR parameter values
of the vocal tract are averaged over 20 sets and then used
to obtain the synthesized speech corresponding to the given
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Figure 5: Estimation results for a natural speech phoneme /ε/ in
the presence of white noise at SNR = −5 dB. (a) PSD obtained by
using different methods, (b) Average estimated poles (×) obtained
from noise-corrupted speech by using the proposed method along
with the noise-free estimates (©) obtained by the MLSYW method,
spectrogram of the noise-free speech, and noise-free PSD.

method of parameter estimation. We choose the number of
RCC samples Nc less than the pitch period T ; thus, Nc =
min(T − 1, 10M). According to the general behavior of the
vocal tract parameter, rl is searched in the range [0.8, 0.99]
[23]. The search range for ωl can be narrowed down based on
the knowledge of the pole locations of a particular phoneme
[1, 23]. In order to have a better understanding of the level of
noise, the PSD of one of the 20 noisy signals is also included
in obtaining the results of Figure 5(a). It is seen from this
figure that the PSD of the synthesized signal obtained by
using the estimated vocal tact system parameters resulting
from the proposed scheme is quite accurate relative to that
obtained by the other methods. The estimated average poles
are also shown in Figure 5(b) along with the noise-free
estimates obtained by the MLSYW method. In Figure 5(b),
the noise-free wide-band spectrogram and the noise-free
nonparametric PSD are included in order to clearly visualize
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Figure 6: Estimation results for a natural speech phoneme /a/ in
the presence of a multitalker babble noise at SNR = −5 dB. (a) PSD
obtained by using different methods, (b) Average estimated poles
(×) obtained from noise-corrupted speech by using the proposed
method along with the noise-free estimates (©) obtained by the
MLSYW method, wide-band spectrogram of the noise-free speech,
and noise-free PSD.

the pole locations and strength in the natural phoneme. The
pole-plot clearly shows a high estimation accuracy of the
proposed method even at a low level of SNR.

In a similar fashion, using an AR(10) model, PSD results
are obtained by employing different schemes under a real
noisy environment of a multitalker babble noise (multiple
background competing speakers) taken from the Noisex92
database [24]. In Figure 6(a), the results obtained at an SNR
of −5 dB for a naturally spoken sound /a/ of the word “Rob”
uttered by a male speaker are presented. In this case, the
vowel duration is 64 ms with 1024 samples. The multiplicity
of speakers produces a flatter short-term spectrum which
has greater spectral and temporal modulation than a white
Gaussian noise. It is observed from Figure 6(a) that the
PSD obtained using the proposed method closely matches
the noise-free PSD, and all pole locations are accurately
estimated. The pole estimation accuracy of the proposed
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method is better revealed in Figure 6(b). In this figure, the
estimated average poles along with the noise-free pole esti-
mates, the wide-band spectrogram, and the nonparametric
PSD are shown. Figure 6 clearly shows that the proposed
method is capable of providing a satisfactory estimation
performance also in the presence of babble noise at a very
low level of SNR.

6. Conclusion

In this paper, a new technique for the parameter estimation
of an AR system, given its noise-corrupted output obser-
vations, has been proposed. A comprehensive and accurate
ramp cosine cepstrum (RCC) model of the one-sided ACF
of an AR signal, valid for both white noise and periodic
impulse-train excitations, has been developed in a unified
fashion in order to identify the AR systems. A residue-
based least-squares ramp cosine cepstral fitting scheme
employing the RCC model has been presented. It has been
shown that the proposed method is able to provide a more
accurate estimate of the AR parameters. It combines the
attractive features of the correlation- and cepstral-domain
system identifications, and has the advantage of providing
the flexibility in incorporating some a priori knowledge
of the parameters, if available, to facilitate the process of
parameter estimation. Extensive experimentation performed
on different AR systems has demonstrated that the proposed
method is sufficiently accurate and consistent in estimating
the parameters of the AR signals at very low levels of SNR.
The method has also been applied to noise-corrupted natural
speech signals for the estimation of human vocal tract
system parameters, the accuracy of which is demonstrated
in terms of the PSD of the resulting synthesized speech. The
simulation results have revealed that the proposed method
is superior to some of the existing methods in handling
the parameter estimation problem of natural speech signals
under white or real-life babble noise degradation.
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