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The majority of optimal rules derived for different decentralized detection application scenarios are based on an assumption that
the sensors’ observations are statistically independent. Deriving the optimal decision rule in the canonical decentralized setting
with correlated observations was shown to be complicated even for the simple case of two sensors. We introduce an alternative
suboptimal rule to deal with correlated observations in decentralized detection with censoring sensors using a modified generalized
likelihood ratio test (mGLRT). In the censoring scheme, sensors either send or do not send their complete observations to the
fusion center. Using ML estimation to estimate the censored values, the decentralized problem is converted to a centralized
problem. Our simulation results indicate that, when sensor observations are correlated, the mGLRT gives considerably better
performance in terms of probability of detection than does the optimal decision rule derived for uncorrelated observations.

1. Introduction

The theory of signal detection and estimation is used in
a wide variety of target-detection applications. Different
formulations for the target detection problem have been
suggested depending on the cost of communication. The
classical detection theory considered the canonical detection
problem in which a decision is made based on observations
present in one central location, that is, centralized detection.
The classical detection theory suits applications in which
the complete observations are available at one location for
decision making, for example, detection of the presence of a
target using a radar.

Decentralized detection addresses the issue of detection
in sensor networks. A typical decentralized detection system
with fusion is shown in Figure 1, in which a fusion-center
produces an estimate of the state of nature based on the
data sent by geographically dispersed sensor nodes. Some
preliminary processing of data is carried out at each sensor
node. For example, in the canonical decentralized detection
problem, each sensor node quantizes the likelihood ratio of
its observation before sending it [1]. The performance of
decentralized detection systems is suboptimal compared to

the centralized systems because the decision maker (fusion-
center) does not receive a sufficient statistic. Nonetheless,
factors such as communication bandwidth and limited
energy motivate the use of decentralized detection systems.
Moreover, in systems with a large number of sensor nodes,
uncompressed information could overwhelm the fusion-
center.

In battery-powered sensor networks, the most valuable
resource is the limited energy available to each sensor. In a
scenario where the absence of the target (null hypothesis)
is much more likely than its presence (target hypothesis),
an alternative formulation of the decentralized detection
problem would allow the sensors to not communicate all the
time to the fusion center, and thereby conserve energy. In
such a case, the sensors are said to censor their observations
by not sending observations that fall within a certain
criterion. Rago et al. [2] considered a censoring scheme in
which sensors either send or do not send some real-valued
function of their observation to a fusion center based on
a communication-rate constraint. The work in [2] shows
that in the censoring scenario with independent sensors’
observations, it is optimal (in both the Bayesian and the
Neyman-Pearson (NP) sense) for the sensors to not send
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their likelihood ratios if they fall in a particular interval and
that the optimal censoring region is a single interval of the
likelihood ratio.

In the canonical decentralized detection problem intro-
duced in [1], an optimal decision rule should come up with
the optimal quantizer at each sensor and the optimal decision
rule at the fusion center. To obtain the censoring thresholds
and the optimum decision rule in the censoring formulation,
joint optimization is required across the sensors and the
fusion center. Appadwedula et al. [3, 4] provided a useful
simplification of the censoring interval Rc

i . It was proven
in [3, 4] that setting the lower threshold of the censoring
interval to 0 for any false-alarm constraints less than or equal
to α∗ = 1−∏N

i=1(1−κi) is optimal in the NP sense, where κi is
the communication rate constraint for sensor i. This reduces
the complexity of finding the censoring region to dealing
with one threshold per sensor instead of two thresholds per
sensor.

Most of the work done in the area of deriving optimal
rules was based on an assumption that the observations at
each sensor node are conditionally independent. Although
such an assumption reduces the complexity of analy-
sis noticeably, many wireless sensor network applications
experience correlated observations, for example, in target-
detection problems in which the sensors are close to each
other and are prone to the same noise sources.

The effect of correlation on the performance of a decen-
tralized detection system has been explored in the literature.
Some of this work was done in [5–9]. The results obtained
are often not easy to implement because the observation
space cannot be divided into two contiguous portions.
Willett et al. [8], for example, derive the optimal sensor
rule for a two-sensor system with correlated noise. Their
findings show that as the correlation between the sensors’
observations increases, the optimal detection scheme cannot
use single-interval decision regions at both sensors. In
fact, the optimal scheme, if present, would be that either
one sensor uses a single-interval decision region and the
other sensor’s observation is ignored, or both sensors use
non-single-interval decision regions and neither sensor is
ignored. Furthermore, it was shown in [9] that finding the
optimal decision rule at the fusion center requires complete
knowledge of the observation statistics.

In Section 2, we introduce the problem of detection
under correlated observations. We propose a modified gen-
eralized likelihood ratio test (mGLRT) as a test implemented
at a fusion-center receiving correlated observations. We then
show how the mGLRT could be applied in censoring sensor
networks. In Section 3, we evaluate the performance of the
mGLRT through simulations. We consider two examples, a
two-sensor network, and an eight-sensor network. We then
find when the mGLRT has a performance similar to that
of the optimal centralized test. In Section 4 we consider an
example with real data.

2. Correlated Observations and the mGLRT

In wireless sensor networks used for detection applications,
sensors communicate to detect a certain phenomenon. As

q1(y1)

y1 y2 y3 yN

qN (yN )

Target

Fusion
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· · ·

Figure 1: Decentralized detection system with fusion center.

mentioned earlier, the sensor observations are sent to a
fusion center for decision making. The observations received
at the fusion center may have a certain degree of correlation
depending on the nature of the communication links
between the sensors and the fusion center and the sources of
signal and noise. Correlated noise is encountered in different
communication scenarios such as wireless communication
in fading channels. In the following discussion, we consider
the problem of detection using censoring sensors under
correlated noise. We introduce the problem by considering
a simple sensor network consisting of two sensors communi-
cating to a fusion center.

Consider a decentralized detection system consisting of
two sensors sending their censored observations to a fusion
center in which the final decision is made. The optimal fusion
rule in the NP sense would be one that solves the following
optimization problem:

max
τ

{
PD = P01|H1PD|01 + P10|H1PD|10 + P11|H1PD|11

}

subject to PF = P01|H0PF|01 + P10|H0PF|10 + P11|H0PF|11 ≤ α,
(1)

where PD is the probability of detection, PF is the probability
of false alarm, P·|Hi is the conditional probability under Hi,
i = 0, 1, P01 is P (first sensor censors, second sensor sends),
P10 is P (first sensor sends, second sensor censors), P11 is P
(first sensor sends, second sensor sends), and τ is the fusion
center’s decision-rule threshold.

Finding the optimal solution requires joint optimization
for the censoring and the fusion center decision thresholds
even with the assumption of independence across sensor
observations. With the independence assumption removed,
finding the optimal decision rule becomes intractable for
the original decentralized detection problem [1, 6–8]. For
a two-sensor system, censoring converts the simple binary
hypothesis problem to a composite hypothesis problem in
which we get four different sensor-output combinations
under each hypothesis. These combinations are

H0 :
{

(0, 0),
(
0,φ

)
, (θ, 0),

(
θ,φ

)}
,

H1 :
{

(0, 0),
(
0,φ

)
, (θ, 0),

(
θ,φ

)}
,

(2)
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where θ,φ ∈ (−∞,∞) is the received data at the fusion center
from sensor 1 and sensor 2, respectively. When the sensor
censors its observation, the received data at the fusion-center
will be zero. H0 and H1 are the target absent and the target
present hypotheses, respectively.

The optimal NP test in such a case is a uniformly
most powerful (UMP) test. However, the UMP test does
not exist in this case because the likelihood ratio between
the pair of observations depends on which one of the four
different sensor-output combinations was received at the
fusion center.

When the UMP test fails, a common practice in solving
composite hypothesis problems is to apply a generalized
likelihood ratio test (GLRT) which is known to give a
performance close to the optimal rule in a wide range of
detection problems when the optimal rule is hard to find
[10]. The GLRT uses the following likelihood ratio test (LRT)
for the case of two sensors:

maxθ∈Λ1 pθ
(
y1, y2

)

maxθ∈Λ0 pθ
(
y1, y2

) , (3)

where Λi, i ∈ {0, 1}, is the set of all possible parameters
(θ) under hyposthesis i. The GLRT uses the probability
distribution that corresponds to the parameter (θ) with
the highest posterior probability based on the observations
in the LRT. A modified generalized likelihood ratio test
(mGLRT) proposed here uses the following likelihood ratio
for decision:

maxyi∈Rc
i
p1
(
y1, y2

)

maxyi∈Rc
i
p0
(
y1, y2

) . (4)

If none of the sensors’ observations are censored, then the
optimal NP test in the centralized case is applied. However,
if observations get censored, then the ML estimate of each
censored observation under both hypotheses is used in the
LRT.

For a composite hypothesis-testing problem, the gen-
eralized likelihood ratio test uses the probability density
function (pdf) of the state of nature with the highest
posterior probability based on the observations under the
two hypotheses in the final likelihood ratio. We use the
mGLRT to estimate the values of the censored observations
under both hypotheses. The use of mGLRT in the censoring
sensors scenario will be illustrated for a two-sensor network.
The generalization to an N-sensor network will then be
considered. The following assumptions are made throughout
the discussion.

(i) The sensors censor their observations; that is, they
either send their complete observations to a fusion
center or send nothing.

(ii) The sensors communicate with the fusion center
through an ideal noise-free channel.

(iii) The noise accompanied with the sensors’ observa-
tions is Gaussian. Therefore, the notions of statistical
correlation and dependence will be used interchange-
ably [11].

(iv) The fusion center knows the statistics of the sensors’
observations.

(v) The covariance matrix of the sensors’ observations is
positive definite.

(vi) If all sensors’ observations are censored, then decide
H0.

2.1. A Two-Sensor Network. To demonstrate how the mGLRT
can be applied to a censoring sensor network, we begin
with a simple two-sensor network. Consider the problem of
detecting a mean-shift in Gaussian noise using a censoring
two-sensor network. In detection-theory terminology, the
problem can be expressed as H0 : Y ∼ N (0,ΣN ) versus
H1 : Y ∼ N (μ,ΣN ), where the covariance matrix

ΣN =
⎡

⎣
σ2

1 σ2
12

σ2
21 σ2

2

⎤

⎦ (5)

is assumed to be positive definite and σ2
12 = σ2

21. The joint
probability density function of the sensor observations is

pi
(
y1, y2

) = 1
2π
√|ΣN |

exp

⎛

⎜
⎝−

(
y − μ

)
Σ−1
N

(
y − μ

)T

2

⎞

⎟
⎠, (6)

where μ = [μ μ], y = [y1 y2], and y1, y2 are sensor
observations.

To limit our attention to finding the fusion-center deci-
sion rule, the communication-rate constraints are assumed
to be identical across the sensors, and so κ1 = κ2 = κ/2 for
each sensor. We found experimentally that assigning an equal
communication-rate constraint among the sensors performs
best. This agrees with the finding in [12] for the statistically
independent observations case. When one of the sensors
sends its observation to the fusion center and the other
does not, the censored observation could be estimated based
on the correlation information. For example, if sensor 1
censors while sensor 2 sends, the fusion center could estimate
the value of y1 using maximum likelihood (ML) estimation
based on y2 under each hypothesis:

H1 : ŷ = arg max
y1

p1
(
y1 | y2, y2

)
,

H0 : ỹ = arg max
y1

p0
(
y1 | y2, y2

)
,

(7)

where pi(·) is the joint pdf of the observations under Hi.
Let

Σ−1
N =

⎡

⎣
δ1 δ12

δ21 δ2

⎤

⎦, (8)

with δ12 = δ21. Applying (7) results in

H1 : ŷ1 = y1 | y2 =
−δ12

(
y2 − μ

)
+ δ1 · μ

δ1
,

H0 : ỹ1 = y1 | y2 =
−δ12 · y2

δ1
.

(9)
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The likelihood ratio of the censored and uncensored obser-
vations at the fusion center is

lFC
(
ŷ1, ỹ1, y2

) = p1
(
ŷ1, y2

)

p0
(
ỹ1, y2

) (10)

which can be expressed as a function of y2 alone

lFC
(
y2
) =

(
1/2π

√|ΣN |
)

exp
(

(1/2)
(
y2 − μ

)2(
δ2

12/δ1 − δ2
))

(
1/2π

√|ΣN |
)

exp
(
(1/2)y2

2

(
δ2

12/δ1 − δ2
)) ,

(11)

which can easily be simplified to

lFC
(
y2
) = exp

((

μy2 −
μ2

2

)(

δ2 − δ2
12

δ1

))

. (12)

So, by calculating the inverse of the covariance matrix and
estimating the mean of the observations, y1 can be estimated
based on the observation y2.

2.2. Applying mGLRT to an N-Sensor System. In the previous
discussion, we considered applying the mGLRT to a system
consisting of two sensors communicating with a fusion
center. The mGLRT can be easily generalized to N sensors
using the same mathematical formulation. Consider a system
with N sensors that detect the presence of a target under
correlated Gaussian noise. Let

(i) Rc be the set of indices of the sensors that censored
their observations,

(ii) Rs be the set of indices of the sensors that sent their
complete observations to the fusion center,

(iii) yi be the observation of the ith sensor,

(iv) y
s

be the vector containing the uncensored observa-
tions.

The fusion center will have |Rs| observations and Rs ∩
Rc = φ. Using ML estimation, the fusion center can estimate
the censored observations based on the received observations
and the knowledge of the sensors’ observation statistics
(covariance matrix, ΣN , and mean of the observations,
μ). Since the observations are assumed to be Gaussian,
we need to estimate the censored observations such that
they minimize the exponent, or equivalently maximize the
negative of the exponent, of the joint probability density of
the sensors’ observations under each hypothesis. This is done
by solving the following two optimization problems.

Problem 1 (under H1). We have

{
yi : i ∈ Rc

} = ŷ
c
= max
{yi ,i∈Rc}|{yj , j∈Rs}

[
y − μ

]
Σ−1
N

[
y − μ

]T
,

(13)

such that yi ≤ ti, i ∈ Rc.

Problem 2 (under H0). We have

{
yi : i ∈ Rc

} = ỹ
c
= max
{yi ,i∈Rc}|{yj , j∈Rs}

[
y
]
Σ−1
N

[
y
]T

, (14)

such that yi ≤ ti, i ∈ Rc, where ti is the censoring threshold
for the ith sensor.

The censoring interval of the ith sensor is assumed to
be (t1i, t2i). Again, the communication-rate constraints are
chosen to be identical across all sensors. The results in [2]
state that choosing the censoring interval to be a single
interval does not reduce the probability of detection. The
choice of t1i and t2i depends on the nature of correlation
between the observations. For observations with positive
correlations and a positive mean, the negative observations
are considered uninformative, and therefore t1i is chosen to
be −∞. t2i is then found based on the communication rate
constraint imposed on each sensor. When the observations
are negatively correlated, the negative observations may be
informative; therefore, the censoring intervals should be
chosen differently [13].

The optimization problems under consideration are
convex because the equations to be maximized are quadratic.
Also, the set over which the optimization is carried out is
convex because the censoring intervals are continuous in R.
The solution of those problems gives us an estimate of the
censored observations. The objective function of Problem 1
can be rewritten as

[
y − μ

]
Σ−1
N

[
y − μ

]T =
N∑

i=1

δiz
2
i +

N∑

i, j=1,i /= j

δi jziz j , (15)

where zk = (yk − μk), and for Problem 2

[
y
]
Σ−1
N

[
y
]T =

N∑

i=1

δi y
2
i +

N∑

i, j=1,i /= j

δi j yi y j . (16)

The solution to Problem 1 is

ŷ
c
= Σ−1

c x̂ + μ, (17)

and to Problem 2 is

ỹ
c
= Σ−1

c x̃, (18)

where

(i) x̂, x̃ are vectors with elements

x̂i =
∑

j∈Rs

δi j
(
yj − μj

)
, i ∈ Rc,

x̃i =
∑

j∈Rs

δi j y j , i ∈ Rc,
(19)

and δi j is the element in the ith row and jth column
of Σ−1

N (inverse of the covariance matrix).

(ii) Σ−1
c is an |Rc| × |Rc| matrix obtained by eliminating

the elements in Σ−1
N that are related to the uncensored

observations.

After estimating the censored observations under the two
hypotheses, the values of the received observations (y

s
) and

the estimated observations under both hypotheses ( ŷ
c
, ỹ

c
)

are plugged into a regular LRT at the fusion center, so

l
(
ŷ
c
, ỹ

c
, y

s

)
=

p1

(
y
s
, ŷ

c

)

p0

(
y
s
, ỹ

c

) . (20)
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Figure 2: ROC curve of the mGLRT and the optimal independent
test for the two-sensor Gaussian example with σ2

1 = 5, σ2
2 = 2, σ2

21 =
σ2

12 = 3, κi = 0.75, and different signal amplitudes (μ = 1, 2).

Table 1: Simulation details for each figure.

Figure Points per trial Trials PF tolerance

2, 6 5000 100 N/A

3, 4, 7 5000 100 10%

3. Performance Evaluation of
the mGLRT through Simulations

Analytically comparing mGLRT to the optimal independent
test is difficult. Therefore, in this section, we compare
the proposed mGLRT to the optimal independent test
through simulations. Two sensor-network scenarios will be
considered, a two-sensor network and a network consisting
of eight sensors. The results are obtained using Monte Carlo
(MC) simulations. Table 1 shows the required number of
trials for each figure. The second column shows the number
of points per MC trial. At each point, a value is obtained on
the graph.

Decentralized detection has a suboptimal performance
when compared to centralized detection, because in cen-
tralized detection all the data are available at one location
for decision making; therefore, the performance of the
centralized detector is an upper bound on the decentralized
detection performance. Consequently, when evaluating a
decentralized detection scheme, our comparison criteria will
be based on the difference between the centralized detection
performance and the performance of the scheme under
consideration. We assume the following about the fusion
center in the centralized detection:

(i) complete observations are available at the fusion
center with no censoring or quantization.
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Figure 3: Performance of the mGLRT compared to the optimal
independent test as the correlation index changes at PF = 0.05 with:
σ2

1 = 5, σ2
2 = 2, κi = 0.5 (unequal variance), σ2

1 = 5, σ2
2 = 5, κi = 0.5

(equal variance).

(ii) the fusion center has complete knowledge of the
correlation structure between the observations.

3.1. Two-Sensor Network. In the following simulations, the
performance of the mGLRT is compared to the optimal inde-
pendent test for a two-sensor network that communicates to
a fusion center. The sensors receive Gaussian observations
that have a certain correlation structure.

As discussed earlier, the mGLRT test exploits the cor-
relation information with a slight increase in computations
compared to the optimal independent test derived in [3, 4].
Therefore, we expect the mGLRT to have a better perfor-
mance compared to the optimal independent test when
the observations are significantly correlated. The results
of our simulations match the expectation. Figure 2 shows
the performance of the mGLRT compared to the optimal
independent test in the case of correlated observations for
different values of signal amplitudes. The figure shows that
there is a slight degradation in performance when using
the mGLRT in a censoring environment compared to our
performance benchmark. This degradation in performance
is sacrificed to save energy in the sensors via censoring. It is
worth noting that for low probabilities of false alarm, there
is essentially no loss in performance due to using censoring
with the mGLRT.

The performance of the mGLRT compared to the
optimal independent test should vary depending on the
degree of correlation between the sensor observations. The
reason is that the fusion center using the mGLRT uses the
correlation information and thus gets better performance,
unlike the optimal independent test which assumes that the
sensor observations are independent. To examine the effect
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of correlation, we define a correlation index ρ that captures
the degree of correlation:

ρ = σ2
12σ

2
21

σ2
1σ

2
2
. (21)

Figure 3 shows that as the sensor observations become more
correlated with unequal variance (i.e., the diagonal elements
in the covariance matrix are not equal), the mGLRT per-
forms considerably better than the optimal independent test
and does not differ much from the ideal centralized detector.
The optimal independent test has a better performance than
the mGLRT when ρ is in the vicinity of 0 (i.e., closer to the
independent case), since it is optimal. Also, in the case of
equal variance, the performance of the optimal independent
test is close to that of the ideal centralized detector.

As seen in Figure 3, the structure of the correlation
matrix plays a role in the performance of the mGLRT
compared to the optimal independent test. Figure 4 shows
that as the diagonal elements of the correlation matrix
(variance of each sensor’s observation) get close to each
other, the performance of the mGLRT degrades until it
matches the optimal independent test when the variance of
the sensor observations is equal. However, as the diagonal
elements of the covariance matrix stray from each other, the
mGLRT performs better.

Based on the observations from Figures 3 and 4, we
conclude that when the sensor observations are highly
correlated with unequal variances the mGLRT performs
much better than the optimal independent test. When the
variances are equal and the sensor observations are highly
correlated, either both sensors get the same reading, which
is equivalent to a one-sensor observation, or both sensors
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Figure 5: Locations of the eight senors and the source.
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Figure 6: ROC curve of the mGLRT, and optimal independent test
for the eight-sensor example with σ2

ii = 5, σ2
i j = 4 for sensors in the

same set, σ2
i j = 2 for sensors in different sets. The communication

rate constraint for each sensor is κi = 0.375.

do not get any. Therefore, the performance of the mGLRT
degrades since the fusion-center receives less information.
Also, the optimal independent test appears to be optimal
for correlated observations when the correlation matrix is
symmetric. Since the optimal independent rule partitions
the observation space into two continuous parts via the
censoring threshold, the result obtained here agrees with
Corollary 1 in [14] which states that for a two-sensor system
with σ2

1 = σ2
2 , μ1 = μ2, and nonnegative correlation, an

optimal solution exists in which both quantizers use the same
contiguous partition of the observation space.
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The performance loss due to using the optimal indepen-
dent test is higher compared to the mGLRT as the correlation
increases. However, when the sensors’ observations are of
equal variance and all observations are highly correlated, the
performance of the optimal independent test matches that
of the mGLRT. The reader is referred to [13] for a more
thorough comparison between the mGLRT and the optimal
independent test.

3.2. Eight-Sensor Network. In the following simulations, the
performance of the mGLRT is compared to the optimal inde-
pendent test for an eight-sensor network that communicates
to a fusion center with the following assumptions.

(i) The sensors are placed as shown in Figure 5.

(ii) The amplitude of the signal emitted by the source to
be detected decreases as 1/r, where r is the distance
from the source to the sensor.

(iii) The observations of the sensors contained in the
circle and the square are highly correlated among
their peers in the same group; whereas the sensors in
the circle are weakly correlated with the sensors in the
square.

Figure 6 shows the performance of the mGLRT com-
pared to the optimal independent test and our performance
benchmark for the system described above. The figure
shows that the mGLRT performs better even when the
sensors’ observations are of equal variance. Moreover, the
ideal centralized detection performs slightly better than
the mGLRT at low false-alarm probabilities. Because of
censoring, the mGLRT and the optimal independent test
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Figure 8: Microphones’ locations.

could not get to the point where PF = PD = 1. This agrees
with the results in [3].

The performance of the mGLRT compared to the
optimal independent and centralized tests depends on the
communication-rate constraint. As the communication-rate
constraint increases, the mGLRT should get closer in perfor-
mance to the centralized test because they both have similar
structure. Figure 7 shows a comparison between the mGLRT
and the optimal independent test as the communication-
rate constraint changes. The optimal independent test does
not take advantage from increasing the communication rate
constraint beyond 1/8.

4. A Real-Life Application

The performance analysis carried out for the detection tests
so far was based on pure simulations. We will now consider
a real-world detection problem from the work in [15], where
the presence of a frog is to be detected using sound signals
collected from an array of microphones placed as shown in
Figure 8. For our censoring setup, the sensors (microphone
and a transmitter) are assumed to have a communication-
rate constraint of 0.33; that is, the sensors will communicate
at most one-third of the time when the frog is not active.
The signals collected from the microphones are shown in
Figure 9. The spikes represent the call of a frog.

To apply the mGLRT, we assume that the noise is
Gaussian, N (0,Σ15), where Σ15 is known and obtained by
calculating the correlation between the different microphone
signals during an interval when the frog is not calling. For the
signals shown in Figure 9, Σ15 has both negative and positive
entries. Figure 10 shows the performance of the mGLRT
compared to the optimal centralized test. The performance
of the mGLRT is almost similar to that of the optimal
centralized test while saving energy through censoring. On
the other hand, using the optimal independent test results in
a degradation in performance especially for low false alarm
probabilities.
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5. Conclusion

A modified GLRT provides a simple and well-performing
method for decentralized detection with censoring sensors in

correlated noise. Our proposed mGLRT generally performs
better than the optimal independent test when the sensor
observations are significantly correlated. In our analysis, we
showed where the mGLRT could be used while preserving
performance and saving energy.

The mGLRT uses the knowledge of correlation between
sensor observations to estimate the censored values at
the fusion center. Depending on the degree of correlation
between the sensors’ observations and the variance of the
noise affecting the sensors, the performance of the mGLRT
varies when compared to the optimal independent test. The
mGLRT out-performs the optimal independent test the most
when the sensors’ observations are highly correlated and
the variances of the sensors’ observations are not equal.
Interestingly, when the sensors’ observations are of equal
variance and all observations are highly correlated, the
performance of the optimal independent test matches that
of the mGLRT.

Allowing sensors to censor in the case when the null
hypothesis is more likely to occur prolongs the lifetime of
battery-powered sensors by saving energy while sacrificing
some of the system’s performance. Our simulations showed
that for a wide range of values for the correlation indices
and variance ratios, the degradation in performance when
using the mGLRT with censoring is very low. Moreover,
as the variance of the observations increases, the mGLRT
gets closer in performance to the optimal centralized
test.



EURASIP Journal on Advances in Signal Processing 9

In a scenario where the fusion center could estimate
the covariance matrix of the sensors’ observations, the
fusion center could choose between either using the optimal
independent test or resorting to the mGLRT. If the observa-
tions are statistically independent, the fusion center could
save on computations by using the optimal independent
test. However, if the mGLRT is used all the time, a slight
degradation in performance will be experienced in the
following two cases.

(i) The sensors’ observations are independent.

(ii) The sensors’ observations have equal variance and the
correlation among them is equal.
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