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This paper develops a novel face recognition technique called Complete Gabor Fisher Classifier (CGFC). Different from existing
techniques that use Gabor filters for deriving the Gabor face representation, the proposed approach does not rely solely on Gabor
magnitude information but effectively uses features computed based on Gabor phase information as well. It represents one of the
few successful attempts found in the literature of combining Gabor magnitude and phase information for robust face recognition.
The novelty of the proposed CGFC technique comes from (1) the introduction of a Gabor phase-based face representation and
(2) the combination of the recognition technique using the proposed representation with classical Gabor magnitude-based
methods into a unified framework. The proposed face recognition framework is assessed in a series of face verification and
identification experiments performed on the XM2VTS, Extended YaleB, FERET, and AR databases. The results of the assessment
suggest that the proposed technique clearly outperforms state-of-the-art face recognition techniques from the literature and that
its performance is almost unaffected by the presence of partial occlusions of the facial area, changes in facial expression, or severe
illumination changes.

1. Introduction

Biometrics is a scientific discipline that uses unique and
measurable physical, biological, or/and behavioral human
characteristics that can be processed to establish identity,
to perform identity verification, or to recognize a person
through automation [1–3]. Among the different character-
istics suitable for biometric recognition, the human face
and the associated face recognition technology bear the
most potential. This potential is fueled by the countless
application possibilities of face recognition technology in the
private as well as the public sector. Examples of potential
application domains range from entertainment, human-
machine interaction, homeland security, smart surveillance,
access and border control to user authentication schemes in
e-commerce, e-health, and e-government services [1, 2, 4].

While, for example, access control applications can often
ensure stable and controlled external conditions for the

image acquisition procedure, the majority of applications
(especially those linked to unconstrained face recognition,
e.g., surveillance) cannot. In such cases, image characteris-
tics, such as changes in illumination, partial occlusions of the
facial area, or different facial expressions, heavily influence
the appearance of the face in the acquired image and render
much of the existing face recognition technology useless
[5]. To prove useful in unconstrained environments, the
deployed face recognition system has to utilize recognition
techniques capable of providing reliable recognition results
regardless of the (variable) characteristics of the acquired
images.

Many researchers have tackled the problem of robust
face recognition in uncontrolled (out-door) environments
by trying to develop face recognition techniques insensitive
to image degradations caused by various external factors.
Sanderson and Paliwal, for example, proposed a feature
extraction technique called DCT-mod2. The DCT-mod2
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technique first applies the discrete cosine transform (DCT)
to subregions (or image blocks) of facial images to extract
a number of DCT coefficients. Next, it compensates for any
potential illumination changes, by replacing the coefficients
most affected by illumination with their corresponding
horizontal and vertical delta coefficients. By doing so, the
technique derives a face representation (partially) insensitive
to external lighting changes. The authors assessed their
approach on various databases comprised of images with
illumination-induced variability. On all databases the DCT-
mod2 technique resulted in promising results [6].

Gao and Leung [7] went a different way and proposed
a face representation called Line Edge Map (LEM). Here, a
given face image is first processed with the Sobel operator
to extract edge pixels, which are then combined into line
segments that constitute the LEMs. While the authors
suggest that the LEMs ensure illumination and expression
invariant face recognition, the developed face representation,
nevertheless, inherits the shortcomings of the gradient-
based Sobel operator, which is known to struggle with its
performance under severe lighting variations.

Fidler et al. [8] tried to achieve robust face recognition
by exploiting an elaborate subsampling procedure. The sub-
sampling procedure first detects image pixels representing
statistical outliers in each of the facial images and then
derives a low-dimensional representation of each facial
image by considering only valid image pixels (i.e., based on
statistical “inliers”). The authors show that their procedure
ensures (partial) robustness to facial occlusions as well as to
extreme facial expression changes.

More recently, Wright et al. [9] introduced a novel
method for robust face recognition exploiting recent
advances from the field of compressed sensing. Their
method, called the Sparse Representation Classifier (SRC),
derives a sparse representation from the given face image
and simultaneously assumes that the image is contaminated
with a spatially sparse error. Under the assumption of
the sparse error, the authors are able to construct robust
classifiers capable of performing well under a variety of
image degradations caused, for example, by illumination
changes, noise, or facial occlusions.

One of the most popular solutions to the problem of
robust face recognition was, however, proposed by Liu and
Wechsler in [10]. Here, the authors proposed to adopt a
filter bank of forty Gabor filters to derive an augmented
feature vector of Gabor magnitude features, and then apply
a variant of the multiclass linear discriminant analysis to
the constructed Gabor feature vector to improve the vector’s
compactness. The efficiency of the technique, named the
Gabor-Fisher Classifier (GFC), was determined on a large
and challenging database and is, furthermore, evidenced by
the large number of papers following up on the work in [10],
for example, [11–14].

It should be noted that the Gabor face representation (as
proposed in [10]) exhibits (partial) robustness to changing
facial expressions as well as illumination variations. The
former is a consequence of the local nature of the Gabor
feature vector, while the latter is linked to the properties of
the Gabor filter bank (as Gabor filters represent band-limited

filters, the filter bank can be constructed in such a way that
it excludes the frequency bands most affected by lighting
variations, resulting in robustness to lighting changes).

While the existing Gabor-based methods are among the
most successful face recognition techniques, one could still
voice some misgivings, as they rely only on the Gabor
magnitude information and discard the potentially useful
Gabor phase information. In this paper, we tackle this issue
and propose a novel face representation called oriented
Gabor phase congruency image, which, as the name suggests,
is derived from the Gabor phase congruency model [15].
The proposed face representation is based on the phase
responses of the Gabor filer bank rather than the Gabor
magnitude responses and as such offers an alternative (or
complement) to the established Gabor magnitude methods.
We show that the face representation derived from the
oriented Gabor phase congruency images is more compact
than the commonly used Gabor magnitude representation of
face images and that it also exhibits an inherent robustness to
illumination changes.

The novel representation is combined with the mul-
ticlass linear discriminant analysis to obtain the so-called
phase-based Gabor-Fisher classifier (PBGFC). The devel-
oped PBGFC method is ultimately fused with the GFC
technique to result in the complete Gabor-Fisher classifier
(CGFC), which effectively uses Gabor magnitude as well as
Gabor phase information for robust face recognition. The
feasibility of the proposed techniques is assessed in a series
of face recognition experiments performed on the popular
XM2VTS, FERET, AR, and Extended YaleB databases. The
results of the assessments show that the proposed technique
compare favorably with face recognition methods from the
literature in terms of robustness as well as face recognition
performance.

The rest of the paper is structured as follows. In Section 2
a brief review of Gabor filters and Gabor filter base face
recognition techniques is given. In Section 3, the novel face
representation in form of oriented Gabor phase congru-
ency images is introduced. Sections 4 and 5 develop the
phase-based and complete Gabor-Fisher classifiers for face
recognition. Section 6 presents the classification rules, while
Section 7 describes the employed experimental databases.
The feasibility of the proposed technique is assessed in
Section 8. The paper concludes with some final remarks in
Section 9.

2. Review of Gabor Filters for Face Recognition

This section briefly reviews the use of Gabor filters for face
recognition. It commences with the introduction of Gabor
filters and the basic concepts of feature extraction using the
Gabor filter bank and proceeds with the presentation of
the Gabor (magnitude) face representation, which forms the
foundation for many popular face recognition techniques,
including the prominent Gabor-Fisher Classifier [10].

2.1. Gabor Filter Construction. Gabor filters (also called
Gabor wavelets or kernels) have proven themselves to be
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Figure 1: An example of the real (a) and imaginary (b) part of a Gabor filter.

a powerful tool for facial feature extraction and robust face
recognition. They represent complex band-limited filters
with an optimal localization in both the spatial as well
as the frequency domain. Thus, when employed for facial
feature extraction, they extract multiresolutional, spatially
local features of a confined frequency band [6]. Like all filters
operating in the scale-space, Gabor filters also relate to the
simple cells of the mammalian visual cortex and are, hence,
relevant from the biological point of few as well.

In general, the family of 2D Gabor filters can be defined
in the spatial domain as follows [10, 11, 13, 14, 16–20]:

ψu,v
(
x, y

) = f 2u
πκη

e−(( f 2u /κ2)x′
2+( f 2u /η

2)y′2)e j2π fux′ , (1)

where x′ = x cos θv + y sin θv, y′ = −x sin θv + y cos θv,
fu = fmax/2(u/2), and θv = vπ/8. As can be seen from
the filters definition, each Gabor filer represents a Gaussian
kernel function modulated by a complex plane wave whose
center frequency and orientation are given by fu and θv,
respectively. The parameters κ and η determine the ratio
between the center frequency and the size of the Gaussian
envelope and, when set to a fixed value, ensure that Gabor
filters of different scales behave as scaled versions of each
other [6]. It should also be noted that with fixed values of
the parameters κ and η, the scale of the given Gabor filter is
uniquely defined by the value of its center frequency fu.

While different choices of the parameters determining
the shape and characteristics of the filters define different
families of Gabor filters, the most common parameters used
for face recognition are κ = η = √

2 and fmax = 0.25
[6, 10, 11, 13, 19, 20]. When using the Gabor filters for facial
feature extraction, researchers typically construct a filter
bank featuring filters of five scales and eight orientations, that
is, u = 0, 1, . . . , p − 1 and v = 0, 1, . . . , r − 1, where p = 5
and r = 8. An example of the real and imaginary parts of
a Gabor filter is presented in Figure 1, while the real parts
of the entire filter bank commonly used for facial feature
extraction (comprised of 40 filters) are shown in Figure 2.

2.2. Feature Extraction Using Gabor Filters. Let I(x, y) stand
for a grey-scale face image of size a× b pixels and, moreover,
let ψu,v(x, y) denote a Gabor filter given by its center
frequency fu and orientation θv. The feature extraction
procedure can then be defined as a filtering operation of the

Figure 2: The real parts of the Gabor filter bank commonly used
for feature extraction in the field of face recognition.

given face image I(x, y) with the Gabor filter ψu,v(x, y) of size
u and orientation v [10, 11, 13, 14, 17, 19, 20], that is

Gu,v
(
x, y

) = I
(
x, y

)∗ ψu,v
(
x, y

)
, (2)

where Gu,v(x, y) denotes the complex filtering output that
can be decomposed into its real (Eu,v(x, y)) and imaginary
(Ou,v(x, y)) parts:

Eu,v
(
x, y

) = Re
[
Gu,v

(
x, y

)]
,

Ou,v
(
x, y

) = Im
[
Gu,v

(
x, y

)]
.

(3)

Based on these results, the magnitude (Au,v(x, y)) and
phase (φu,v(x, y)) responses of the filtering operation can be
computed as follows:

Au,v
(
x, y

) =
√
E2
u,v

(
x, y

)
+O2

u,v

(
x, y

)
,

φu,v
(
x, y

) = arctan

(
Ou,v

(
x, y

)

Eu,v
(
x, y

)

)

.
(4)

The majority of Gabor-based face recognition techniques
found in the literature discard the phase information of the
filtering output and rely solely on themagnitude information
when constructing the Gabor face representation. By doing
so, they discard potentially valuable discriminative informa-
tion that could prove useful for the recognition task. The
magnitude responses usually retained by the Gabor-based
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Figure 3: An example of the Gabor magnitude output: a sample image (a) and the magnitude output of the filtering operation with the
entire Gabor filter bank of 40 Gabor filters (b).

recognition techniques are presented in Figure 3 for a sample
face image.

2.3. The Gabor (Magnitude) Face Representation. When
deriving the Gabor (magnitude) face representation from a
given facial image, the first step is the construction of the
Gabor filter bank. As we have pointed out already, most of
the existing techniques in the literature adopt a filter bank
comprising Gabor filters of five scales (u = 0, 1, . . . , 4) and
eight orientations (v = 0, 1, . . . , 7).

Next, the given face image is filtered with all 40 filters
from the filter bank resulting in an inflation of data
dimensionality to 40 times its initial size. Even for a small face
image of, for example, 128 × 128 pixels, the 40 magnitude
responses reside in a 655360 (128 × 128 × 40) dimensional
space, which is far too extensive for efficient processing
and storage. Thus, to overcome this dimensionality issue,
downsampling strategies are normally exploited. The down-
sampling techniques reduce the dimensionality of the Gabor
magnitude responses, unfortunately often at the expense
of valuable discriminatory information. One of the most
popular downsampling strategies relies on a rectangular
sampling grid (as shown in Figure 4) superimposed over
the image to be sampled. In the downsampled image only
the values located under the sampling grid’s nodes are
retained, while the rest is discarded. The downsampling
procedure is applied to all magnitude responses, which
are ultimately normalized using a properly selected nor-
malization procedure and then concatenated into the final
Gabor (magnitude) face representation or, as named by
Liu and Wechsler [10], into the augmented Gabor feature
vector. (Note that typically zero-mean and unit variance
normalization is applied at this step. However, as other
normalization techniques might be superior to the zero-
mean and unit-variance scheme, the issue of selecting the
most appropriate normalization procedure will empirically
be investigated in the experimental section.)

If we denote the downsampled Gabor magnitude
responses in vector form at the uth filter scale and vth
orientation by gu,v, then the augmented Gabor (magnitude)

feature vector x can be defined as follows [10, 11, 13, 14, 19,
20]:

x =
(
gT0,0, g

T
0,1, g

T
0,2, . . . , g

T
4,7

)T
. (5)

It should be noted that in the experimental section, we
use images of size 128 × 128 pixels and a rectangular
sampling grid with 16 horizontal and 16 vertical lines,
which corresponds to a downsampling factor of ρ =
64. The resulting feature vector, or, in other words, the
resulting Gabor (magnitude) face representation forms the
foundation for the Gabor-Fisher classifier, which will be
presented in Section 4 in more detail.

3. The Oriented Gabor Phase Congruency
Face Representation

Up until nowwe have been concerned with Gabormagnitude
responses and face representations derived from them. In
this section, however, we will focus on face representations
derived from Gabor phase responses and their usefulness for
face recognition. The section commences by reviewing the
existing attempts at incorporating the Gabor phase infor-
mation into the face recognition procedure and, thus, the
attempts at further improving the recognition performance
of Gabor-based recognition techniques. Next, it presents
a novel representation of face images called the oriented
Gabor phase congruency image, and, finally, it develops the
oriented Gabor phase congruency face representation, which
forms the basis for the phase-based Gabor-Fisher classifier
presented in Section 4.

3.1. Background. Before we turn our attention to the novel
representation of face images, let us take a closer look at why
the Gabor phase information is commonly discarded when
using Gabor filters for face recognition.

Unlike the (Gabor) magnitude, which is known to vary
slowly with the spatial position, the (Gabor) phase takes
very different values even if it sampled at image locations
only a few pixels apart [6, 21, 22]. This inherent instability
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Figure 4: Down-sampling of a magnitude filter response with a rectangular sampling grid (from left to right): (a) an example of a magnitude
response, (b) an example of the magnitude response with a superimposed rectangular sampling grid, and (c) a downsampled magnitude
response.

of the Gabor phase makes it difficult to extract stable and
discriminative features from the phase responses of (4) and
is also the primary reason that most of the existing methods
rely solely on the Gabor magnitude when constructing the
Gabor feature vector.

To the best of our knowledge, there are only a few studies
in the literature that successfully derive useful features from
Gabor phase responses for the task of face recognition, that is,
[6, 21–28]. A common characteristic of these methods is the
fact that they do not rely on face representations constructed
directly from the Gabor phase responses; rather they use
features derived from the “raw” Gabor phase responses or
combine the phase information with other descriptors to
compensate for the instability of the Gabor phase.

Zhang et al. [21, 22], for example, adopt local histograms
of the phase responses encoded via the local binary patterns
(LBPs) [29, 30] as facial descriptors and consequently show
that, over small image areas, the Gabor phase patterns exhibit
regularity that can be exploited for face recognition [6].

A similar procedure is introduced in [27] by Guo and
Xu and later extended by Guo et al. in [26]. Different from
the procedure of Zhang et al. presented in [21], Guo et al.
rely on Gabor phase differences instead of the “raw” phase
values to compute the binary patterns. In the second step, the
computed patterns corresponding to the phase response of
the Gabor filter of a given scale and orientation are grouped
to form local (subregion-based) histograms and ultimately
concatenated into extended histograms, which encode local
as well as global aspects of the given phase response.

Other authors (e.g., [23–25]) incorporate the Gabor
phase information by employing the so-called phase congru-
ency model (developed by Kovesi [15]) for edge detection
in the facial image and then deploy the “edge” image for
detection of interest points that are used with other image
descriptors, such as Gabor magnitude features.

The face representation developed in this paper differs
greatly from the existing Gabor phase-based approaches
presented above. It is related to work presented in [23–
25] only as far as it uses the concept of phase congruency
for encoding the Gabor phase information. However, unlike
previous work on this subject, it derives a face representation
based on amodifiedmodel of phase congruency and employs

the resulting representation directly for recognition rather
than solely for feature selection.

The difference to the existing face recognition methods
using Gabor phase information is even more pronounced
if we consider only techniques adopting histograms of
Gabor phase (or phase difference) patterns. (Note that
in the remainder of the paper we will use the term
Gabor phase patterns for all Gabor phase-based patterns
whether they were computed from actual phase responses
or phase-differences due to the similarity of the descriptors.)
These methods alleviate the problem of phase instability
by observing local histograms of the phase patterns, or in
other words, by adopting histograms of the Gabor phase
patterns computed from image subblocks as the basic image
descriptors. In a sense, they (e.g., [21, 22, 26, 27]) assume
that despite the irregular changes of the Gabor phase from
one spatial position to a neighboring one, the distribution
of the Gabor phase values over a small spatial area is
consistent and, thus, useful for recognition. Furthermore, to
reduce the variability of the Gabor phase responses prior
to histogram construction (it should be noted that the
computed histograms serve as non-parametric estimates of
the true Gabor phase distribution), they encode the phase
using different versions of binary patterns, for example, [29].
Unlike the presented Gabor-phase-pattern-based methods,
which exploit regularities of the Gabor phase in the spatial
domain, the face representation presented in this paper
relies on regularities in the scale-space domain (or frequency
domain—see Section 2.1). Hence, it exploits a completely
different approach to overcome the instability problems
related to the Gabor phase.

As will be shown in the remainder of this section, the
proposed representation does not offer only an efficient way
of overcoming the Gabor phase instability, but also exhibits
several desirable properties for the task of face recognition.

3.2. The 2D Phase Congruency Model. The original 2D
phase congruency model as proposed by Kovesi in [15] was
developed with the goal of robust edge and corner detection
in digital images. Unlike classical gradient-based edge detec-
tors, which search for image points of maximum intensity
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gradients and are known to be susceptible to image contrast
and illumination conditions, the phase congruency model
searches for points of order in the frequency spectrum, and
provides an illumination invariant model of edge detection
[15, 24].

For 1D signals, the phase congruency PC(x) is defined
implicitly by the relation of the energy at a given point in
the signal E(x) and the sum of the Fourier amplitudes An as
shown by Venkatesh and Owens [31]:

E(x) = PC(x)
∑

n

An, (6)

where n denotes the number of Fourier components. Thus,
phase congruency at a given location of the signal x is defined
as the ratio of the local energy at this location and the sum of
Fourier amplitudes.

Kovesi extended the above concept to 2D signals by
computing the phase congruency with logarithmic Gabor
filters using the following expression:

PC2D
(
x, y

) =
∑r−1

v=0
∑p−1

u=0 Au,v
(
x, y

)
ΔΦu,v

(
x, y

)

∑r−1
v=0
∑p−1

u=0 Au,v
(
x, y

)
+ ε

, (7)

where Au,v(x, y) denotes the magnitude response of the
logarithmic Gabor filter at scale u and orientation v, ε
represents a small constant that prevents divisions with zero,
and ΔΦu,v(x, y) stands for a phase deviation measure defined
as

ΔΦu,v
(
x, y

) = cos
(
φu,v

(
x, y

)− φv

(
x, y

))

−
∣
∣∣sin

(
φu,v

(
x, y

)− φv

(
x, y

))∣∣∣.
(8)

Here φu,v(x, y) denotes the phase angle of the logarithmic
Gabor filters at the uth scale and vth orientation, while φv(z)
represents the mean phase angle at the vth orientation.

Clearly, the expression
∑r−1

v=0
∑p−1

u=0 Au,v(x, y)ΔΦu,v(x, y)
approximates the local energy at the spatial location (x, y),
while the denominator of (7) represents the sum of the
(logarithmic) Gabor amplitudes over all orientations and
scales. Obviously, the phase congruency as defined by (7)
represents a quantity that is independent of the overall
magnitude of its underlying signal and is, hence, invariant
to changes in contrast and illumination [6, 15, 24, 25]. The
model detects points in an image where the logarithmic
Gabor filter responses are maximally in phase, or in other
words, scans the logarithmic Gabor phase responses for
regularities in the scale-space.

At closer examination of the 2D phase congruency model
we can notice that it first computes the phase congruency
for each of the employed filter orientations and subsequently
combines the results to form the final output. Some examples
of a facial image subjected to logarithmic Gabor filter banks
with different numbers of scales p and orientations r are
shown in Figure 5. We can see that both parameters effect the
appearance of the resulting phase congruency image (PCI).

3.3. The Oriented Gabor Phase Congruency Model. While
the 2D phase congruency model given by (7) is suitable

for robust edge and corner detection, its usefulness for face
recognition is at least questionable. First of all, the edges
detected by the model are highly localized, suggesting that
even small variation in facial expression or misalignment
would drastically change the appearance of the PCI of a
given subject; and, second of all, the phase congruency
representation does not make use of multiorientational
information, which can provide important clues for the
recognition task.

To overcome the presented shortcomings, we propose in
this paper a novel face representation, called the oriented
Gabor phase congruency image (OGPCI). Rather than com-
bining phase congruency information computed over several
orientations, and using the result for construction of the
facial feature vector, we compute the oriented form of phase
congruency for each of the employed filter orientations and
construct an augmented Gabor phase congruency feature
vector based on the results [6]. Note that differently from the
original model of Kovesi [15], we deploy conventional Gabor
filter as given by (1) rather than logarithmic Gabor filters.

Taking into account the original definition of phase
congruency, we derive an oriented form of phase congruency,
which, when presented in image form, reveals the OGPCI for
the vth orientation:

OGPCI
(
x, y

) =
∑p−1

u=0 Au,v
(
x, y

)
ΔΦu,v

(
x, y

)

∑p−1
u=0 Au,v

(
x, y

)
+ ε

. (9)

Some examples of the OGPCIs for different number of
employed filter scales p and a fixed orientation of θv = 0◦ are
shown in Figure 6. We can see that the choice of the number
of filter scales p influences the appearance of the OGPCIs
and for optimal face recognition performance should be set
based on preliminary results on some development data (see
Section 8.4 for more details).

3.4. The Oriented Gabor Phase Congruency Face Representa-
tion. The OGPCIs introduced in the previous section form
the foundation for the derivation of the oriented Gabor
phase congruency face representation or, in accordance
with the notation used by Liu and Wechsler in [10],
the augmented Gabor phase congruency vector, which is
computed by taking the following steps.

(i) For a given face image the OGPCIs are computed for
all r orientations (an example of all OGPCIs for a
sample image with r = 8 and p = 2 is presented in
Figure 7).

(ii) The computed OGPCIs are downsampled by a down-
sampling factor ρ (similar as depicted in Figure 4).

(iii) The downsampled OGPCIs are normalized using an
appropriate normalization procedure.

(iv) The downsampled and normalized OGPCIs in vector
form (denoted by Dv) are concatenated to form the
augmented Gabor phase congruency feature vector x.

Formally, the augmented Gabor phase congruency fea-
ture vector can be defined as follows:

x =
(
DT

0 ,D
T
1 ,D

T
2 , . . . ,D

T
r−1
)T

, (10)



EURASIP Journal on Advances in Signal Processing 7

(a) (b) (c) (d) (e)

Figure 5: Examples of phase congruency images (from left to right): (a) the original face image, (b) the PCI for p = 3 and r = 6, (c) the PCI
for p = 5 and r = 6, (d) and the PCI for p = 3 and r = 8, (e) the PCI for p = 5 and r = 8.

(a) (b) (c) (d) (e)

Figure 6: Examples of OGPCIs (from left to right): (a) the original face image, (b) the OGPCI for p = 2, (c) the OGPCI for p = 3, (d) and
the OGPCI for p = 4, (e) the OGPCI for p = 5.

where T denotes the transform operator and Dv, for v =
0, 1, . . . , r − 1, represents the vector form of the OGPCI at
the vth orientation.

Note that in the experiments presented in Section 8
the augmented Gabor phase congruency feature vector was
constructed using a downsampling factor of ρ = 16, as
opposed to the augmented Gabor magnitude vector, where
a downsampling factor of ρ = 64 was employed. This setup
led to similar lengths of the two augmented feature vectors
allowing for a fair comparison of their usefulness for face
recognition [6].

4. The Gabor-Fisher and Phase-Based
Gabor-Fisher Classifiers

We have already emphasized that both the augmented
Gabor magnitude feature vector the augmented Gabor
phase congruency feature vector, despite the downsampling
procedure, still reside in a very high-dimensional space.
The Gabor-Fisher Classifier presented by Liu and Wechsler
[10] and the Phase-based Gabor-Fisher Classifier introduced
here overcome this dimensionality issue by subjecting the
augmented feature vectors to Fisher’s Discriminant Analysis
(also know as Linear Discriminant Analysis). The subspace
projection reduces the size of the augmented feature vectors
and allows for an efficient implementation of the matching
procedure.

The employed dimensionality reduction technique (i.e.,
LDA) derives a transformation matrix (i.e., the projection
basis) which is used to project the augmented feature
vectors into a subspace where between-class variations of
the projected patterns are maximized while within-class
variations are minimized [32].

Given a set of n d-dimensional training patterns (i.e.,
augmented feature vectors) xi arranged into a d × n data
matrix X = [x1, x2, . . . , xn], each belonging to one of N

classes C1,C2, . . . ,CN , one first computes the between-class
and the within-class scatter matrices ΣB and ΣW :

ΣB =
N∑

i=1
ni
(
µi − µ

)(
µi − µ

)T
,

ΣW =
N∑

i=1

∑

x j∈Ci

(
x j − µi

)(
x j − µi

)T
,

(11)

and then one derives the LDA transformation matrix W
which maximizes Fisher’s discriminant criterion [32, 33]:

J(W) = arg max
W

∣
∣WTΣBW

∣
∣

|WTΣWW| , (12)

where ni denotes the number of samples in the ith class, μi
stands for the class conditional mean and μ represents the
global mean of all training samples [4].

Fisher’s discriminant criterion is maximized when W is
constructed by a simple concatenation of the d′ ≤ N − 1
leading eigenvectors of the following eigenproblem:

Σ−1W ΣBwi = λiwi, i = 1, 2, . . . ,d′, (13)

that is,W = [w1w2 · · ·wd′].
Once the transformation matrix W is calculated, it can

be used to project a test pattern (i.e., an arbitrary augmented
feature vector) x into the LDA subspace, thus reducing the
pattern’s dimension from d to d′:

y =WT
(
x− µ

)
, (14)

where y represents the d′-dimensional projection of the
centered pattern x [4]. To avoid singularity issues, when
computing the inverse of the within-class scatter matrix ΣW ,
LDA is implemented in the PCA subspace as suggested by
Belhumeur et al. in [33].
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(a) (b)

Figure 7: An example of all OGPCIs: the original face image (a), the OGPCIs (for r = 8) (b), which in their downsampled and normalized
form constitute the augmented Gabor phase congruency vector.

When the presented technique is applied to the aug-
mented Gabor magnitude feature vectors, we obtain the
Gabor-Fisher Classifier and, similarly, if the underlying
feature vectors take the form of the augmented Gabor phase
congruency vectors, we obtain the Phase-based Gabor-Fisher
Classifier.

5. The Complete Gabor-Fisher Classifier

The presented Gabor-Fisher and phase-based Gabor-Fisher
classifiers (GFC and PBGFC, resp.) operate on different
feature types derived from the Gabor filter responses. Since
the first relies on Gabor magnitude information and the
second encodes Gabor phase information, we combine
both classifiers into the Complete Gabor-Fisher Classifier
(CGFC), which should exhibit enhanced face recognition
performance when compared to either of the classifiers on
their own.

The fusion of the classifiers is implemented at the
matching score level using the fusion scheme shown in
Figure 8. Here, the final matching score of the CGFCmethod
δCGFC is computed using the following expression [34]:

δCGFC =
(
1− γ

)
δGFC + γδPBGFC, (15)

where δGFC denotes the matching score obtained with the
GFC technique, δPBGFC denotes the matching score obtained
with the PBGFC approach and γ ∈ [0, 1] denotes the fusion
parameter that controls the relative importance of the two
matching scores. ( Note that the matching scores for the
individual classifiers are computed based on the procedure
described in Section 6.) When set to γ = 0, the CGFC
method turns into the GFC method, when set to γ = 1,
the CGFC technique turns into the PBGFC technique, while
for any other value of γ the CGFC technique considers
both feature types. It has to be noted that the value of the
fusion parameter γ should be optimized for the best possible
performance (see Section 8.5).

6. The Classification Rule

In general, a face recognition system can operate in one of
two modes, either in verification or in identification mode

[35]. In verification mode, the goal of the system is to
determine the validity of the identity claim made by the
user currently presented to the system. This is achieved by
comparing the so-called “live” feature vector y extracted
from the given face image of the user with the template
corresponding to the claimed identity. Based on the outcome
of this comparison, the identity claim is either rejected or
accepted.

Formally this can be written as follows: given the live
feature vector y and a claimed identity Ci associated with
a user-template yi, where i ∈ 1, 2, . . . ,N and N represents
the number of enrolled users, determine the validity of the
identity claim by classifying the pair (y,Ci) into one of two
classes w1 or w2 [2, 36]:

(
y,Ci

) ∈
⎧
⎨

⎩

w1, if δ
(
y, yi

) ≥ Δ, i = 1, 2, . . . ,N ,

w2, otherwise,
(16)

where w1 denotes the class of genuine identity claims, w2

stands for the class of illegitimate identity claims, δ(·, ·) rep-
resents a function measuring the similarity of its arguments,
which in our case takes the form of the cosine similarity
measure, that is,

δ
(
y, yi

) = yTyi√
yTyyTi yi

, (17)

and Δ stands for a predefined decision threshold.
In a face recognition system operating in the identifi-

cation mode the problem statement is different from that
presented above. In case of the identification task we are not
interested whether the similarity of the live feature vector
with a specific user-template is high enough; rather, we are
looking for the template in the database that best matches the
live feature vector. This can be formalized as follows: given
a live feature vector y and a database containing N user-
templates y1, y2, . . . , yN of the enrolled users (or identities)
C1,C2, . . . ,CN , determine the most suitable identity [2], that
is,

y ∈
⎧
⎪⎨

⎪⎩

Ci, if δ
(
y, yi

) = N
max
j=1

δ
(
y, y j

)
≥ Δ,

CN+1, otherwise,
(18)
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Figure 8: Block scheme of the Complete Gabor-Fisher Classifier.

where δ(y, yi) again denotes the cosine similarity measure
and CN+1 stands for the case, where no appropriate identity
from the database can be assigned to the live feature vector
y. The presented expression postulates that, if the similarity
of the live feature vector and the template associated with the
ith identity is the highest among the similarities with all user-
templates in the system, then the ith identity is assigned to
the live feature vector y.

It should be noted that, in the experiments presented
in the remainder of this paper, the user-templates are
constructed as the mean vectors of the feature vectors
extracted from the enrollment images of the users.

7. The Databases and Experimental Setups

This section presents the experimental databases, setups
and performance measures used to assess the feasibility
of the Complete Gabor-Fisher Classifier (CGFC) for face
recognition. Four popular face databases are selected for
the experiments presented in the next section, namely, the
XM2VTS database [37], the Extended YaleB database [38,
39], the FERET database [40], and the AR database [41, 42].
These databases are employed either in face verification or
face identification experiments to demonstrate the effective-
ness and robustness of the proposed CGFC framework.

7.1. The XM2VTS Database. The XM2VTS database is
a large multimodal database featuring image, video and
speech data of 295 subjects [37]. For the experiments
presented in Section 8 we adopt only the (face) image
part of the database—the datasets labeled as CD001 and
CD006. These two datasets contain a total of 2360 images
that were captured in four separate recording sessions. The
recording sessions were distributed evenly over a period of
approximately five months and at each session the external
conditions were controlled. This means that all images were
taken against a more or less uniform background, that good
illumination conditions were present during the recording,
and that only small tilts and in-plane rotations were allowed.
The described recording setup resulted in the facial images
exhibiting variations mainly induced by the temporal factor

Figure 9: Sample images from the image part of the XM2VTS
database.

(as shown in Figure 9). Thus, images of the same subject
differ in terms of hair-style, presence or absence of make-
up and glasses, pose, expression, and so forth. Since two
images were taken at each of the four recording sessions, 8
facial images are featured in the database for each of the 295
subjects.

To ensure that our results are comparable to other
results obtained on the XM2VTS database and published
in the literature, we follow the first configuration of the
experimental protocol (for face verification) associated with
the database, also known as the Lausanne protocol [37].
The first configuration of the protocol was chosen for the
experiments, since it is considered to be the most difficult
of the different experimental configurations defined by the
Lausanne protocol. As stated by the protocol, we split the
subjects of the database into two disjoint groups of 200
clients and 95 impostors (25 evaluation impostors and 70
test impostors). (Note that the term client refers to a subject
making a legitimate identity claim, while the term impostor
refers to an user making an illegitimate identity claim.) These
two groups are then further partitioned into image sets
employed for training, evaluation and testing. Specifically,
the first configuration of the protocol results in the following
experimental setup [35]:

(i) number of training images: 3 per client (600 in total),

(ii) number of client verification attempts on the evalua-
tion image sets: nce = 600 (3× 200),
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Figure 10: Sample images from the Extended YaleB database.

(iii) number of impostor verification attempts in the
evaluation image sets: nie = 40000 (25× 8× 200),

(iv) number of client verification attempts in the test
image sets: nct = 400 (2× 200), and

(v) number of impostor verification attempts in the test
image sets: nit = 112000 (70× 8× 200).

The above numbers are obtained when matching each client
image from the evaluation or test image set against the
corresponding client template and all impostor images from
the evaluation or test image sets against all client templates
stored in the systems database.

The training set is used to train the system, that is, to
generate the face space where facial images are compared,
and to build the client templates (or models). The evaluation
image set is employed to tune any potential parameters of the
face space and adjust the decision threshold, while the test set
is used exclusively for the final performance assessment with
predefined system parameters.

7.2. The Extended YaleB Database. The second database used
in our experiments is the Extended YaleB (EYB) database [38,
39]. Different from the XM2VTS database, the EYB database
is used in our experiments to assess the relative usefulness of
the CGFC method for face identification.

The EYB database was recorded at the Yale University and
features 2415 frontal face images of 38 subjects. Different
from the XM2VTS database, images of the EYB were
captured at a single recording session in a relatively short
time. Hence, the images are free from severe expression-
changes and session-induced variability, but exhibit large
variations in illumination, as shown in Figure 10.

To make the experimental protocol as challenging as
possible, we partition the EYB database into five image
subsets based on the extremity in illumination, as suggested
by the authors of the database [38, 39], and use the
first subset (the subset with images captured in “good”
illumination conditions) for training and the remaining
four subsets for testing. This setup results in highly miss-
matched conditions between the training and test images and
represents quite a challenge to the recognition techniques
used. Furthermore, it is also in accordance with real-
life settings, where the enrollment stage can typically be
supervised, while the operation environment is unknown in
advance and can feature arbitrary conditions. Specifically, the
presented partitioning of the database results in the following
experimental setup:

(i) number of training images: 7 per client (265 in total),

(ii) number of identification experiments with images
from subset 2: ns2 = 456,

(iii) number of identification experiments with images
from subset 3: ns3 = 455,

(iv) number of identification experiments with images
from subset 4: ns4 = 525,

(v) number of identification experiments with images
from subset 5: ns5 = 714.

It should be noted that not all subjects from the database
are represented with an equal number of images due to
difficulties during the image acquisition stage. The corrupted
images were excluded from the database prior to our
experiments. This exclusion resulted in less than the initial
64 images being available for each of the 38 subjects and in
the image subset sizes presented above.

7.3. The FERET Database. The third database chosen for the
evaluation of the Complete Gabor Fisher Classifier is the
FERET database. The database has long been the standard
database to assess new face identification techniques, not
only due to its size but also due to the great challenges
that it poses to the existing face recognition technology. The
images in the database differ in terms of facial expression,
illumination, age and ethnicity.

For our experiments we adopt the standard FERET
evaluation protocol, where 1196 frontal face images of
1196 subjects are defined as gallery (target) images, and
four different probe (query/test) sets are employed for
determining the recognition rates of the assessed techniques,
that is, [40, 43]:

(i) the Fb probe set, which contains 1195 images exhibit-
ing different facial variations in comparison to the
gallery images (nsFb = 1195),

(ii) the Fc probe set, which contains 194 images exhibit-
ing different illumination conditions in comparison
to the gallery images (nsFc = 194),

(iii) the Dup I probe set, which contains 722 images
acquired between one minute and 1031 days after the
corresponding gallery images (nsDupI = 722),

(iv) the Dup II probe set, which contains 234 images
acquired at least 18 months after the corresponding
gallery images (nsDupII = 234).

Some examples of these images are shown in Figure 11. It
should be noted that the standard experimental protocol
associated with the FERET database does not define a
fixed set of training images. Therefore, we select the most
commonly adopted training set of 1002 images (corre-
sponding to 428 subjects) for our experiments. (Please visit
http://luks.fe.uni-lj.si/en/staff/vitomir/index.html for the list
of training images used in our experiments.)

7.4. The AR Database. The last database employed in the
experimental section is the AR database [41]. The database
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Figure 11: Sample images from the FERET database.

contains more than 4000 color images of 126 subjects
taken during two separate recording sessions. While the
variability in the face images of the AR database is caused,
for example, by different illumination and facial expressions,
the main characteristic that has popularized the database are
occlusions of the facial area due to the presence of scarves
and glasses.

Each subject in the AR database is accounted for with
26 images taken under different conditions. Figure 12 shows
all 13 images of one subject from the AR database acquired
in the first recording session. The remaining 13 images
were recorded under the same conditions during the second
recording session and are, hence, similar in appearance.

Following the experimental setup presented in [9], we
select a subset of 100 subjects (50 males and 50 females)
for our experiments. We choose the first three images from
both recording sessions for training, that is, images denoted
by N, H, and A in Figure 12 (6 images per subject, 600 in
total), and group the remaining images into a number of
probe (or test) sets. Here, each of the probe sets is designed
in such a way that only a predefined type of image variability
(or combination of specific variability types) and its (their)
impact on the CGFC technique is assessed at a time, that is:

(i) the scarves probe set is designed to assess the impact
of lower face occlusions on the recognition accuracy
of the CGFC technique, and features a total of nsS =
600 images (6 per subject)—denoted by S, SL, and SR
in Figure 12,

(ii) the glasses probe set is designed to assess the impact of
upper face occlusions on the recognition accuracy of
the CGFC technique, and features a total of nsG = 600
images (6 per subject)—denoted by G, GL, and GR in
Figure 12,

(iii) the scream probe set is designed to assess the
impact of extreme facial expression variations on the
recognition accuracy of the CGFC technique, and
features a total of nsSC = 200 images (2 per subject)—
denoted by SC in Figure 12,

(iv) the lighting probe set is designed to assess the
impact of illumination variations on the recognition
accuracy of the CGFC technique, and features a total
of nsL = 600 images (6 per subject)—denoted by L,
R, and F in Figure 12,

(v) the all probe set is designed to assess the robustness
of the CGFC technique to various types of image
variability, and features a total of nsA = 2000 images

(20 per subject)—denoted by SC, L, R, F, G, GL, GR,
S, SL, and SR in Figure 12.

7.5. Performance Measures. The recognition performance of
the techniques assessed in the next section is measured by the
standard error and recognition rates commonly used in the
field of face recognition.

For the verification experiments the false acceptance
error and false rejection error rates (FAR and FRR, resp.) as
well as the half total error rate (HTER) are used. The FAR
and FRR are defined as follows:

FRR = nrc
nc

100%, FAR = nai
ni

100%, (19)

while the HTER is given by

HTER = 0.5(FAR + FRR). (20)

In the above equations nrc denotes the number of rejected
legitimate identity claims, nc stands for the number of all
legitimate identity claims made, nai denotes the number of
accepted illegitimate identity claims, and ni represents the
number of all illegitimate identity claims made.

Note that both the FAR and the FRR depend on the value
of the decision threshold Δ (see (15)). Selecting a threshold
that ensures a small value of the FAR inevitably results in a
large value of the FRR and vice versa, a threshold that ensures
a small FRR results in a large value of the FAR. Thus, to fairly
compare the different recognition techniques the decision
threshold has to be set in such a way that it ensures some
predefined ratio of the FAR and FRR on some evaluation
dataset or, alternatively, the two error rates have to be plotted
against all possible values of the decision threshold, resulting
in the so-called performance curves. For our assessment
we chose the latter approach and represent the results in
the form of Detection Error Trade-off (DET) curves, which
plot the FAR against the FRR at different values of Δ on a
scale defined by the inverse of a cumulative Gaussian density
function.

For the performance evaluation on the test image sets we
again use performance curves, which this time take the form
of Expected Performance Curves (EPCs) [44]. To generate an
EPC two separate image sets are needed. The first image set,
that is, the evaluation image set, is used to find a threshold
that minimizes the following weighted error function (WER)
for different values of α:

WER(Δ,α) = αFAR(Δ) + (1− α)FRR(Δ), (21)

where α denotes a weighting factor that controls the relative
importance of the FAR and FRR in the above expression.
Next, the second image set, that is, the test image set, is
employed to estimate the value of the HTER at the given α
and with the computed value of the decision threshold Δ.
When plotting the HTER (obtained on the test image sets)
against different values of the weighting factor α, an example
of the EPC is generated.

For the identification experiments we provide results not
in the form of error rates, but rather in form of recognition
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Figure 12: Sample images of one subject from the AR database taken at the first photo session. The images exhibit the following
characteristics: (upper row—from left to right) neutral face (N), happy face (H), angry face (A), screaming face (SC), left light (L), right
light (R), and frontal light (F); (lower row—from left to right) occluded by glasses (G), occluded by glasses and lit from left (GL), occluded
by glasses and lit from right (GR), occluded by a scarf (S), occluded by a scarf and lit from left (SL), and occluded by a scarf and lit from
right (SR).

Table 1: Results of the face identification experiments on the EYB database for varying lengths of the PCA and LDA feature vectors.

NOF
PCA

NOF
LDA

subset 2 subset 3 subset 4 subset 5 subset 2 subset 3 subset 4 subset 5

10 56.6 29.5 11.2 15.6 5 98.3 56.9 9.9 13.6

50 93.4 54.9 16.7 22.0 10 100 85.3 27.2 29.7

100 93.6 54.9 16.7 22.0 20 100 97.8 47.0 43.7

150 93.6 54.9 16.7 22.0 30 100 99.3 53.6 47.6

200 93.6 54.9 16.7 22.0 37 100 99.8 56.3 51.0

rates. To this end, we compute the so-called rank one
recognition rate (ROR) for each of the probe (test) sets of
the given database. Here, the ROR is defined as follows:

ROR = nsi
ns

100%, (22)

where nsi denotes the number of images successfully assigned
to the right identity and ns stands for the overall number of
images trying to assign an identity to.

In addition to the ROR, we also make use of cumulative
match characteristic (CMC) curves, which represent perfor-
mance curves for biometric recognition systems operating
in identification mode. While the ROR carries information
about the percentage of images where the closest match
in the database corresponds to the correct identity, it is
sometimes also of interest whether the correct identity is
among the top r ranked matches (where r = 1, 2, . . . ,N
and N denotes the number of subjects in the database
of the biometric recognition system). This is especially
important for law enforcement applications, where the top r
matches can additionally be inspected by a human operator.
When computing the recognition rate for the rth rank,
the identification procedure is considered successful if the
correct identity is among the top r ranked matches and is
considered unsuccessful otherwise. Plotting the computed
recognition rates against the corresponding rank results in
an example of the CMC curve.

8. Experiments and Results

This section presents the experiments with the CGFC tech-
nique. It commences by describing the basic preprocessing

preceding the assessment of the proposed face recognition
approach and continues by analyzing the results of the
assessment.

8.1. Image Preprocessing. Before we turn our attention to the
experiments, let us say a few words on the preprocessing
preceding our experiments. Since we are concerned with
the recognition of faces from digital images and not the
performance of facial detectors, we assume that all facial
images are properly localized and aligned. In any case, the
results presented in the remainder of the paper can be
considered as an upper bound on the performance with
a properly working face detector. The reader is referred
elsewhere for details on how to obtain properly localized face
images, for example, [45, 46].

To localize the facial region in the experimental images,
we use the eye coordinates provided with the four databases.
Based on these coordinates, we first rotate and scale the
images in such a way that the centers of the eyes are located
at predefined pixel positions. This procedure ensures that
the images are aligned with each other. Next, we crop the
facial region to a standard size of 128× 128 pixels and finally
normalize the cropped region using histogram equalization
followed by the zero-mean and unit-variance normalization.
Some examples of the facial images from the XM2VTS,
EYB, AR and FERET databases processed with the described
procedure are presented in Figure 13.

8.2. The Baseline Performance. The first series of recognition
experiments assesses the performance of some baseline face
recognition techniques and adjusts the parameters of the
techniques for the best possible performance. It should be
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Figure 13: Examples of preprocessed images of (from top to
bottom): the XM2VTS database, the EYB database, the AR database,
and FERET database.

noted that, at this point, only two out of four experimental
databases (i.e., the XM2VTS and EYB databases) are used in
the experiments. The findings from this series of experiments
are ultimately employed with the remaining two databases
in the remainder of this section. Such an experimental
configuration reflects real-life settings, where the parameters
of the adopted recognition technique have to be set in
advance on an independent (generic) database due to the
fact that the actual test images are not available in the
optimization stage.

We select the Principal Component Analysis (PCA) [47]
and the Linear Discriminant Analysis (LDA) [33, 48] as
our baseline techniques and assess their performance with
different numbers of features (NOFs) in the PCA and LDA
feature vectors. Considering the number of subjects and
available training images in each of the two databases, the
maximum length of the feature vector for the PCAmethod is
599 for the XM2VTS database and 264 for the EYB database,
while themaximumnumber of features constituting the LDA
feature vectors equals 199 for the XM2VTS database and 37
for the EYB database.

With the presented experimental setup in mind, let us
first turn to the results of the assessment on the XM2VTS
database presented in Figure 14. Here, the graphs depicted
in Figures 14(a) and 14(c) represent DET curves generated
during the experiments with the PCA and LDA techniques,
respectively. The plots in Figures 14(b) and 14(d), on the
other hand, were created by computing the HTER at three
characteristic operating points, that is, at FAR = FRR, at
FAR = 0.1FRR, and at FAR = 10FRR, on the DET curves and
thus in a sense represent cross sections of the DET curves at

the three operating points. Note that for the PCA technique
the DET curves are generated only for feature vectors with
300 or less features, while the cross sections (in Figure 14(b))
contain the entire span of feature vector lengths. The reason
for such a presentation of the results lies in the fact that the
performance of the PCA technique saturates at feature vector
lengths of around 200, and, thus, the DET curves, if shown
up to the maximum number of features possible, would be
illegible.

Different from the PCA case, where the improvements
in the face verification performance become marginal with
the increase of the number of features once a certain feature
vector length is reached, the performance of LDA technique
steadily increases with the increase of the feature vector
length. This setting is evidenced by the DET curves as well
as their cross sections presented in Figures 14(c) and 14(d),
respectively.

Similar observations as with the XM2VTS database can
also be made with the EYB database, only this time for
the task of face identification. From the results of the
experiments on the EYB database presented in Table 1 in
form of rank one recognition rates, we can again see that
the PCA technique saturates in performance with less than
the maximum possible feature vector length and reaches its
top performance with 150 features. The LDA technique, on
the other hand, once more requires the entire set of (in this
case 37) features to obtain the best possible performance
achievable with this technique. It is evident that, for the
optimal performance, the LDA technique requires 100% of
the features comprising its feature vectors, while the PCA
approach saturates in its performance with a feature vector
length which on both databases ensures that approximately
98% of the (training set) variance is retained. (Note that
the 200 features of the XM2VTS correspond to 97.67% of
the variance, while the 150 features of the EYB database
account for 98.44% of the variance in the training data.)
The role of the presented experimental results is twofold: (i)
they provide a baseline performance on the two databases
for the following comparative studies with the phase-based
and complete Gabor-Fisher classifiers, and (ii) they serve as
a guideline for selecting the feature vector lengths on the
remaining two databases.

8.3. The Baseline Performance of the Gabor-Based Classifiers.
The second series of face recognition experiments assesses
the performance of the classical Gabor-Fisher Classifier
and the novel Phase-based Gabor-Fisher Classifier and,
furthermore, evaluates the relative usefulness of additional
normalization techniques applied to the augmented (Gabor
magnitude and Gabor phase congruency) feature vectors
prior to the deployment of LDA for dimensionality reduc-
tion. It has to be noted that commonly only a zero-mean
and unit-variance normalization is applied to the Gabor
magnitude features, usually with the justification of adjusting
the dynamic range of the responses to a common scale.
However, as will be shown in this section, the same result can
also be achieved with other normalization techniques, which
can also have a positive effect on the final face recognition
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Figure 14: Results of the face verification experiments on the XM2VTS database for varying lengths of the PCA and LDA feature vectors.

performance. Note that again only the XM2VTS and EYB
databases are employed in the experiments.

We implement the traditional Gabor Fisher Classifier as
well as the Phase-based Gabor-Fisher Classifier with a Gabor
filter bank containing filters of five scales (p = 5) and eight
orientation (r = 8). Such a filter bank is the most common
composition of Gabor filters used for deriving the Gabor face
representation [6, 10, 11, 13, 14, 19, 20, 22], and is therefore

also chosen for this series of experiments. We follow three
different strategies to normalize the downsampled Gabor
magnitude responses (GMRs) and the oriented Gabor phase
congruency images (OGPCIs):

(i) after the downsampling of the GMRs (or OGPSIs),
each downsampled GMR (or OGPCI) is normalized
to zero-mean and unit-variance before concatenation
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Figure 15: Visualization of the applied normalization schemes.

into the final augmented Gabor magnitude (or
phase) feature vector (denoted by ZMUV),

(ii) after the downsampling of the GMRs (or OGP-
SIs), each downsampled GMR (or OGPCI) is first
subjected to histogram equalization followed by
zero-mean and unit-variance normalization before
concatenation into the final augmented Gabor mag-
nitude (or phase) feature vector (denoted by HQ),

(iii) after the downsampling of the GMRs (or OGPSIs),
each downsampled GMR (or OGPCI) is first sub-
jected to gaussianization [49] before concatenation
into the final augmented Gabor magnitude (or
phase) feature vector (denoted by GS). (It should
be noted that the term gaussianization refers to the
remapping of the histogram of an image or pattern
vector to a normal distribution with predefined
parameters. In our case the target distribution is
N (0, 1).)

The described strategies are also shown in Figure 15, where
the most left of each image-triplet depicts the normalization
procedure applied on the downsampled GMRs, the center
image depicts the normalization procedure applied to the

OGPCIs, and the most right image shows the impact of the
applied normalization procedure on the histogram of the
downsampled GMR (or OGPCI).

For the implementation of the subspace projection
technique (LDA) the following feature vector lengths were
chosen: 199 for the XM2VTS database and 37 for the EYB
database. These lengths were selected based on preliminary
experiments, which suggested the same result as the baseline
experiments from the previous section, that is, that the best
performance with LDA applied on augmented Gabor (mag-
nitude and phase congruency) feature vectors is obtained
with the maximum feature vector length.

The results of this series of experiments are presented in
Figure 16 for the XM2VTS database and in Table 2 for the
EYB database. If we first focus on the PBGFC technique, we
can notice that overall the best performance was achieved
with the help of the HQ technique. Figure 16(a) clearly
shows that the DET curve generated during the experiments
with the HQ techniques outperforms the remaining two
normalization techniques at almost all operating points.
Similarly, the technique also results in the best identification
performance on three out of four test (probe) subsets of the
EYB database when compared to any of the remaining two
normalization techniques.
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(a) DET curves for the PBGFC technique
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(b) DET curves for the GFC technique

Figure 16: Comparison of the impact of different normalization techniques on the face verification performance on the XM2VTS database.

Differently from the PBGFC technique, we observe
the best performance for the GFC method with the GS
normalization technique both on the XM2VTS database as
well as on the EYB database. The result is rather expected
since the Gaussian distribution most appropriately reflects
the sparse nature of the Gabor wavelet face representation.
When compared to the baseline results obtained with the
PCA and LDA techniques, both Gabor-based classifiers
significantly improve upon the baseline performance on both
experimental databases. However, putting this issue aside,
we can conclude that this series of recognition experiments
suggests that the PBGFC technique should be implemented
with the HQ normalization technique, while the GFC
method should be combined with the GS normalization
procedure and that these combinations should be used in the
following comparative assessments.

8.4. Impact of Filter Scales. The third series of experiments
evaluates the impact of the number of the filter scales p
in the Gabor filer bank on the performance of the PBGFC
technique. We fix the angular resolution of the filter bank to
r = 8 and gradually change the value of the employed filter
scales for phase congruency computation from p = 2 to p =
5. In all of the experiments we set the feature vector lengths
to their maximum value and adopt the HQ technique for
normalization of the augmented phase congruency feature
vectors. It should be noted that we do not assess the impact
of the filter scales on the performance of the GFC techniques
since various studies on this topic can be found in the

literature [10, 11], all with the same result—that 5 scales and
8 orientations result in the best performance.

From the results presented in Figure 17 for the XM2VTS
database and Table 3 for the EYB database we can notice
that differently from the GFC technique, the PBGFC does
not perform at its optimum with 5 filter scales. Rather,
the best performance for the XM2VTS database is observed
with only 2 filter scales, that is, p = 2. Here, an equal
error rate of 1.16% is achieved with the PBGFC approach
using 2 filter scales only. Similar results are also observed on
the EYB database, where again the recognition performance
increases with the decrease of used filter scales. However, the
performance peaks with p = 3 filter scales.

Based on this series of experiments, we chose to imple-
ment the construction procedure of the augmented phase
congruency feature vector with 2 scales for the XM2VTS
database and 3 scales for the EYB database for the inclusion
into the Complete Gabor-Fisher Classifier that will be
assessed in the next section.

8.5. Optimization of the Complete Gabor-Fisher Classifier. Up
until now, the experiments focused on a separate assessment
of the Gabor-Fisher and Phase-based Gabor-Fisher Classi-
fiers for face recognition. However, the results obtained so
far suggest that the combination of both techniques into a
unified framework, that is, into the Complete Gabor-Fisher
Classifier, could improve upon the recognition performance
achievable with either of the two Gabor-based classifiers
alone.
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Table 2: Comparison of the impact of different normalization techniques on the rank one recognition rates (in %) on the EYB database.

Norm. tech.
PBGFC GFC

subset 2 subset 3 subset 4 subset 5 subset 2 subset 3 subset 4 subset 5

ZMUV 100 99.8 88.8 93.8 100 100 83.2 89.1

HQ 100 100 86.1 94.8 100 100 82.3 89.1

GS 100 100 84.8 93.0 100 100 84.6 92.2
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Figure 17: DET curves generated for different numbers of filter
scales used for computing the OGPCIs.

Table 3: Rank one recognition rates (in %) obtained with PBGFC
technique on the EYB database for different numbers of filter scales
employed during construction of the OGPCIs.

No. of scales subset 2 subset 3 subset 4 subset 5

p = 5 100 100 86.1 94.8

p = 4 100 100 94.5 94.4

p = 3 100 100 96.4 96.4

p = 2 100 100 94.7 96.6

The experimental results presented in Section 8.4 showed
that the PBGFC requires less than the 40 filters needed
by the GFC technique to achieve optimal face recognition
performance. Thus, the PBGFC technique operates on a
much narrower frequency band than the GFC approach
with most of the discriminatory Gabor phase congruency
information being contained in the OGPCIs obtained with
Gabor filters of high frequencies. (Note that the number
of filter scales is directly proportional to the filters banks
coverage of the frequency domain.) In addition to the high
frequency filters, the GFC method effectively uses also the

Table 4: Rank one recognition rates (in%) obtained with the CGFC
approach on the EYB database for four different values of the fusion
parameter γ.

γ subset 2 subset 3 subset 4 subset 5

γ = 0.1 100 100 84.8 95.5

γ = 0.3 100 100 91.8 98.2

γ = 0.5 100 100 95.4 98.6

γ = 0.7 100 100 98.5 98.2

low frequency Gabor filters, which suggests that the Gabor
phase congruency and Gabor magnitude features represent
feature types with complementary information and can
therefore be combined into a highly efficient unified Gabor-
based face recognition approach [6].

As suggested in Section 5, we build the Complete Gabor-
Fisher Classifier by combining the GFC and PBGFC tech-
niques at the matching score level [34]. Recall that in this
setting the final CGFC similarity score depends on the proper
selection of the fusion parameter γ. To assess the robustness
of the fusion scheme, the fourth series of face recognition
experiments on the XM2VTS and EYB databases evaluates
the performance of the CGFC technique with respect to
different values of the fusion parameter γ, where γ ∈ [0, 1].

The results obtained with the XM2VTS database are
presented in Figure 18. Here, Figure 18(a) shows DET curves
obtained at three different values of the fusion parameter
γ, while Figure 18(b) depicts the HTER at the same three
characteristic operating points as in the case of Figures 14(b)
and 14(d). From the two graphs we can see that the fusion of
two Gabor-based classifiers is quite robust, as the recognition
performance for a wide range of parameter values of γ
improves upon the performance of the individual classifiers
or, as exemplified by the cross section of the DET curves
at the equal error operating point (i.e., FAR = FRR) in
Figure 18(b), performs at least as well as the better of the two
Gabor-based classifiers.

Similar findings can also be made with the EYB database.
Here, the recognition rates on the test subsets 2 and 3 are
100% regardless of the value of the fusion parameter γ. On
the test subsets 4 and 5, however, the performance peaks at
parameter values in the range from γ = 0.4 to γ = 0.8 as
shown in Figure 19. The actual rank one recognition rates
for four different values of the fusion parameter on all four
test images subsets are presented in Table 4. Again, we can
see that among the listed values of the fusion parameter, the
values of γ = 0.5 and γ = 0.7 result in the best performance.
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Figure 18: Assessment of the CFGC technique on the XM2VTS database.
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Figure 19: Rank one recognition rates (in %) obtained during the optimization of the CGFC method on the EYB database.

Considering the results of this series of experiments, we
select a value of γ = 0.7 for the calculation of the CGFC
matching scores and use this value for the implementation
of the CGFC approach on all four experimental databases.

8.6. Recognition in the Presence of Illumination Variations,
Partial Occlusions, and Facial Expression Changes. Up to this
point we have assessed only the impact of different parameter
values and normalization techniques on the performance of
the CGFC technique using only two out of four experimental

databases. In the last series of recognition experiments,
however, we finally make use of all four databases and
evaluate the robustness of the proposed CGFC approach to
various sources of image variability commonly encountered
in the field of face recognition.

First, we compute the feature vector lengths employed
with the PCA and LDA techniques for the AR and FERET
databases. As suggested by the experimental results obtained
in Section 8.2, we fix the LDA feature vector length to its
maximum possible value, which for the AR database equals
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Figure 20: CMC curves obtained with different probe sets of the FERET database.

Figure 21: Examples of rendered face images (from left to right):
the original face image, and the rendered image for τ = 40, the
rendered image for τ = 80, the rendered image for τ = 120, the
rendered image for τ = 160.

to d′ = 99, and for the FERET database takes the value of
d′ = 427. For the PCA approach we compute the feature

vector length in such a way that approximately 98% of the
training data variance is preserved, resulting in the feature
vector length of d′ = 448 for the FERET database and in the
feature vector length of d′ = 358 for the AR database. Next,
we implement the PBGFC technique for the AR and FERET
databases using three filter scales (p = 3), and use the value
of γ = 0.7 for construction of the Complete Gabor-Fisher
Classifier.

Using the presented parameters, we first evaluate the
performance of the CGFC technique on the standard probe
sets, that is, the Fb, Fc, Dup I, and Dup II probe sets, of
the FERET database. The comparative results of the CGFC
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(b) EPC curves for τ = 80
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(c) EPC curves for τ = 120
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(d) EPC curves for τ = 160

Figure 22: EPC curves obtained on the test sets of the XM2VTS database for different values of the parameter τ.

technique and our own implementations of seven popular
face recognition techniques are presented in form of CMC
curves in Figure 20. Here, the Eigenface technique (PCA)
[47], the Fisherface technique (LDA) [33, 48], the Phase-
based Gabor-Fisher Classifier (PBGFC) [6], the Gabor-Fisher
Classifier (GFC) [10], the PCA technique applied to the
augmented Gabor magnitude and Gabor phase congruency
feature vectors (GF+PCA and PCF+PCA, resp.) as well as the
PCA technique in combination with the complete Gabor face
representation (CG+PCA) were adopted for the comparison.
In addition to the graphical results, we also present the rank
one recognition rates (RORs) for the baseline methods PCA
and LDA, for the complete Gabor representations combined

with the PCA and LDA techniques (i.e., CG+PCA and CGFC,
resp.) and three state-ofthe-art methods, namely, the Local
Gabor Binary Pattern Histogram Sequence (LGBPHS) [50]
approach, a Local Binary Pattern-(LBP) [51] based technique
and the best performing method from the original Sep96
FERET evaluation (BYS) [40]—see Table 5. (Note that n/a
stands for the fact that the results for the specific probe set
were not provided in the original publication.)

Note that the CGFC technique results in competitive
recognition rates on all probe sets. It achieves the ROR of
98.7% on the Fb probe set, which comprises images with
different facial expressions as in the gallery set, the ROR of
92.8% on the Fc probe set, where the probe (test) images
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(c) CMCs for subset 4
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(d) CMCs for subset 5

Figure 23: CMC curves obtained on the four probe subsets of the EYB database.

feature illumination variations, and RORs of 77.2% and
57.3% on the Dup I and Dup II sets, respectively, where
the goal is to assess aging effects on the performance of
the given face recognition technique. As already indicated in
the introduction, the rather good performance of the CGFC
method on the Fb probe set can be linked to the local nature
of the Gabor features, which ensures robustness to changes
in facial expression, while the robustness to illumination
changes evidenced by the recognition rates on the Fc probe
set can be related to frequency band coverage of the Gabor
filter bank. Despite the competitiveness of the proposed
approach in our experiments, it should, nonetheless, be
noted that the FERET database does not define a standard

training set for the construction of the PCA/LDA subspace
and, thus, the results of the comparison with other methods
from the literature should be interpreted with this fact in
mind.

Let us now turn our attention to the XM2VTS database.
All experiments on this database conducted so far have been
performed on the evaluation image sets, while the test image
sets were not used. In this series of experiments, however,
we employ the test image sets for our comparative study and
implement all recognition techniques with their hyperpa-
rameters (such as decision thresholds, feature vector lengths,
number of employed filter scales, etc.) predefined using the
evaluation image sets. As suggested in Section 7.5, we report
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(a) Scarves probe set
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(b) Glasses probe set
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(c) Scream probe set
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(d) Lighting probe set

Figure 24: CMC curves obtained on the four probe sets (scarves, glasses, scream, and lighting) of the AR database.

the results in form of EPC curves. To make the assessment
more challenging, we introduce an artificial illumination
change to the test image sets from the XM2VTS database
and adopt the artificial illumination model of Sanderson
and Paliwal [52] for rendition of the facial images. The
model simulates different illumination conditions during the
image capturing process bymodifying the preprocessed facial
images I(x, y), that is,

Ĩ
(
x, y

) = I
(
x, y

)
+mx + τ, (23)

where x = 0, 1, . . . , a−1; y = 0, 1, . . . , b−1;m = −2τ/(b−1);
τ denotes the parameter that controls the “strength” of the

introduced artificial illumination change [6]. The authors
of [52] stressed that their model (see (23)) does not cover
all possible illumination effects in real life settings, but is
nevertheless useful for providing suggestive results regarding
the robustness of the assessed face recognition techniques
to illumination changes. Some examples of facial images
rendered with the presented model for different values of
the parameter τ are shown in Figure 21. Due to the extensive
experimental section, we do not report the performance on
the original test sets, but provide only comparative results
on the harder (degraded) test image sets. Similar as with
the FERET database, we implement seven face recognition
techniques from the literature for our comparison.
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Figure 25: CMC curves for the challenging All probe set of the AR
database.

Table 5: Rank one recognition rates (in %) obtained on different
probe sets of the FERET database.

Method Fb Fc Dup I Dup II

PCA 77.3 11.4 34.2 10.7

LDA 91.9 75.3 52.9 18.0

CG+PCA 82.9 62.4 51.4 35.9

CGFC 98.7 92.8 77.2 57.3

LGBPHS [50] 94.0 97.0 68.0 53.0

LBP [51] 93.0 51.0 61.0 50.0

BYS [40] 82.0 37.0 52.0 32.0

Table 6: Rank one recognition rates (in %) obtained on the EYB
database during the comparative assessment.

Method subset 2 subset 3 subset 4 subset 5

PCA 93.6 55.0 16.7 22.0

LDA 100 99.8 56.3 51.0

CG+PCA 100 100 96.8 98.2

CGFC 100 100 98.5 98.2

LBP [53] 100 99.8 97.3 87.5

LS [39] 100 100 85.0 n/a

HI [54] 100 100 97.3 n/a

GA [55] 100 100 98.6 n/a

The results of this series of face recognition (verification)
experiments are presented in Figure 22 in the form of EPC
curves. The first thing to notice from the presented results
is that the CGFC method systematically outperforms all
other techniques, significantly improving upon the baseline
performance of the PCA and LDA methods. Moreover, it
also results in the most robust performance in the presence
of (artificial) lighting variations, again due to the properties
of the Gabor filter bank. To evaluate the performance of

the CGFC technique on real illumination changes and,
consequently, to further demonstrate the robustness of the
proposed technique to illumination changes, we perform the
next round of experiments on the EYB database

The final recognition experiments on the EYB database
are again conducted in accordance with the experimental
setup presented in Section 7.2. From the results presented
in the form of CMC curves in Figure 23, we can see that,
while on the probe subsets 2 and 3 almost all evaluated
methods resulted in the recognition rate of 100% for all
ranks, only the CGFC method is able to retain an almost
perfect recognition rate for the more challenging probe
subsets 4 and 5 as well. In the comparison with state-
of-the-art techniques from the literature, that is, a LBP-
based method [53], the Linear Subspace (LS) approach
[39], the Harmonic Image (HI) technique [54], and the
Gradient Angle (GA) procedure [55], presented in Table 6,
the CGFC technique again resulted in competitive RORs
making it a suitable choice for various (security, defense,
etc.) applications requiring robust recognition in difficult
illumination conditions.

Last but not least, we evaluated the CGFC technique
on the AR database, where the goal was to assess the
robustness of the proposed method against extreme facial
expression changes, disguise (partial occlusion of the facial
area), illumination changes and different combinations of
the listed image characteristics. When looking at the CMC
curves generated during the recognition experiments on the
scarves, glasses, scream, and lighting probe sets (Figure 24),
we can see that the CGFC method achieved the ROR of
more than 98% on all probe sets. These results suggest that
our method is highly robust to facial occlusions (which
usually occur when the subject to be identified tries to
conceal his identity through disguise), to extreme facial
expression changes and, as already shown in the previous
experiments, to illumination variations. When looking at the
results obtained with the most challenging probe set, that
is, the All probe set, shown in Figure 25, we can notice that
the overall ROR on this set again reaches a value of more
than 99%. To the best of our knowledge the recognition
rates obtained on the different probe sets of the AR database
represent the best results achieved on this database and
published in the literature. This fact is also evidenced in
the comparison with state-of-the-art techniques from the
literature presented in Table 7. Here, the RORs are shown
for the SubSampling (SS) method from [8], the recently
proposed Sparse Representation Classifier (SRC) [9], and
the Attributed Relational Graph-(ARG) based method [56]
as well as for four techniques implemented to produce the
CMC curves in Figure 24. The reader should note that, while
the results taken from the literature were obtained using
similar training images, the probe (test) sets for the SS, SRC
and ARG techniques were either smaller in size or featured
only one degradation at a time. For example, while we
adopted all images featuring a scarf for our scarves probe
set regardless of the illumination conditions, the SS, SRC
and ARGmethods produced their results based on only scarf
images taken in the same lighting conditions as the training
(target) images. Similar observations could also be made for
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Table 7: Rank one recognition rates (in %) obtained on the five probe sets of the AR database.

Method scarves glasses scream lighting all

PCA 55.8 45.7 59.0 64.9 64.7

LDA 58.8 56.8 72.5 70.0 71.6

CG+PCA 97.8 97.3 99.0 97.9 98.3

CGFC 98.7 99.2 100 99.1 99.2

SS [8] 93.0 84.0 87.0 n/a n/a

SRC [9] 93.5 97.5 n/a n/a n/a

ARG [56] 85.2 80.7 66.7 98.5 n/a

the remaining probe sets. The performance of the CGFC
method on the challengingly designed probe sets of the AR
database offers a final demonstration of the competitiveness
of the proposed approach.

9. Conclusion

In this paper we have proposed a novel face classifier for
face recognition called the Complete Gabor-Fisher Classifier.
Unlike the majority of Gabor filter-based methods from the
literature, which mainly rely only on the Gabor magnitude
features for representing facial images, the proposed classifier
exploits both Gabor magnitude features as well as features
derived from Gabor phase information. The feasibility
of the proposed technique was assessed on four publicly
available databases, namely, on the XM2VTS, FERET, AR
and Extended YaleB databases. On all datasets, the proposed
technique resulted in a promising face recognition perfor-
mance and outperformed several popular face recognition
techniques, such as PCA, LDA, the Gabor-Fisher Classifier
and others. The proposed method was also shown to
ensure robust recognition performance in the presence of
extreme facial changes, severe lighting variations and partial
occlusions of the facial area.

The source code used in all of our experiments will be
made freely available. The interested reader is referred to
http://luks.fe.uni-lj.si/en/staff/vitomir/index.html for more
information.
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[32] T. Savič and N. Pavešić, “Personal recognition based on an
image of the palmar surface of the hand,” Pattern Recognition,
vol. 40, no. 11, pp. 3152–3163, 2007.

[33] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman,
“Eigenfaces vs. fisherfaces: recognition using class specific
linear projection,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 19, no. 7, pp. 711–720, 1997.

[34] A. Ross, K. Nandakumar, and A. K. Jain, “Introduction to
multibiometrics,” in Handbook of Biometrics, A. K. Jain, P.
Flynn, and A. Ross, Eds., pp. 271–292, Springer, New York,
NY, USA, 2008.

[35] V. Štruc, F. Mihelič, and N. Pavešić, “Face authentication using
a hybrid approach,” Journal of Electronic Imaging, vol. 17, no.
1, pp. 1–11, 2008.
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