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This paper deals with the problem of robust adaptive array beamforming by exploiting the signal cyclostationarity. Recently, a
novel cyclostationarity-exploiting beamforming method has been proposed by J.-H. Lee and C.-C. Huang (2009) for dealing with
the situation of multiple signals of interest (SOI) based on the LS-SCORE algorithm. This method is referred to as the multiple LS-
SCORE (MLS-SCORE) algorithm. However, the MLS-SCORE algorithm suffers from severe performance degradation even if there
is a small mismatch in the cycle frequencies of the SOIs. In this paper, we evaluate the performance of the MLS-SCORE algorithm
in the presence of cycle frequency error (CFE). The output SINR of an adaptive beamforming using the MLS-SCORE algorithm
deteriorates like a sinc function as the number of data snapshots increases. To tackle this difficulty, we present an efficient method
to find an appropriate estimate for each of the cycle frequencies of the SOIs iteratively to achieve robust adaptive beamforming
against the CFE. Simulation results for showing the effectiveness of the proposed method are provided.

1. Introduction

For conventional array beamforming, the a priori informa-
tion required for adapting the weights is either the direction
vector or the waveform of the signal of interest (SOI) [1].
A signal with cyclostationarity has the statistical property of
correlating with either a frequency-shift (referred to as spec-
tral self-coherence) or a complex-conjugate version (referred
to as spectral conjugate self-coherence) of itself. For example,
spectral self-coherence is induced at multiples of the symbol
rate in PCM signals and spectral conjugate self-coherence is
commonly induced at twice the carrier frequency in BPSK
signals [2, 3]. By restoring those properties at a known value
of frequency separation, it is possible to extract the SOI and
suppress the signals not of interest (SNOI) and noise. Adap-
tive beamforming utilizing signal cyclostationarity has been
widely considered [3–5]. These cyclostationarity-exploiting
techniques do not need training signals, the knowledge of
array manifold, or noise characteristics. The least-square
spectral self-coherent restoral (LS-SCORE) algorithm has
been presented by [3] to deal with the problem of blind

adaptive signal extraction. As the number of data snapshots
approaches infinity, it has been shown in [3] that the
performance of the LS-SCORE algorithm approaches that of
the conventional beamforming methods developed by max-
imizing the output signal-to-interference plus noise ratio
(SINR). The a priori information required by the LS-SCORE
algorithm is only the cycle frequency of the SOI. Hence, its
performance is sensitive to the accuracy of the presumed
cycle frequency. However, the actual cycle frequency may not
be known very well in some applications due to, for example,
the phenomenon of Doppler shift. Accordingly, several
existing works deal with the cycle frequency error (CFE)
have been presented by [6–8]. The robust cyclostationarity-
exploiting beamforming methods presented by [6, 7] are
in conjunction with the SCORE algorithms. These methods
developed an iterative procedure to find an appropriate
estimate of the cycle frequency of the SOI. Recently, a robust
cyclostationarity-exploiting direction-finding approach [8]
adopts the average of the cyclic correlation matrices in
a presumed range of cycle frequencies including the actual
one to alleviate the performance degradation due to the CFE.
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Nevertheless, the aforementioned methods consider the case
of one SOI with CFE.

For many practical applications, such as satellite com-
munications [9], an antenna array is required to possess
the beamforming capability that receives more than one
SOI with specified gain constraints while suppressing all
SNOI. This goal can be achieved using an antenna array
with a multiple-beam pattern [9, 10]. Recently, a novel
cyclostationarity-exploiting beamforming method has been
proposed by [11] for dealing with the situation of multiple
SOIs based on the LS-SCORE algorithm. This approach
is referred to as the multiple LS-SCORE (MLS-SCORE)
algorithm. It has been shown in [11] that the solution of
the MLS-SCORE algorithm converges to the solution of
the conventional linearly constrained minimum variance
(LCMV) as the number of data snapshots approaches
infinity. In this paper, we first evaluate the performance
of the MLS-SCORE algorithm in the presence of CFE.
This results in an analytical formula that demonstrates the
behavior of the performance degradation for the MLS-
SCORE algorithm. It is shown that the output SINR
of an adaptive array beamformer using the MLS-SCORE
algorithm deteriorates like a sinc function as the number of
data snapshots increases. To overcome the CFE difficulty, we
then develop an efficient method to formulate the problem
as an optimization problem for reducing the CFE of the SOIs
iteratively. Finally, the convergence property of the proposed
method is evaluated. The effectiveness of the proposed
method is demonstrated by several simulation examples. It
is shown that the proposed method can effectively cope with
the performance degradation for the MLS-SCORE algorithm
to achieve robust capability against the CFE.

This paper is organized as follows: in Section 2, we
briefly describe the property of signal cyclostationarity, the
MLS-SCORE algorithm [11], and the performance analysis
of the MLS-SCORE algorithms under CFE. The proposed
method is presented in Section 3. The convergence analysis
of the proposed method is presented in Section 4. Simulation
examples for confirming the effectiveness of the proposed
method are provided in Section 5. Finally, we conclude the
paper in Section 6.

2. Preliminaries

2.1. Signal Cyclostationarity. Many man-made communica-
tion signals exhibit cyclostationarity with cycle frequency
equal to the twice of the carrier frequency or multiples of
the baud rate or combinations of these [2]. According to [2],
a signal s(t) is said to possess the second-order periodicity
with cycle frequency α if and only if the cyclic or the cyclic
conjugate autocorrelation function given by

rss(α, τ) ≡ lim
T→∞

〈
s(t)s∗(t − τ)e− j2παt

〉
T

, (1)

or

rss∗(α, τ) ≡ lim
T→∞

〈
s(t)s(t − τ)e− j2παt

〉
T

(2)

does not equal zero at cycle frequency α for some time delay
τ, where the superscript “∗” denotes the complex conjugate

and 〈·〉T ≡ (1/T)
∫
T ·dt represents the finite-time average

operation. Moreover, s(t) is addressed as possessing the self-
coherent or conjugate self-coherent properties for rss(α, τ) or
rss∗(α, τ) does not equal zero at cycle frequency α. In matrix
form, the cyclic conjugate autocorrelation matrix associated
with the data vector x(t) can be expressed as

Rxx∗ (α, τ) ≡ lim
T→∞

〈
x(t)xT(t − τ)e− j2παt

〉
T

, (3)

where the superscript “T” denotes the transpose operation.

2.2. The MLS-SCORE Algorithm. Consider that there are
total (K + d) far-field narrowband signals including d SOIs
and K SNOI impinging on an M-element antenna array.
Assume that the background noise is spatially white. The
received data vector x(t) is given by [1]

x(t) =
d∑

i=1

aisi(t) +
K∑

k=1

bk jk(t) + n(t) =
d∑

i=1

aisi(t) + v(t),

(4)

where si(t) and jk(t) are the waveforms of the ith SOI and
the kth SNOI, ai and bk represent the direction vectors of the
ith SOI and the kth SNOI, and v(t) includes the SNOI and
noise, respectively.

Without loss of generality, we suppose that the SOIs
are cyclostationary and have the cycle frequencies α, where
α = {αi|i = 1, 2, . . . ,d} denotes the set of cycle frequencies
of the SOIs. However, v(t) is not cyclostationary at α and is
temporally uncorrelated with the SOIs. Based on the MLS-
SCORE algorithm [11], the optimal weight vector is given by

ŵmls(α) = arg min
w

〈∣∣y(t)− z(α, t)
∣∣2
〉
T

, (5)

where the array output y(t) = wHx(t), and the reference
signal z(α, t) is given by

z(α, t) = cHu(α, t) = cHx∗(t − τ)
d∑

i=1

e j2παit , (6)

where u(α, t) = x∗(t − τ)
∑d

i=1 e
j2παit denotes the control

signal and c a fixed control vector. Moreover, the superscript
“H” denotes the conjugate transpose. Let the sampling
interval be Ts. The optimal weight vector of (5) with n data
snapshots (i.e., T = nTs) used is given by

ŵmls(α,n) = R̂−1
xx (n)r̂xz(α,n), (7)

where R̂xx(n) = 〈x(t)xH(t)〉T and r̂xz(α,n) = 〈x(t)z∗(α, t)〉T
are the sample autocorrelation matrix of x(t) and the sample
cross-correlation vector of x(t) and z(α, t), respectively. It
has been shown in [11] that ŵmls(α,n) converges to the
solution of the conventional optimum array beamform-
ing based on the linearly constrained minimum variance
(LCMV) criterion when T approaches infinity. We note
from (4) and (6) that r̂xz(α,n) = R̂xu(α,n)c, where the
sample cross-correlation matrix R̂xu(α,n) is defined as

R̂xu(α,n) =
〈
x(t)uH(α, t)

〉
T
=

d∑

i=1

R̂xx∗ (αi, τ), (8)
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where R̂xx∗ (αi, τ) = 〈x(t)xT(t − τ)e− j2παit〉T is the sample
cyclic conjugate autocorrelation matrix of x(t). We observe
from (7) that the a priori information required for comput-
ing the optimal vector ŵmls(α,n) is only the cycle frequencies
of the SOIs. Hence, the performance of the MLS-SCORE
algorithm is sensitive to the accuracy of the presumed cycle
frequency for each of the SOIs. However, the actual cycle
frequency may not be known very well in some applications
due to, for example, the phenomenon of Doppler shift. Next,
we evaluate the performance of the MLS-SCORE algorithm
in the presence of CFE.

2.3. Performance Analysis under CFE. From (8), the sample
cyclic conjugate correlation matrix at the presumed frequen-
cies α̂ is approximately equal to

R̂xu(α̂,n) ≈
d∑

i=1

r̂sis∗i (α̂i, τ)aiaTi + R̂vv∗(α̂, τ) (9)

as the number of data snapshots is large enough, where
r̂sis∗i (α̂i, τ) = 〈si(t)si(t − τ)e− j2πα̂i t〉T is the sample cyclic
conjugate autocorrelation function of the ith SOI, and
R̂vv∗(α̂, τ) = 〈v(t)vT(t − τ)

∑d
i=1 e

− j2πα̂i t〉T denotes the sam-
ple cyclic conjugate autocorrelation matrix of v(t). In fact,
R̂xu(α̂,n) also includes the sample cyclic cross-correlations
between the SOIs, the SOIs and the SNOI, the SOIs and
noise, and the SNOI and noise. However, they are negligible
when T is large enough. Due to the fact that the cyclic
spectrum of a cyclostationary signal is discrete in the cycle
frequency, the cyclic conjugate correlation function of the ith
SOI is given by

rsis∗i (α̂i, τ) =
∑

l

ρi,l(τ)δ
(
α̂i − αi,l

)
, (10)

where αi,l’s are the cycle frequencies of ith SOI, ρi,l(τ) denotes
the strength of the ith SOI at cycle frequency αi,l, and δ(·)
represents the Kronecker delta. According to (10), the sample
cyclic conjugate autocorrelation function of the ith SOI is
given by

r̂sis∗i (α̂i, τ) ≈
∑

l

ρ̂i,l(τ)sinc
((
α̂i − αi,l

)
T
)
, (11)

where sinc(x) = (sin(πx))/πx is a sinc function. Substituting
(11) into (9) yields

R̂xu(α̂,n) ≈
d∑

i=1

∑

l

ρ̂i,l(τ)sinc
((
α̂i − αi,l

)
T
)
aiaTi + R̂vv∗(α̂, τ).

(12)

Let the presumed cycle frequency of the ith SOI be denoted
by α̂i = αi,1 + Δαi (i.e., α̂ = α + Δα), where αi,1 and Δαi
represent the actual cycle frequency and the amount of CFE
of the ith SOI, respectively. Then, (12) becomes

R̂xu(α̂,n) ≈
d∑

i=1

⎧⎨
⎩ρ̂i,1(τ)sinc(ΔαiT) +

∑

l /= 1

ρ̂i,l(τ)sinc
(
α̃i,lT

)
⎫⎬
⎭

× aiaTi + R̂vv∗(α̂, τ)
(13)

with α̃i,l = αi,1 − αi,l + Δαi. Equation (13) reveals that

r̂xz(α̂,n) ≈
d∑

i=1

⎧⎨
⎩ρ̂i,1(τ)sinc(ΔαiT) +

∑

l /= 1

ρ̂i,l(τ)sinc
(
α̃i,lT

)
⎫⎬
⎭

×
(
cHa∗i

)
ai + R̂vv∗(α̂, τ)c.

(14)

From (14), we note that the effect of the SNOI and
noise is negligible when Δαi = 0. Accordingly, r̂xz(α̂,n) is
approximately equal to

∑d
i=1 γiai, where γi = ρ̂i,1(cHa∗i ) is

a constant. It has been shown by [11] that ŵmls(α,n) of (7)
converges to the LCMV beamformer as long as cHa∗i /= 0 for
all i. On the contrary, when Δαi /= 0, we note that there exists
the effects of cycle leakage on r̂xz(α̂,n) through a sinc window
due to the fact that sinc(ΔαiT) = 0 when ΔαiT equals to an
integer or T approaches infinity. Consequently, the output
SINR of an adaptive array beamformer based on the MLS-
SCORE algorithm exists periodic nulls as the number of data
snapshots increases. This leads to performance degradation
for the MLS-SCORE algorithm.

3. The ProposedMethod

From (14), we observe that both of the sinc(ΔαiT) and
sinc(α̃i,lT) approach zero as T increases when CFE exists.
Hence, the performance degradation for the MLS-SCORE
algorithm becomes severer as T increases. To overcome the
difficulty, we present an efficient method in conjunction with
the MLS-SCORE algorithm to find an appropriate estimate
for αi, i = 1, 2, . . . ,d.

First, we derive a squared error based on the solution
of the MLS-SCORE algorithm shown by (7) and replace
ŵmls(α,n) with ŵmls(α̂,n) to obtain

Jmls =
〈∣∣y1(t)− z(α̂, t)

∣∣2
〉
T

= ŵH
mls(α̂,n)R̂xx(n)ŵmls(α̂,n)− cH R̂H

xu(α̂,n)ŵmls(α̂,n)

− ŵH
mls(α̂,n)R̂xu(α̂,n)c + cH R̂∗xx(n)c

= cH R̂∗xx(n)c− ŵH
mls(α̂,n)R̂xu(α̂,n)c,

(15)

where y1(t) = ŵH
mls(α̂,n)x(t). We note that Jmls of (15)

is greater than or equal to zero. Hence, minimizing Jmls is
equivalent to maximizing the second term of (15) which is
redefined as follows:

C(α̂,n) = ŵH
mls(α̂,n)R̂xu(α̂,n)c. (16)

We note that the objective function C(α̂,n) achieves its
maximum when α = α̂ and decays to zero as the number of
snapshots increases when α /= α̂. Therefore, (16) can be used
as an objective function for formulating an optimization
problem. Then, we resort to solving the following optimiza-
tion problem:

max
α̂

C(α̂,n). (17)
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Using the steepest descent method for solving (17), we take
the derivative of C(α̂,n) with respect to α̂ as follows:

∇α̂C(α̂,n) = ∂

∂α̂

{
ŵH

mls(α̂,n)R̂xu(α̂,n)c
}

= cH
∂R̂H

xu(α̂,n)
∂α̂

R̂−1
xx (n)R̂xu(α̂,n)c

+ cH R̂H
xu(α̂,n)R̂−1

xx (n)
∂R̂xu(α̂,n)

∂α̂
c

= 2�

{
cH

∂R̂H
xu(α̂,n)
∂α̂

R̂−1
xx (n)R̂xu(α̂,n)c

}

= 2�
{
cH R̂

′H
xu (α̂,n)ŵmls(α̂,n)

}
,

(18)

where �{y} denotes the real part of y and R̂′xu(α̂,n) =
(∂R̂xu(α̂,n))/∂α̂. In vector form, we can rewrite C(α̂,n) of
(18) as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇α̂1C(α̂,n)

∇α̂2C(α̂,n)

...

∇α̂dC(α̂,n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2�
{
cH R̂

′H
xu (α̂1,n)ŵmls(α̂,n)

}

2�
{
cH R̂

′H
xu (α̂2,n)ŵmls(α̂,n)

}

...

2�
{
cH R̂

′H
xu (α̂d ,n)ŵmls(α̂,n)

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

with R̂′xu(α̂i,n) = (∂R̂xu(α̂,n))/∂α̂i, i = 1, 2, . . . ,d, is given by

R̂′xu(α̂i,n) =
〈
x(t)xT(t − τ)e− j2πα̂i t

(− j2πt
)〉

T
. (20)

Accordingly, we update α̂ at the time instant (n+1) as follows:

α̂(n + 1) = α̂(n) + Φ(n)∇α̂C(α̂,n)|α̂=α̂(n), (21)

where Φ(n) = diag{μ1(n),μ2(n), . . . ,μd(n)} is a diagonal
matrix. The diagonal entries μi(n), i = 1, 2, . . . ,d, are
positive real-valued parameters referred to as the step-size
parameters. To ensure the convergence of the steepest-
descent algorithm used by (21), we set the ith step-size
parameter equal to

μi(n) =
{
λmax

{
R̂′xu(α̂i(n),n)

}}−Pi
, (22)

where λmax{R} denotes the maximum singular value of
the matrix R, and Pi is the appropriate positive real value
determined by experiment. Substituting α̂(n + 1) of (21)
into (7), the corresponding optimal weight vector at the time
instant (n + 1) is given by

ŵmls(α̂(n + 1),n + 1) = R̂−1
xx (n + 1)r̂xz(α̂(n + 1),n + 1).

(23)

For practical implementation, we compute the required
sample correlation matrix R̂xx(n) and the cross-correlation

vector r̂xz(α̂(n),n) by utilizing (24), where x(n) = x(nTs)
and L0 is a preset positive integer. Since α̂(n) becomes more
appropriate as n increases, we use L0 data snapshots to update
the corresponding correlations for increasing the effect on
the estimates of the considered correlations shown by (24)

R̂xx(n) =
(

1− 1
n

)
R̂xx(n− 1) +

1
n
x(n) xH(n)

r̂xz(α̂(n),n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n

n∑

l=1

x(l)z∗(α̂(l), l), forn ≤ L0

(
1− 1

n

)
r̂xz(α̂(n− 1),n− 1)

+
1
n

n∑

l=n−L0 +1

x(l)z∗(α̂(l), l), forn > L0

(24)

4. Convergence Analysis

Here, the convergence property of the proposed method is
evaluated. For simplicity, we set τ = 0. The objective function
C(α̂,n) of (16) can be rewritten as

C(α̂,n) = cH R̂H
xu(α̂,n)R̂−1

xx (n)R̂xu(α̂,n)c

= cH

⎧⎨
⎩

1
n

n∑

l=1

x∗(l)xH(l)
d∑

i=1

e j2πα̂i lTs

⎫⎬
⎭R̂

−1
xx (n)

×
⎧⎨
⎩

1
n

n∑

k=1

x(k)xT(k)
d∑

m=1

e− j2πα̂mkTs

⎫⎬
⎭c

≈ 1
n2

d∑

i=1

d∑

m=1

n∑

l=1

n∑

k=1

⎧⎪⎪⎨
⎪⎪⎩
cHx∗(l)xT(k)c︸ ︷︷ ︸

A1

⎫⎪⎪⎬
⎪⎪⎭

×

⎧⎪⎪⎨
⎪⎪⎩
xH(l)R̂−1

xx (n)x(k)︸ ︷︷ ︸
A2

⎫⎪⎪⎬
⎪⎪⎭
e− j2π(kα̂m−lα̂i)Ts ,

(25)

where the term A1 in (25) can be expressed as

A1 = cH

⎧⎨
⎩

d∑

i=1

aisi(l) + v(l)

⎫⎬
⎭

∗⎧⎨
⎩

d∑

m=1

amsm(k) + v(k)

⎫⎬
⎭

T

c

≈
d∑

i=1

s∗i (l)si(k)
{
cHa∗i a

T
i c
}

+ cHv∗(l)vT(k)c.

(26)

We note from (26) that the cross-terms disappear due to
the assumed uncorrelation between si(t) and sm(t). As to the
term A2, we have

A2 ≈
d∑

i=1

d∑

m=1

s∗i (l)sm(k)
{
aHi R̂

−1
xx (n)am

}
+ vH(l)R̂−1

xx (n)v(k)

≈
d∑

i=1

s∗i (l)si(k)
{
aHi R̂

−1
xx (n)ai

}
+ vH(l)R̂−1

xx (n)v(k).

(27)
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The approximation is obtained due to aHi R̂
−1
xx (n)am ≈ 0 when

i /=m as the number of data snapshots n is large enough.
According to (26) and (27), we have

A1A2 ≈
d∑

i=1

{
s2
i (l)

}∗
s2
i (k)

{
aHi R̂

−1
xx (n)ai

}∣∣∣cHa∗i
∣∣∣2

+ cHv∗(l)vH(l)R̂−1
xx (n)v(k)vT(k)c.

(28)

Substituting (28) into (25), we obtain an approximation for
C(α̂,n) as follows:

C(α̂,n) ≈ 1
n2

d∑

i=1

n∑

l=1

n∑

k=1

{{
s2
i (l)e− j2πα̂i lTs

}∗{
s2
i (k)e− j2πα̂ikTs

}

×
{
aHi R̂

−1
xx (n)ai

}∣∣∣cHa∗i
∣∣∣2

+ cH
{
v(l)vT(l)Σd

i=1e
j2πα̂ilTs

}∗

×R̂−1
xx (n)

{
v(k)vT(k)Σd

i=1e
j2πα̂ikTs

}
c
}

≈
d∑

i=1

∣∣∣r̂sis∗i (α̂i, 0)
∣∣∣2{

aHi R̂
−1
xx (n)ai

}∣∣∣cHa∗i
∣∣∣2
cH

× R̂H
vv∗(α̂, 0)R̂−1

xx (n)R̂vv∗(α̂, 0)c.
(29)

We note from (29) that the last term vanishes asymptotically
due to α̂ (note that α̂ = α̂(n)) becomes more appropriate as
n increases. Accordingly, the ith entry ∇α̂iC(α̂,n) in (19) can
be further expressed as

∇α̂iC(α̂,n) ≈
∂
∣∣∣r̂sis∗i (α̂i, 0)

∣∣∣2

∂α̂i

{
aHi R̂

−1
xx (n)ai

}∣∣∣cHa∗i
∣∣∣2
.

(30)

For binary phase-shift-keying (BPSK) signals, we assume
that

si(t) = σie j(παit+ψi(t)), (31)

where σi and ψi(t) denote the amplitude and the random
phases equal to ±π/2 for the ith SOI, respectively. Conse-
quently, we have

r̂sis∗i (α̂i, 0) = −σ2
i sinc((α̂i − αi)T). (32)

Consider the case of α̂i = αi + Δαi. Then, (32) leads to

∂r̂sis∗i (α̂i, 0)

∂α̂i
= −σ2

i
∂sinc(ΔαiT)

∂Δαi

= −σ2
i
πΔαiT cos(πΔαiT)− sin(πΔαiT)

π(Δαi)
2T

,

∂
∣∣∣r̂sis∗i (α̂i, 0)

∣∣∣2

∂α̂i
= 2σ4

i sinc(ΔαiT)

× πΔαiT cos(πΔαin)− sin(πΔαiT)

π(Δαi)
2T

.

(33)

Therefore, (30) becomes

∇α̂iC(α̂,n) ≈ 2σ4
i sinc(ΔαiT)

{
aHi R̂

−1
xx (n)ai

}∣∣∣cHa∗i
∣∣∣2

× πΔαiT cos(πΔαiT)− sin(πΔαiT)

π(Δαi)
2T

.

(34)

Next, substituting (31) into (20) and performing some
algebraic manipulations, we have

R̂′xu(α̂i,n) ≈ σ2
i
πΔαiT cos(πΔαiT)− sin(πΔαiT)

π(Δαi)
2T

aiaTi

+ SNOI-related terms.
(35)

At the time instant n, the time interval T = nTs and
the estimated cycle frequencies are given by α̂(n). In order to
make the influence due to SNOI negligible, it is appropriate
to make sure that the relationship given by

|Δαi(n){nTs}| ≤ 1
2

, i = 1, 2, . . . ,d, (36)

is kept, where Δαi(n) = α̂i(n) − αi. Accordingly, the
maximum singular value of R̂xu̇(α̂i(n),n) is approximately
equal to

M2σ2
i

∣∣∣∣∣
πΔαi(n)T cos(πΔαi(n)T)− sin(πΔαi(n)T)

π(Δαi(n))2T

∣∣∣∣∣,

(37)

where M = aHi ai. As a result, the ith step size parameter μi(n)
of (22) is equal to

{
M2σ2

i

∣∣∣∣∣
πΔαi(n)T cos(πΔαi(n)T)− sin(πΔαi(n)T)

π(Δαi(n))2T

∣∣∣∣∣

}−Pi
.

(38)

It follows from (21) that

Δα(n + 1) = Δα(n) + Φ(n)∇α̂(n)C(α̂(n),n) (39)
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since α̂(n) = α + Δα(n). Substituting (34) and (38) into (39)
yield

Δαi(n + 1){(n + 1)Ts}

=
{
Δαi(n) + μi(n)∇α̂i(n)C(α̂i(n),n)

}
{(n + 1)Ts} ≈ Δαi(n)

+
{

2M−2Piσ4−2Pi
i sinc(Δαi(n)nTs)

{
aHi R̂

−1
xx (n)ai

}∣∣∣cHa∗i
∣∣∣2
}

·
{
πΔαi(n)nTs cos(πΔαi(n)nTs)−sin(πΔαi(n)nTs)

π(Δαi(n))2nTs

}1−Pi

× {(n + 1)Ts}.
(40)

Here, we prove that |Δαi(n + 1){(n + 1)Ts}| ≤ 1/2 if
|Δαi(n){nTs}| ≤ 1/2 to ensure the convergence of the
proposed method. Substituting the extreme value 1/2 for
Δαi(n){nTs} into (40) and performing some necessary
algebraic manipulations yields

Δαi(n + 1){(n + 1)Ts} ≈ n + 1
2n

− γi
n + 1
nPi−1

, (41)

where γi=24−2PiM−2Piσ4−2Pi
i πPi−2T2−Pi

s {aHi R̂−1
xx (n)ai}|cHa∗i |2.

Hence, under the condition of |Δαi(n){nTs}| ≤ 1/2, we have

−1 ≤ 1
2(n− 1)

− γi
n

(n− 1)Pi−1 ≤ 0. (42)

It follows from (42) that

−1 ≤ 1
2n
− (2n− 1)(n + 1)

2nPi(n− 1)2−Pi
︸ ︷︷ ︸

B2

≤ 1
2n
− γi

n + 1
nPi−1

≤ 1
2n
− n + 1

2nPi(n− 1)2−Pi
︸ ︷︷ ︸

B1

≤ 0.

(43)

From (43), we note that B1 ≤ 0 if 1 ≤ Pi ≤ 2, B2 > −1 if
Pi = 2, and B2 < −1 if Pi = 1. Accordingly, there exists some
Pi that can be appropriately chosen between 1 and 2 to make
that |Δαi(n+ 1){(n+ 1)Ts}| ≤ 1/2. Similarly, substituting the
other extreme value−1/2 for Δαi(n){nTs} into (40), we have

Δαi(n + 1){(n + 1)Ts} ≈ −n + 1
2n

+ γi
n + 1
nPi−1

(44)

when n is large enough. It is easy to show that

1 ≥ − 1
2n

+
(2n− 1)(n + 1)

2nPi(n− 1)2−Pi ≥ −
1

2n
+ γi

n + 1
nPi−1

≥ − 1
2n

+
i + 1

2nPi(n− 1)2−Pi ≥ 0

(45)

for 1 ≤ Pi ≤ 2. Hence, there exists some Pi between 1 and 2
such that |Δαi(n + 1){(n + 1)Ts}| ≤ 1/2 if |Δαi(n){nTs}| ≤
1/2. As a result, by exploiting the spectral conjugate self-
coherence property of the BPSK signals, the convergence of

the proposed method can be guaranteed. However, for other
types of cyclostationary signals such as QPSK signals or QAM
signals, the convergence property may be different from that
of BPSK signals. As a result, we have to find r̂sis∗i (α̂i, 0) from
the complex waveforms of QPSK signals or QAM signals.
Then, we follow the similar procedure as described by (33)
to (44) to show the convergence property for other types of
cyclostationary signals such as QPSK signals or QAM signals.

5. Simulation Examples

Here, we present two simulation examples to show the
effectiveness of the proposed method. For all simulations,
we use a uniform linear array (ULA) with M = 10 array
elements and interelement spacing equal to 0.5 ν, where ν is
the wavelength of the SOIs. Assume that the SOI and SNOI
are BPSK signals with rectangular pulse shape. The SOI have
the signal-to-noise ratio (SNR) and baud rate equal to 5 dB
and 5/11, respectively. Two SNOIs with cycle frequencies
equal to 4.6 and 7.8 impinge on the array from −20◦ and
40◦ off broadside, respectively. Moreover, the SNOI have
the interference-to-noise ratio (INR) and baud rate equal to
10 dB and 5/11, respectively. The sampling interval Ts is set to
0.1, L0 = 100, the control vector c is given by c = [10 · · · 0]T ,
and Pi = 1.9, i = 1, 2, . . . ,d for simplicity.

Example 1. We present the output SINR versus the number
of data snapshots for comparison. In this example, we
consider the case of two SOIs (d = 2) with cycle frequencies
α = {2, 4} impinging on the array from 10◦, 50◦ off
broadside. Moreover, we assume that the CFE of the SOIs
is Δα = {0.01,−0.02}, that is, α = {2.01, 3.98}. We
observe from Figure 1 that there are periodic nulls for the
original MLS-SCORE algorithm with CFE as the number
data snapshots increases. In contrast, the proposed method
can effectively cope with the performance degradation due
to the CFE and provides the performance very close to that
of the original MLS-SCORE algorithm without CFE.

Example 2. Consider that there are three SOIs (d = 3) two
of the SOIs are the same as those used by Example 1, and
the other SOI has different cycle frequency equal to 9 and
is impinging on the array from −20◦ off broadside. Here,
the CFE is set to Δα = {0.01,−0.01, 0.02}, that is, α̂ =
{2.01, 3.99, 9.02}. As expected, we observe from Figure 2 that
the performance degradation of the original MLS-SCORE
algorithm becomes severer as the number data snapshots
increases when the CFE exists. The proposed method works
satisfactorily in the same circumstances.

6. Conclusion

This paper has evaluated the performance degradation of
the original MLS-SCORE algorithm in the presence of CFE.
An efficient method in conjunction with the MLS-SCORE
algorithm has been proposed to overcome the CFE difficulty
for achieving robust adaptive beamforming. Based on the
proposed method, an appropriate estimate for each of the
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Figure 1: Output SINR versus number of data snapshots for
Example 1.
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Figure 2: Output SINR versus number of data snapshots for
Example 2.

cycle frequencies of the signals of interest is found iteratively
by utilizing the steepest-descent method. The convergence
of the proposed method has been shown for the case of
using BPSK signals. Simulation results demonstrate that
an adaptive beamforming using the proposed method can
effectively cure the performance deterioration due to CFE
and provides the performance very close to that of using the
original MLS-SCORE algorithm without CFE.
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