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A novel method for impulse noise suppression in images, based on the pixel-wise S-estimator, is introduced. The S-estimator is
an alternative for the well-known robust estimate of variance MAD, which does not require a location estimate and hence is more
appropriate for asymmetric distributions, frequently encountered in transient regions of the image. The proposed computationally
efficient modification of a robust S-estimator of variance is successfully utilized in iterative scheme for impulse noise filtering.
Another novelty is that the proposed iterative algorithm has automatic stopping criteria, also based on the pixel-wise S-estimator.
Performances of the proposed filter are independent of the image content or noise concentration. The proposed filter outperforms
all state-of-the-art filters included in a large comparison, both objectively (in terms of PSNR and MSSIM) and subjectively.

1. Introduction

Corruption by the impulse noise is a frequent problemwhich
appears in digital images. It occurs as a consequence of
transmission errors, timing problems in analog-to-digital
conversion, or damaged pixel elements in image sensors [1].
Regardless of its origin, the impulse noise has two important
aspects: only certain parts of the image pixels are corrupted
by the noise and the intensities of contaminated pixels are
significantly different from the other noise-free pixels in their
neighborhoods. These properties can easily make any kind of
subsequent processing, such as segmentation, edge detection,
or object recognition, difficult or even impossible. Therefore,
the suppression of the impulse noise is usually a required
preprocessing step.

The major issue in impulse noise suppression is to
satisfy two opposing requests. The corrupted pixels should
be filtered whereas the image details have to be preserved.
This task is exceptionally difficult because even the smallest
amount of noise impulses which are not detected and filtered
causes significant deterioration of image quality due to
the nature of impulse noise. There have been proposed a
large number of filtering techniques for removal of impulse

noise. The classical approach is based on using median
or its modifications [2]. These space-invariant methods
are applied uniformly throughout the whole image, that
is, apart from the noisy pixels, they unnecessarily change
the noise-free pixels and impair image details. Most of the
modern impulse noise filters utilize the solution based on
switching scheme [3]. The noisy pixels are detected first and
filtered whereas the noise-free pixels are left intact. Thus, this
approach is space variant, and it is proven to be effective in
preserving image details.

The impulse noise detection is usually performed by
comparison of some robust statistics calculated in a local
neighborhood to the corresponding fixed or adaptively
calculated thresholds. A plethora of the algorithms has
been developed which uses this approach, for example,
switching median (SM) filter [3], three-state median (TSM)
filter [4], multistate median (MSM) [5], adaptive center
weighted median (ACWM) filter [6], state-dependent rank-
order mean (SDROM) filter [7], progressive switching
median (PSM) filter [8], conditional signal-adaptive median
(CSAM) filter [9], pixel-wise MAD (PWMAD) filter [10],
threshold boolean filter (TBF) [11], and so forth. The
detectors of the previous filters are constructed heuristically,
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but it is also possible to use previous knowledge andmachine
learning techniques in order to find an optimal decision
rule. Genetic programming is utilized in GP [12–14] filters,
and neural networks are employed in improved adaptive
impulsive noise suppression (IAINS) filter [15].

The other popular approach relies on fuzzy logic.
Impulse noise detection in fuzzy-based techniques models
ambiguities between noisy impulses and image structures in
order to preserve image details [16–18]. Further enhance-
ment of the fuzzy techniques is achieved by combining them
with neural networks into neurofuzzy systems [19].

Robust statistics play a central role in impulse detection,
being capable of producing correct estimates in the presence
of unreliable data. The most frequently used statistics are
the median and its variants such as center-weighted median.
Nevertheless, robust statistics based on absolute differences
are proven to be successful. The trilateral filter [20] was the
first one which employed rank-ordered absolute difference
(ROAD) statistics. Effective modifications are given by the
rank-ordered logarithmic difference (ROLD) detector [21]
and rank-ordered-relative difference (RORD) detector [22].
A slightly different technique, which is also based on absolute
differences but makes use of directional information, is
employed in the directional weighted median (DWM) filter
[23].

After the detection of noisy impulses, selective, space-
variant estimation is applied. The classical approach is
based on the utilization of robust estimates of location, but
recently an edge-preserving regularization method emerged
as an alternative. This method was applied for the first
time in the detail-preserving variational method (DPVM)
[24]. However, it was applied uniformly for all the pixels
in the image, which resulted in relatively moderate results.
This estimation method showed much better results when
it was combined with the impulse detection scheme in
the adaptive center-weighted median with edge-preserving
regularization: (ACWM-EPR) filter [25] or ROLD-EPR filter
[21].

In this paper we concentrate on denoising images
corrupted by the mixture of salt-and-pepper and random-
valued impulse noises. It has already been shown with
the DUMMY filter [14] that detection of pure salt-and-
pepper impulse noises is almost a trivial problem. Therefore,
improvements in salt-and-pepper noise filtering are directed
either toward efficient implementation, like in a decision-
based algorithm (DBA) filter [26] or toward better estima-
tion, implemented by a fuzzy impulse noise detection and
reduction method (FIDRM) [27], switching-based adaptive
weighted mean (SAWM) filter [28], and the edge-preserving
(EP) filter [29]. Themore challenging impulse noise model is
the random-valuedmodel, and the filters designed to remove
it are, in general, capable of treating salt-and-pepper noise as
well. However, there exist some filters for which that is not
the case [13, 20]. Therefore, it is an important property of
impulse noise filters that they are capable of suppressing both
types of noise equally well. In order to evaluate the overall
performance of impulse noise filters, the mixed impulse
noise model was proposed in [14]. The same impulse noise
model is used in this paper.

In Section 2 the assumed noise model is described.
Section 3 introduces a pixel-wise S-estimate of variance,
and in Section 4 the proposed method for impulse noise
suppression based on usage of this robust estimate is
presented. The results are given in Section 5.

2. Noise Model

In this paper we considered a mixed impulse noise model
[14], which is basically the composition of two well-known
impulse noise models: random-valued and salt-and-pepper
impulse noises. Let xi j be the pixel, at the location (i, j), of the
image containing mixed impulse noise. It is given as follows:

xi j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

nunifi j , with probability
p

2
,

n
sp
i j , with probability

p

2
,

fi j , with probability 1− p,

(1)

where nunif and nsp denote noise impulses generated accord-
ing to random-valued and salt-and-pepper impulse noises,
respectively. A noise-free image pixel at location (i, j) is
symbolized by fi j . If Lmin and Lmax are the minimum and
maximum values from the dynamic range of pixel values in
the image, then nunifi j ∈ [Lmin,Lmax] and n

sp
i j ∈ {Lmin,Lmax}.

In this way, half of the noisy pixels are corrupted by the
random-valued impulse noise and the other half by salt-
and-pepper noise. The reason for using the mixed impulse
noise model is twofold. Firstly, the mixed impulse noise
model is more realistic than existing models. The impulse
noise is a result of disturbances caused by noise signals with
random amplitudes. The amplitude of the noise signal can
fall either into the dynamic range or out of that range. If it is
out of the range, the corrupted pixel in the resulting noisy
image will be saturated to the maximal or minimal value
of the dynamic range, and that situation corresponds to the
salt-and-pepper model. Alternatively, if the impulse noise is
within the dynamic range, it will appear as random-valued
impulse noise in the noisy image. Secondly, it is expected
from the high-quality impulse noise filter to perform well
in the presence of both salt-and-pepper and random-valued
models. Since the filters should handle both impulse noise
types equally, it is reasonable to choose a 50/50 percent
ratio for testing. Accordingly, the mixed impulse noise model
represents the model which is suitable for proper evaluation
of the impulse noise filters.

3. Pixel-Wise S-estimate

The well-known robust estimate of variance is the median of
absolute deviations from median—MAD. It was utilized for
impulse noise suppression in the ACWM filter and its pixel-
wise modification in PWMAD [10]. MAD is a good estimate
of variance, but it requires the calculation of the location
estimate, and therefore it is not suitable when the underlying
distribution is not symmetric. The information of variance
estimate is used to distinguish between the regions that
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contain image detail and flat, homogenous regions, that
is, regions with high and low variance, respectively. In
transitional regions where edges are present, the signal can
be hardly modeled by a symmetric distribution. Accordingly,
it would be advisable to use a robust estimator which works
well even for asymmetric distributions. The robust estimate
of variance with such a property was proposed in [30]. It was
called the S-estimate and it is given as follows:

S = medi
{

med j

∣
∣
∣ti − t j

∣
∣
∣

}

, (2)

where ti, i = 1, . . . ,N , is the sample containing N elements.
Firstly, for each i the inner median of {|ti − t j|; j = 1, . . . ,N}
is calculated. This yields a new sample of N elements, and
their median (the outer median) gives the final estimate
S. A beneficial property of the S-estimate is that it does
not rely on a calculation of the location estimate, and
consequently it produces an accurate estimate of variance
for nonsymmetric sample distributions, that is, the image
regions containing edges. The major drawback of the S-
estimate is its computational complexity. For a sample of N
elements, it is necessary to calculate the median exactly N +1
times. This could be a serious problem in image processing,
where the size of the sample is usually the square of the
filtering window dimension and it should be calculated for
each pixel.

It has already been shown in [10] that pixel-wise modifi-
cation of the robust operator MAD can lead to a significant
reduction of complexity with negligible degradation of the
estimator’s performance. In a similar manner, we propose a
new estimate of variance, pixel-wise S-estimate (PWS), which
is the modification of the original S-estimate based on the
fixed spatial structure of image pixels. Let ΩK denote the set
of coordinates in a window centered at the position (0, 0),
where the size of the window is (2h + 1) × (2h + 1) and
K = 2h + 1. The set of coordinates ΩK is defined as

ΩK = {(s, t) | −h ≤ (s, t) ≤ h∧ K = 2h + 1}. (3)

Also, let Ω0
K denote the same set without the central

coordinate, that is,Ω0
K = ΩK \ (0, 0). The absolute difference

di j(s, t) between the central pixel xi j and neighboring pixel
xi+s, j+t, from the window Ω0

K , is defined as

di j(s, t) =
∣
∣
∣xi+s, j+t − xi j

∣
∣
∣, (s, t) ∈ Ω0

K . (4)

First, we define the median of absolute differences from the
central pixel (MAdi j) as a median value of the set obtained
by calculating di j(s, t) for each coordinate in Ω0

K :

MAdi j = med
{

di j(s, t) | ∀(s, t) ∈ Ω0
K

}

, (5)

where med is high median value, which is the order statistic
of rank �K/2� + 1. Since the differences are calculated with
respect to the central pixel, MAd is calculated on the set Ω0

K

for the sake of more efficient implementation.
Finally, we define the pixel-wise S-estimate as the median

value of medians of absolute differences in a window ΩK :

PWSi j = med
{

MAdi+s, j+t | ∀(s, t) ∈ ΩK

}

. (6)

The example in Figure 1 shows the PWS estimate of variance
for the image Lena corrupted with 15% of mixed impulse
noise. It is clear that the overall number of required median
calculations for PWS in the image is only two per pixel,
which is a significant improvement over the S-estimator.
The key difference between PWS and S-estimator is in the
way of calculation of the outer median in (2). All median
calculations for the S-estimator are performed within a
fixed window, whereas the PWS in the outer median shares
the data calculated for neighboring pixels, which facilitates
practical implementation of the proposed algorithm.

4. ProposedMethod

The proposed detection scheme is based on utilizing both
PWS and MAd statistics. Test image Bridge corrupted with
40% of artificially added mixed impulse noise is given in
Figure 2. Since the position of noisy pixels is known, we
can calculate PWS and MAd values for every pixel. Scatter
plots of those values are given in Figure 3 for noisy and
noise-free pixels separately. Each image pixel in a plot is
represented as a dot with coordinates given by its PWS
and MAd values. The overlapping area between two plots
is relatively large, which can be expected since some noisy
pixels are hidden in image details and simply cannot be
distinguished from them. Nevertheless, Figure 3(a) contains
in total fewer pixels than Figure 3(b), because of the noise
distribution in Figure 2. Therefore, the overlapping area
contains many more noise-free than noisy pixels. Still, due
to this overlapping, we cannot build a detector which is able
to separate noisy and noise-free pixels in just one step. It is
necessary to apply the whole filtering scheme iteratively, with
some bias towards detail preservation—it is more important
to preserve noise-free pixels than to leave some impulses
undetected. Undetected impulses are likely to be removed in
future iterations, while filtered details cannot be recovered.

4.1. Detection. Ideally, we would be capable of labeling all the
pixels which do not belong to the area where noise-free pixels
are concentrated in scatter plot in Figure 3(b). Still, this is
not an easy task, and we need a solution which is robust. We
introduce the usage of a simple affine classifier to separate
the plane defined by PWS and MAd values into two regions:
noisy and noise-free. The classifier is given as follows:

s · PWS−MAd + δ = 0, (7)

where s and δ are parameters which determine the decision
boundary of the classifier. Since we propose the usage of
an iterative filtering procedure, in the kth iteration step the

classifier generates a noise map M(k)
i j having “1” at positions

where noise is detected and “0” at positions labeled as noise-
free. Accordingly, the noise map in the kth filtering iteration
is given as

M(k)
i j =

⎧
⎪⎨

⎪⎩

1, s(k) · PWS(k)i j −MAd(k)i j + δ(k) ≤ 0,

0, s(k) · PWS(k)i j −MAd(k)i j + δ(k) > 0,
(8)
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Figure 1: Pixel-wise S-estimation of the variance for Lena image
corrupted with 15% of mixed impulse noise.

Figure 2: Test image Bridge corrupted with 40% of mixed impulse
noise.

where PWS(k)i j and MAd(k)i j denote the statistics calculated in
the kth iteration for the pixel at position (i, j). The values of
the constants s(k) and δ(k) depend on the iteration and they
are determined experimentally.

The detector uses a recursive approach for the calculation

of the noise map M(k)
i j . This means that the pixels detected

as noisy are immediately replaced by the initial estimate ŷ(k)i j ,
and in a subsequent processing the new estimates are used for
processing of the neighboring pixels. As the initial estimate

ŷ(k)i j we use median value calculated in a filtering windowΩK :

ŷ(k)i j = med
{

x̂(k)i+s, j+t | ∀(s, t) ∈ ΩK

}

, (9)

where

x̂(k)i+s, j+t =
⎧
⎪⎨

⎪⎩

ŷ(k)i+s, j+t if noisy,

x(k)i+s, j+t otherwise.
(10)

Therefore, the initial estimate ŷ(k)i j is calculated using estimate

ŷ(k)i+s, j+t as an input instead of x(k)i+s, j+t if the pixel at position
(i+ s, j + t) is already processed. In the next filtering iteration
the output of the previous iteration is used as the input:

x(k)i j = y(k−1)i j . (11)

The same recursive approach is used when PWS(k)i j and

MAd(k)i j values are calculated. Instead of the input values x(k)i, j ,

the initial estimates ŷ(k)i j are always used if they are already
calculated. The initial estimates are later replaced by final

estimates y(k)i, j obtained by edge-preserving regularization.
The details about the final estimation are given in Section 4.2.

We denote the proposed detection scheme PWS detector
since the noise classifier is based on PWS and MAd statistics,
butMAd is actually calculated within the calculation of PWS.
The detector parameters s and δ are determined experi-
mentally. Parameter s defines the slope of the classification
line in the PWS/MAd plane, defined by (7), whereas δ
defines the offset from the origin. It has been found through
experimentation with images having 8 bits per pixel that the
optimal value of δ should be in the range δ ∈ [9, 15]. In our
simulations we set it to be constant in every iteration and to
be at the middle of this range, that is, δ(k) = δ = 12. On the
other hand, the slope parameter should change throughout
the iterations. In the beginning it should be in the range
s(0) ∈ [2.3, 2.9] and it should become smaller in subsequent
iterations, in order to become less conservative and allow
detection of more noise. We reduce this parameter for a
constant factor in each iteration s(k+1) = s(k) − 0.3. These
parameters are very robust and produce satisfactory results
for different noise levels and different images.

Figure 4 shows the distribution of noisy (red) and noise-
free (blue) pixels together with the decision boundary. In
each iteration the pixels below the boundary are labeled as
noisy, and the estimation procedure described in Section 4.2
is applied to them. Modification of the parameter s moves
the decision boundary slowly upwards, thus allowing more
impulses to be detected. In the last iteration the noisy and
noise-free regions are overlapping, so any further filtering
will not give additional improvements to the filtered image.
In Figure 5 the enlarged detail of the actual distribution of
noise-free pixels from the scatter plots given in Figures 4(e)
and 4(f) is presented. The decision boundaries of detectors
are also given. The majority of the noise-free pixels are
still labeled correctly in iteration 5 while in iteration 6 the
decision boundary passed through the region where the
distribution is more dense. Therefore, the filtering should
be stopped in this case at iteration 5, before a significant
number of noise-free pixels are wrongly marked as noisy.
In each iteration a relatively small percent of noise-free
pixels are unnecessarily filtered due to misclassification. This
undesirable effect cannot be completely avoided but can be
possibly reduced by finding the classifier which better fits
the border between noisy and noise-free pixels. Accordingly,
we should keep in mind that total separation between those
pixels is often impossible because some percentage of noise is
blended with the image details and cannot be distinguished.
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Figure 3: PWS-MAD scatter plots of noisy and noise-free pixels for the image Bridge corrupted with 40% of mixed impulse noise.

Table 1: Filtering results in PSNR (dB) for images corrupted with mixed impulse noise.

Lena Goldhill Boats Bridge

Methods 20% 40% 60% 20% 40% 60% 20% 40% 60% 20% 40% 60%

Noisy 13.95 10.91 9.14 13.82 10.81 9.04 13.76 10.75 8.99 13.61 10.63 8.88

MED3 × 3 30.97 27.05 22.66 29.26 26.83 22.92 28.64 25.55 21.98 24.61 22.68 20.06

TSM 33.85 26.32 19.79 31.86 25.99 19.68 31.15 25.18 19.34 26.93 23.11 18.36

ACWM 34.72 28.86 23.09 32.52 28.37 22.94 31.78 27.04 22.08 27.17 23.96 20.24

SDROM 34.74 28.87 23.47 32.97 28.39 23.26 31.85 27.39 22.48 27.56 24.25 20.57

PSM 28.96 27.51 25.66 28.83 27.12 25.11 28.89 26.17 23.90 26.84 23.74 21.59

PWMAD 34.77 28.88 19.59 32.38 27.85 19.22 31.69 26.93 18.94 27.22 23.68 17.80

Trilateral 33.98 25.68 16.37 32.18 25.40 16.10 31.39 24.70 16.02 27.12 22.38 15.10

DWM 34.49 30.95 26.49 32.22 29.28 25.84 31.41 28.22 24.57 26.40 24.33 21.78

FRINR 35.24 30.88 24.96 32.70 29.05 24.51 32.53 27.91 22.67 27.55 24.16 19.39

GP 35.49 30.73 24.73 32.97 29.55 24.47 32.39 28.40 23.56 27.60 24.83 21.28

ACWM-EPR 35.88 30.50 22.74 33.36 29.12 22.29 32.88 28.49 21.64 26.91 24.56 19.97

ROLD-EPR 35.08 30.66 25.31 33.26 29.90 24.85 32.58 27.72 22.84 28.04 24.28 20.42

PWS-EPR 36.38 31.46 27.23 33.95 30.10 26.78 33.49 28.43 24.58 28.10 24.84 21.97

Table 2: Filtering results in MSSIM for images corrupted with mixed impulse noise.

Lena Goldhill Boats Bridge

Methods 20% 40% 60% 20% 40% 60% 20% 40% 60% 20% 40% 60%

Noisy 0.115 0.051 0.026 0.132 0.056 0.028 0.145 0.067 0.035 0.226 0.103 0.052

MED3 × 3 0.880 0.803 0.641 0.796 0.719 0.561 0.856 0.775 0.610 0.689 0.591 0.443

TSM 0.944 0.801 0.491 0.919 0.773 0.477 0.928 0.777 0.478 0.861 0.715 0.456

ACWM 0.958 0.864 0.638 0.926 0.820 0.594 0.946 0.841 0.611 0.870 0.748 0.535

SDROM 0.951 0.830 0.593 0.928 0.801 0.574 0.941 0.811 0.575 0.884 0.755 0.539

PSM 0.737 0.673 0.631 0.772 0.692 0.614 0.768 0.668 0.595 0.832 0.711 0.581

PWMAD 0.958 0.860 0.447 0.923 0.803 0.420 0.942 0.835 0.438 0.868 0.730 0.416

Trilateral 0.942 0.790 0.384 0.919 0.761 0.372 0.931 0.777 0.388 0.870 0.712 0.370

DWM 0.949 0.892 0.776 0.920 0.837 0.701 0.934 0.863 0.734 0.843 0.734 0.583

FRINR 0.948 0.892 0.811 0.916 0.814 0.704 0.943 0.864 0.754 0.874 0.726 0.565

GP 0.960 0.891 0.685 0.930 0.844 0.639 0.949 0.870 0.661 0.872 0.767 0.572

ACWM-EPR 0.959 0.864 0.573 0.933 0.826 0.554 0.949 0.847 0.555 0.859 0.760 0.531

ROLD-EPR 0.947 0.908 0.791 0.932 0.868 0.720 0.941 0.874 0.727 0.896 0.756 0.571

PWS-EPR 0.963 0.903 0.792 0.944 0.860 0.723 0.957 0.876 0.736 0.902 0.777 0.573
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Figure 4: Scatter plots of noisy and noise-free pixels for the image Bridge corrupted with 40% mixed impulse noise. Each plot displays the
distribution of noisy and noise-free pixels together with the classification line.

It has been experimentally verified that the proposed
detection procedure is robust to the variation of parameters
s and δ. However, the quality of the output is mainly
influenced by the optimal number of iterations kmax, because
iterative filtering has to be stopped before it starts to severely

destroy image details. This issue is discussed and handled by
the algorithm described in Section 4.3.

The last parameter, which is the only one that actually has
to be set manually, is the window size K , defined in (3). We
follow the rules given in [20]: if the noise ratio is higher than
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Figure 5: The distribution of noise-free pixels in the 5th and 6th iteration of filtering image Bridge corrupted with 40%mixed impulse noise.
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Figure 6: Peak signal-to-noise ratio (PSNR) andmean structure similarity index (MSSIM) obtained as a result of filtering the image Barbara
corrupted by the mixed impulse noise whose ratio is spanning from 10% to 60%.

25%, we use 5× 5 window; otherwise the window of the size
3× 3 is applied. This yields satisfactory performance in most
cases.

4.2. Estimation. Many space-variant filtering methods
designed for suppression of the impulse noise use estimators
based on the median and its derivatives. We utilize this kind
of estimate just as a first approximation during the iterative
impulse detection. The final estimate is found by replacing
the noisy pixels with values found through the procedure

of edge-preserving regularization (EPR) similar to [24]. We
combine the proposed PWS detector with edge-preserving
regularization and denote it as PWS-EPR filter.

Firstly, the pixels marked as noise-free are estimated by
the observed value, that is, yi j = xi j . The noisy pixels are
estimated by minimizing the functional defined as follows:

f (Y) =
∑

(i, j)∈N

∑

(m,n)∈Vi j

ϕ
(

yi j − ymn

)

, (12)
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(a) Noisy (b) FRINR (c) DWM

(d) ACWM-EPR (e) ROLD-EPR (f) PWS-EPR

Figure 7: Details from the Lena test image corrupted with 40% of mixed impulse noise, and results obtained by applying different filters.

where N is the set of all pixels marked as noisy in the
noise map, Vi j is the set of the four closest neighbors of
(i, j), and ϕ( ) is the edge-preserving potential function [31].
Particularly, we use the following function:

ϕ(x) = |x|α, (13)

similarly as in [25], where α = 1.3. Note that in contrast
to [25] or [32] the functional in (12) contains only a
regularization term and not the data term. This is because the
data are fitted exactly for the uncorrupted pixels, while for
the corrupted pixels it is expected that the difference between
observed end estimated values will be large due to the nature
of the impulse noise.

A global minimization of the functional is very difficult.
Therefore, we apply the optimization procedure for each
pixel separately and repeat the procedure iteratively across
the whole image until the process converges to the stable
solution. Since the edge-regularization potential function is
strictly convex, we perform the local optimization by Brent
optimization method [33]. The same convergence criteria as
in [34] are applied.

4.3. Stopping Criteria. The important issue which is com-
mon for iterative filtering approaches is to determine the

optimal number of iterations. Most of the state-of-the-
art algorithms set that parameter to some fixed value
which gives satisfactory results in most cases [14, 21, 25]
or set it according to noise concentration [20, 23]. Still,
this is a challenging problem because the optimal number
of iterations usually depends on both image content and
noise concentration. The proposed PWS-EPR filter in each
iteration calculates the PWS estimate of the variance, and this
is utilized to determine the stopping criteria for the iterative
filtering.

The PWS can be comprehended as an approximation
of the S-estimate of variance. Therefore, the result of the
estimation produced by PWS is more susceptible, that
is, less robust to the presence of impulse noise. As the
filtering with PWS-EPR filter goes through the iterations,
the PWS will give a better approximation, since the noise
concentration is continuously reduced and PWS estimates
between the consequent iteration are becoming more and
more similar. At some point, as a result of detector design,
further continuation of the filtering starts to significantly
destroy image details. The point when the filtering has to
be stopped is illustrated in Figure 5 where the decision
boundary starts to misclassify a significant number of noise-
free pixels and therefore degrade image details. Hence, the
difference between two consecutive PWS estimates starts to
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become more significant. So, the criteria for stopping further
filtering by the PWS-EPR filter is to find the point where
the similarity between consecutive PWS estimates changes
trends from descending to ascending. This simple approach
has proven to be very effective. As a similarity measure
between consecutive PWS estimates we use mean relative
absolute difference calculated across the whole image:

relDiff(k) = 1
n

∑

i, j

∣
∣
∣PWS(k−1)i j − PWS(k)i j

∣
∣
∣

PWS(k−1)i j

, (14)

where the summation goes over all pixel coordinates, n is the
number of pixels in the image, and k is the iteration number.

5. Results

The performance of the proposed PWS-EPR filter was
compared to a number of state-of-the-art impulse noise
filters. The experiments were conducted on standard test
images and for different concentrations of mixed impulse
noise. The parameters of the PWS-EPR filter were set to
the constant experimentally found values as explained in
Section 4. The only parameter which needs to be tuned with
respect to the noise level is the window size used by the
detector. It is set to be 5 × 5 when noise concentration
p > 25% and 3 × 3 otherwise. The other parameters were
set as follows: s(0) = 2.6, δ = 12, and α = 1.3. In all
experiments, the parameters were kept constant, that is, they
were not tuned for a particular image or noise level. The
optimal number of iterations is calculated dynamically, as
explained in Section 4.3.

In the comparison we included the standard median
filter, TSM [4], ACWM [6], SDROM [7], PSM [8], PWMAD
[10], Trilateral [20], DWM [23], FRINR, GP [14], ACWM-
EPR [25], and ROLD-EPR [21] filter, having parameters
optimized according to the suggestions given in the original
references. The quality measures which we used are the well-
known peak signal-to-noise ratio and mean structure simi-
larity index (MSSIM) [35], which quantifies the resemblance
in image structures between the original and filtered image.
Figure 6 shows the PSNR and MSSIM results of compared
filters obtained for the test image Barbara over the range
of impulse noise concentration from 10% to 60%. Table 1
shows the obtained PSNR values for images Lena, Goldhill,
Boats, and Bridge corrupted by 20%, 40%, and 60% of mixed
impulse noise, whereas in Table 2 MSSIM values are given
for the same experiments. In most cases the PWS-EPR filter
outperforms the other filtering methods. It should be noted
that it produces better results than the ACWM-EPR and
ROLD-EPR filters, whose estimation modules are similar
to the edge-preserving method utilized in the PWS-EPR
filter. The overall conclusion is that PSW-EPR is superior
compared to other filters in both PSNR and MSSIM values.

The subjective quality is assessed by visual inspection. An
enlarged detail from image Lena corrupted by 40% of mixed
impulse noise and denoised using different filters is shown
in Figure 7. Only the best performing methods are compared
visually. The proposed filter gives output which is the closest

to the original picture. Although, the test image is corrupted
with a relatively high level of mixed impulse noise, the PWS-
EPR filter does not produce noticeable artifacts like DWM,
FRINR, and ACWM-EPR or slight blurring like ROLD-EPR.

6. Conclusion

This paper has two major contributions. Firstly, we intro-
duced a pixel-wise S-estimator as an effective and compu-
tationally efficient robust estimator of variance that can be
successfully utilized in an iterative scheme for mixed impulse
noise filtering. In addition, we developed a novel method for
determining the optimal number of filtering iterations, also
based on the pixel-wise S-estimator. The proposed PWS-EPR
filter outperforms other filters included in the comparison,
both objectively (in terms of PSNR and MSSIM) and
subjectively. Further improvements of the proposed filter are
possible since the linear classifier used for noise detection
is a rather simple solution. The utilization of a quadratic
classifier instead which could provide better separation of
noisy and noise-free pixels should further reduce the number
of iterations, increase the detector accuracy, and improve the
overall filtering performance.
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