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A newly developed adaptive scheme for system identification is proposed. The proposed algorithm is a mixture of two norms,
namely, the l2-norm and the lp-norm (p ≥ 1), where a controlling parameter in the range [0, 1] is used to control the mixture of
the two norms. Existing algorithms based on mixed norm can be considered as a special case of the proposed algorithm. Therefore,
our algorithm can be seen as a generalization to these algorithms. The derivation of the algorithm and its convexity property are
reported and detailed. Also, the first moment behaviour as well as the second moment behaviour of the weights is studied. Bounds
for the step size on the convergence of the proposed algorithm are derived, and the steady-state analysis is carried out. Finally,
simulation results are performed and are found to corroborate with the theory developed.

1. Introduction

The least mean square (LMS) algorithm [1] is one of the
most widely used adaptive schemes. Several works have been
presented using the LMS or its variants [2–14], such as signed
LMS [8], the least mean fourth (LMF) algorithm and its
variants [15], or the mixed LMS-LMF [16–18] all of which
are intuitively motivated.

The LMS algorithm is optimumonly if the noise statistics
are Gaussian. However, if these statistics are different from
Gaussian, other criteria, such as lp-norm (p /= 2), perform
better than the LMS algorithm. An alternative to the LMS
algorithm which performs well when the noise statistics are
not Gaussian is the LMF algorithm. A further improvement
is possible when using a mixture of both algorithms, that is,
the LMS and the LMF algorithms [16].

In this respect, existing algorithms based onmixed-norm
(MN) criteria have been used in system identification behav-
ing robustly in Gaussian and non-Gaussian environments.
These algorithms are based on a fixed combination of the
LMS and the LMF algorithms or a time varying combination
of them. The time variation is used in adapting the
mixed control parameter to compensate for nonstationarities
and time-varying environments. The combination of error

norms governed by a mixture parameter is introduced to
yield a better performance than algorithms derived from a
single error norm. Very attractive results are found through
the use of mixed-norm algorithms [16–18]. These are based
on the minimization of a mixed norm cost function in a
controlled fashion, that is [16–18],

Jn = αE
[
e2n
]
+ (1− α)E

[
e4n
]
, (1)

where the error is defined as

en = dn + wn − cTnxn, (2)

dn is the desired value, cn is the filter coefficient of the
adaptive filter, xn is the input vector, wn is the additive
noise, and α is the mixing parameter between zero and one
and set in this range to preserve the unimodal character of
the cost function. It is clear from (1) that if α = 1 the
algorithm reduces to the LMS algorithm; if, however, α = 0
the algorithm is the LMF. A careful choice for α in the interval
(0,1) will enhance the performance of the algorithm. The
algorithm for adjusting the tap coefficients, cn, is given by
the following recursion:

cn+1 = cn + μ
{
α + 2(1− α)e2n

}
enxn. (3)
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Adaptive filter algorithms designed through the minimiza-
tion of equation (1) have a disadvantage when the absolute
value of the error is greater than one. This makes the
algorithm go unstable unless either a small value of the
step size or a large value of the controlling parameter is
chosen such that this unwanted instability is eliminated.
Unfortunately, a small value of the step size will make
the algorithm converge very slowly, and a large value of
the controlling parameter will make the LMS algorithm
essentially dominant.

The rest of the paper is organized as follows. In Section 2,
the description of the proposed algorithm is addressed, while
Section 3 deals with the convergence analysis. Section 4
details the derivation of the excess mean-square-error. The
simulation results are reported in Section 5, and finally
Section 6 concludes the main findings of the paper and
outlines possible further work.

2. Proposed Algorithm

To overcome the above-mentioned problem, a modified
approach is proposed where both constraints of the step
size and the control parameter are eliminated. The proposed
criterion consists of the cost function (1) where the lp-
norm is substituted for the l4-norm. Ultimately, this should
eliminate the instability in the l4-norm and retains the good
features of (1), that is, the mixed nature of the criterion if
p < 4. The proposed scheme is defined as,

Jn = αE
[
e2n
]
+ (1− α)E

[|en|p
]
, p ≥ 1. (4)

If p = 2, the cost function defined by (4) reduces to the
LMS algorithm whatever the value of α in the range [0, 1] for
which the unimodality of the cost function is preserved.

For α = 0, the algorithm reduces to the lp-norm adaptive
algorithm, and moreover if p = 1 results in the familiar
signed LMS algorithm [14].

The value range of the lower-order p is selected to be
[1, 2] because

(1) for p > 2, the cost function may easily become large
valued when the magnitude of the output error en �
1, leading to a potentially considerable enhancement
of noise, and

(2) for p < 1, the gradient decreases in a positive direc-
tion, resulting in an obviously undesirable attribute
for being used as a cost function. Setting the value of
p within the range [1, 2] provides a situation where
the gradient at en � 1 is very much lower than that
for the cases with p = 2. This means that the resulting
algorithm can be less sensitive to noise.

For p < 2, lp gives less weight for larger error and this
tends to reduce the influence of aberrant noise, while it gives
relatively larger weight to smaller errors and this will improve
the tracking capability of the algorithm [19].

2.1. Convex Property of Cost Function. The cost function
J(c) = αE[e2n] + (1− α)E[|en|p] is a convex function defined

on R(N1+N2) for p ≥ 1, where N1 and N2 are the dimensions
of c1 and c2, respectively.

Proof.

α
∣
∣
∣ ŷn − xTn [ac1 + (1− a)c2]

∣
∣
∣
2

+ (1− α)
∣
∣
∣ ŷn − xTn [ac1 + (1− a)c2]

∣
∣
∣
p

= α
∣
∣
∣a
[
ŷn − xTn c1

]
+ (1− a)

[
ŷn − xTn c2

]∣∣
∣
2

+ (1− α)
∣
∣
∣a
[
ŷn − xTn c1

]
+ (1− a)

[
ŷn − xTn c2

]∣∣
∣
p

≤ a
{
α
[
ŷn − xTn c1

]2
+ (1− α)

[
ŷn − xTn c1

]p}
+ (1− a)

×
{

α
[
ŷn − xTn c1

]2
+ (1− α)

[
ŷn − xTn c1

]p}

, p ≥ 1.

(5)

Let fŷx( ŷn, xn) be the joint probability density function of
ŷn and xn. Taking the expectation value of the above, after
multiplying its both sides by fŷx( ŷn,xn), one obtains the
following:

J(ac1 + (1− a)c2) ≤ aJ(c1) + (1− a)J(c2). (6)

This shows that the cost function J is convex.

2.2. Analysis of the Error Surface

Case 1. Let the input autocorrelationmatrix beR = E[xnxTn ],
and the cross-correlation vector that describes the cross-
correlation between the received signal (xn) and the desired
data (dn) p = E[xndn]. The error function can be more
conveniently expressed as follows:

Jn = σ2
x − 2cTnp + cTnRcn. (7)

It is clear from (7) that the mean-square-error (MSE) is
precisely a quadratic function of the components of the
tap coefficients, and the shape associated with it is hyper-
paraboloid. The adaptive process continuously adjusts the
tap coefficients, seeking the bottom of this hyperparaboloid.

copt = R−1p. (8)

Case 2. It can be shown as well that the error function for
the feedback section will have a global minimum since the
latter one is a convex function. As in the feedforward section,
the adaptive process will continuously seek the bottom of the
error function of the feedback section.

2.3. The Updating Scheme. The updating scheme is given by,

cn+1 = cn + μ
[
αen + p(1− α)|en|(p−1) sign(en)

]
xn, (9)

and sufficient condition for convergence in the mean of the
proposed algorithm can be shown to be given by:

0 < μ <
2

{
α + p

(
p − 1

)
(1− α)E

[
|wn|p−2

]}
tr{R}

, (10)
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where tr{R} is the trace operation of the autocorrelation
matrix R.

In general, the step size is chosen small enough to ensure
convergence of the iterative procedure and produce less
misadjustment error.

3. Convergence Analysis

In this section, the convergence analysis of the proposed
algorithm is detailed. The following assumptions which are
quite similar to what is usually assumed in literature and
which can also be justified in several practical instances
are used during the conver thegence analysis of the mixed
controlled l2 − lp algorithm. For example, these are quite
similar to what is usually assumed in the literature [14, 15,
20–22], and which can also be justified in several practical
instances.

(A1) The input signal xn is zero mean and having variance
σ2
x .

(A2) The noise wn is a zero-mean independent and
identically distributed process and is independent of
the input signal and having zero odd moments.

(A3) The step-size is small enough for the independence
assumption [14] to be valid. As a consequence, the
weight-error vector is independent of the input xn.

While assumptions (A1-A2) can be justified in several
practical instances, assumption (A3) can only be attained
asymptotically. The independence assumption [14] is very
common in the literature and is justified in several practical
instances [21]. The assumption of small step size is not
necessarily true in practice but has been commonly used to
simplify the analysis [14].

During the convergence analysis of the proposed algo-
rithm only the case of p = 1 is considered as it is carried out
for the first time. Cases for p = 4 can be found, for example,
in [16–18].

The weight error is defined to be

vn = cn − copt. (11)

3.1. First Moment Behavior of the Weight Error Vector. We
start by evaluating the statistical expectation of both sides of
(9) which looks after subtracting copt of both sides to give

vn+1 = vn + μ
[
αen + (1− α) sign(en)

]
xn. (12)

After substituting the error en defined by (2) in the above
equation and taking the expectation of its both sides, this
results in:

E[vn+1] =
[
I− αμR

]
E[vn] + μ(1− α)E

[
xn sign(en)

]
. (13)

Here at this point, we have to evaluate the expression
E[sign(en)xn] using Price’s theorem [20] in the following
way:

E
[
xn sign(en)

] =
√

2
π

1
σn

E[enxn]

=
√

2
π

1
σn

E
[
wnxn − xnxTn vn

]

= −
√

2
π

1
σn

RE[vn];

(14)

note that in the second step of this equation the error en has
been substituted.

Now, we are ready to evaluate expression (13), and it is
given by,

E[vn+1] =
⎧
⎨

⎩I− μ

⎡

⎣α + (1− α)

√
2
π

1
σn

⎤

⎦R

⎫
⎬

⎭E[vn]. (15)

It is to show that the mis-alignment vector will converge to
the zero vector if the step-size, μ, is given by

0 < μ <
2

[
α + (1− α)

√
(2/π)(1/σn)

]
tr{R}

. (16)

A more restrictive, but sufficient and simpler, condition for
convergence of (12) in the mean is

0 < μ <
2

[
α + (1− α)

√
(2/πJmin)

]
λmax

, (17)

where λmax is the largest eigenvalue of the autocorrelation
matrix R, since in general tr{R} � λmax, and Jmin is the
minimumMSE.

An inspection of (16) will immediately show that if the
convergence does occur, the root mean-squared estimation
error σn at time n is such that

σn >

√
2
π

[
μ(1− α)λmax

2− μαλmax

]

, (18)

where the mean-square value of the estimation error can be
shown to be

σn2 = E
[
e2n
]

= E
[(

wn − vTn xn
)(

wn − vTn xn
)T]

= Jmin + E
[
vTn xnx

T
n vn

]

= Jmin + tr[RKn].

(19)

(a) Discussion. It can be seen from (18) that, a sufficient
condition for the algorithm to converge in the mean, the
following must hold:

0 < μ <
2

αλmax
. (20)

Consequently, when α = 1, the convergence for the LMS
algorithm is proved.
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3.2. Second Moment Behavior of the Weight Error Vector.
From (12) we get the following expression for vn+1vTn+1:

vn+1vTn+1 = vnvTn + μ
[
αen + (1− α) sign(en)

][
vnxTn + xnvTn

]

+ μ2
[
α2e2n + 2α(1− α)|en| + (1− α)2

]
xnxTn .

(21)

Let Kn = E[vnvTn ] define the second moment of the
misalignment vector therefore, the above equation becomes,
after taking the expectation of both of its sides, the following:

Kn+1 = Kn + μα
{
E
[
vnxTn en

]
+ E

[
xnvTn en

]}

+ μ(1− α)
{
E
[
vnxTn sign(en)

]
+ E

[
xnvTn sign(en)

]}

+ μ2
{
α2E

[
xnxTn e

2
n

]
+ 2α(1− α)E

[
xnxTn |en|

]

+(1− α)2R
}
.

(22)

Before finalizing the above expression, let us evaluate the
following quantities taking into account that they are
Gaussian and zero mean [20]:

E
[
xnvTn sign(en)

]
= −

√
2
π

1
σn

RKn, (23)

E
[
vnxTn sign(en)

]
= −

√
2
π

1
σn

KnR, (24)

E
[
xnvTn en

]
= −RKn, (25)

and finally,

E
[
vnxTn en

]
= −KnR. (26)

Substituting expressions (23)–(26) in (22) results in the
following:

Kn+1 = Kn

⎧
⎨

⎩I− μ

⎡

⎣α + (1− α)

√
2
π

1
σn

⎤

⎦R

⎫
⎬

⎭

+ μ2R

⎧
⎨

⎩(1− α)2 +

⎡

⎣α2 − 2α(1− α)

√
2
π

1
σn

⎤

⎦

×[Jmin + tr(RKn)]

⎫
⎬

⎭

− μ

⎡

⎣α + (1− α)

√
2
π

1
σn

⎤

⎦RKn.

(27)

During the derivation of the above equation, expressions
E[xnxTn e

2
n] and E[xnxTn |en|] are evaluated, respectively, as

follows:

E
[
xnxTn e

2
n

]
= E

[

xnxTn
(
ωn − vTn xn

)2]

= R{Jmin + tr[RKn]},
(28)

and

E
[
xnxTn |en|

]
= E

[
xnxTn en sign(en)

]

= −
√

2
π

1
σn

E
[
xnxTn e

2
n

]

= −
√

2
π

1
σn

R{Jmin + tr[RKn]}.

(29)

Both of these expressions are substituted in (22) to result in
its simplified form (27).

Now, denote by σ∞ and K∞ the limiting values of σn
and Kn, respectively; then closed-form expressions for the
limiting (steady-state) values of the second moment matrix
and error power are derived next.

It is assumed that the autocorrelation matrix, R, is
positive definite [23] with eigenvalues, λi; hence, it can be
factorized as;

R = QΛQT , (30)

where Λ is the diagonal matrix of eigenvalues

Λ = diag(λ1,λ2, . . . ,λN ), (31)

and Q is the orthonormal matrix whose ith column is the
eigenvector of R associated with the ith eigenvalue, that is,

QTQ = I, (32)

which results in

Gn = QTKnQ, (33)

hence (27) can be written as

Gn+1 = Gn

⎧
⎨

⎩I− μ

⎡

⎣α + (1− α)

√
2
π

1
σn

⎤

⎦Λ

⎫
⎬

⎭

+ μ2Λ

⎧
⎨

⎩(1− α)2 +

⎡

⎣α2 − 2α(1− α)

√
2
π

1
σn

⎤

⎦

×[Jmin + tr(ΛGn)]

⎫
⎬

⎭

− μ

⎡

⎣α + (1− α)

√
2
π

1
σn

⎤

⎦ΛGn.

(34)

We are now ready to decompose the above matrix equation
into its scalar form as:

g
i, j
n+1 =

⎧
⎨

⎩1− μ

⎡

⎣α + (1− α)

√
2
π

1
σn

⎤

⎦
(
λi + λj

)
⎫
⎬

⎭g
i, j
n

+ μ2λi

⎧
⎨

⎩(1− α)2 +

⎡

⎣α2 − 2α(1− α)

√
2
π

1
σn

⎤

⎦

×
⎡

⎣Jmin +
N∑

i=1
λigi,in

⎤

⎦

⎫
⎬

⎭δi, j ,

(35)
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where

δi, j =
⎧
⎨

⎩

1 if i = j,

0, otherwise,
(36)

and g
i, j
n is the (i, j)th scalar element of the matrix Gn.

Two cases can be considered for the step size μ so that the
weight vector converges in the mean square sense.

(1) Case i /= j. In this case, (35) consists of the off-diagonal
elements of matrix Gn and will look like the following:

g
i, j
n+1 =

⎧
⎨

⎩1− μ

⎡

⎣α + (1− α)

√
2
π

1
σn

⎤

⎦
(
λi + λj

)
⎫
⎬

⎭g
i, j
n ; (37)

consequently, the range of the step size parameter is dictated
by

0 < μ <
2

[
α + (1− α)

√
(2/π)(1/σn)

][
λi + λj

] . (38)

As it was in the case of the mean convergence, a sufficient
condition for mean square convergence is

0 < μ <
1

[
α + (1− α)

√
2/πJmin

]
tr{R} . (39)

(2) Case i = j. In this case, (35) consists of only the diagonal
elements of matrix Gn and will look like the following:

gi,in+1 =
⎧
⎨

⎩1− 2μ

⎡

⎣α + (1− α)

√
2
π

1
σn

⎤

⎦λi

+μ2

⎡

⎣α2 − 2α(1− α)

√
2
π

1
σn

⎤

⎦λ2i

⎫
⎬

⎭g
i,i
n

+ μ2λi

⎧
⎨

⎩(1− α)2 +

⎡

⎣α2 − 2α(1− α)

√
2
π

1
σn

⎤

⎦

×
⎡

⎣Jmin +
N∑

j=1, j /= i

λ j g
j, j
n

⎤

⎦

⎫
⎬

⎭;

(40)

correspondingly, the range of the step size parameter for
convergence in the mean square sense is given by

0 < μ <
2
[
α + (1− α)

√
2/π(1/σn)

]

[
α2 − 2α(1− α)

√√
2/π(1/σn)

]
λi
. (41)

(b) Discussion. Note that α = 0 will result in zero in the
denominator of expression (41) and therefore will make
μ take any value in the range of positive numbers, a
contradiction with the ranges of values for the step sizes of
LMS and LMF algorithms. Moreover, any value for α in ]0, 1]
will make of the step size μ set by (41) less than zero, also
this condition is discarded. This concludes that it is safer to
use the more realistic bounds of (39) which will guarantee

stability regardless of the value of α, and therefore will be
considered here.

Once again, it is easy to see that if the convergence in the
mean-square occurs, consequently the following occurs

σn >

√
2
π

[
μ(1− α)λmax

1− μαλmax

]

. (42)

4. Derivation of the Excess
Mean-Square-Error (EMSE)

In this section, the derivation of the EMSE will be performed
for the general case of p. First, let us define the a priori
estimation error ean

ean = vTn+1xn. (43)

Second, the following assumption is to be used in the follow-
ing ensuing analysis:

(A4) The a priori estimation error ean with zero-mean is
independent of {wn}.

The updating scheme of the proposed algorithm defined in
(9) can be set up into the following recursion:

cn+1 = cn + μg(en)xn, (44)

where the error function g(en) is given by

g(en) = αen + pα|en|p−1 sign(en), (45)

where α = (1− α).
In order to find the expression of the EMSE of the

algorithm (defined as ζEMSE = E[e2an]), we need to evaluate
the following relation:

2E
[
eang(en)

] = μTr(R)E
[∣
∣g(en)

∣
∣2
]
. (46)

Taking the left-hand side of (46), we can write

2E
[
eang(en)

] = 2E
[
ean

(
αen + pα|en|p−1 sign(en)

)]
(47)

At this point, we make use of the Taylor series expansion to
expand g(en) with respect to en around wn as

g(en) = g(wn) + g(1)e (wn)ean +
1
2
g(2)e (wn)e2an +O(ean), (48)

where g(1)e (wn) and g(2)e (wn) are, respectively, the first-order
and second-order derivatives of g(en) with respect to en
evaluated around wn, and O(ean) denotes the third, and
higher-order terms of ean.

Using (45), we can write

g(1)e (wn) = α + p
(
p − 1

)
α|wn|p−2

(
sign(wn)

)2

+ pα|wn|p−1 · 2δ(wn)

= α + p
(
p − 1

)
α|wn|p−2 .

(49)



6 EURASIP Journal on Advances in Signal Processing

Similarly, we can obtain

g(2)e (wn) = p
(
p − 1

)(
p − 2

)
α|wn|p−3 sign(wn) (50)

Substituting (48) in (47) we get

2E
[
eang(en)

] = 2E
[(
g(wn)ean + g(1)e (wn)e2an +O(ean)

)]

(51)

Using (A4) and ignoring O(ean), we obtain

2E
[
eang(en)

] ≈ 2E
[
g(1)e (wn)e2an

]
(52)

Using (49), we get

2E
[
eang(en)

] = 2
{
α + p

(
p − 1

)
αE

[
|wn|p−2

]}
ζEMSE (53)

Using the Price’s theorem to evaluate the expectation
E[|wn|p−2 sign(wn)] as

E
[
|wn|p−2 sign(wn)

]
=
√

2
π

1
σw

ψ
p−1
w , (54)

where E[|wn|p] = ψ
p
w . So (53) becomes

2E
[
eang(en)

] = 2

⎧
⎨

⎩α + p
(
p − 1

)
α

√
2
π

1
σw

ψ
p−1
w

⎫
⎬

⎭ζEMSE. (55)

Now taking the right-hand side of (46), we require
|g(en)|2. So, we write
∣
∣g(en)

∣
∣2 = α2e2n + p2α2|en|2p−2 + 2pαα|en|p sign(en). (56)

Therefore,

μTr(R)E
[∣
∣g(en)

∣
∣2
]

= μTr(R)E
[∣
∣g(wn)

∣
∣2 +

∣
∣
∣g(1)e (wn)

∣
∣
∣
2
ean

+
1
2

∣
∣
∣g(2)e (wn)

∣
∣
∣
2
e2an +O(ean)

]

(57)

Using (A2) and (A4) and ignoring O(ean), we write (57) as

μTr(R)E
[∣
∣g(en)

∣
∣2
]

= μTr(R)
[

E
∣
∣g(wn)

∣
∣2

+
1
2
E
∣
∣
∣g(2)e (wn)

∣
∣
∣
2
e2an

]
.

(58)

By using (56), we can evaluate |g(2)e (wn)|
2
as

∣
∣
∣g(2)e (en)

∣
∣
∣
2

= 2α2 +
(
2p − 2

)(
2p− 3

)
p2α2|en|2p−4

+ 2p2
(
p − 1

)
αα|en|p−2 sign(en).

(59)

Therefore, using (56) and (59), we can evaluate
[
E
∣
∣g(wn)

∣
∣2 +

1
2
E
∣
∣
∣g(2)e (wn)

∣
∣
∣
2
e2an

]

= α2σ2
w + p2α2ψ

2p−2
w + 2

√
2
π

1
σw

pααψ
p+1
w

+

⎡

⎣α2 +
(
p − 1

)(
2p− 3

)
p2α2ψ

2p−4
w

+

√
2
π

1
σw

p2
(
p − 1

)
ααψ

p−1
w

⎤

⎦ζEMSE.

(60)

Now letting

A = α2σ2
w + p2α2ψ

2p−2
w + 2

√
2
π

1
σw

pααψ
p+1
w , (61)

B = α + p
(
p − 1

)
α

√
2
π

1
σw

ψ
p−1
w , (62)

C = α2 +
(
p − 1

)(
2p− 3

)
p2α2ψ

2p−4
w ,

+

√
2
π

1
σw

p2
(
p − 1

)
ααψ

p−1
w ,

(63)

we can write (58) as

μTr(R)E
[∣
∣g(en)

∣
∣2
]
= μTr(R)[A + CζEMSE], (64)

and subsequently (46) can be concisely expressed as

2BζEMSE = μTr(R)[A +CζEMSE], (65)

and the EMSE can be evaluated as

ζEMSE = μATr(R)
2B − μC Tr(R)

. (66)

5. Simulation Results

In this section, the performance analysis of the proposed
mixed controlled l2 − lp adaptive algorithm is investigated
in an unknown system identification problem for different
values of p and different values of the mixing parameter α.
The simulations reported here are based on an FIR channel
system identification defined by the following channel:

copt = [0.227, 0.460, 0.688, 0.460, 0.227]T. (67)

Three different noise environments have been considered
namely, Gaussian, uniform, and Laplacian. The length of the
adaptive filter is the same as that of the unknown system. The
learning curves are obtained by averaging 600 independent
runs. Two scenarios are considered for the case of the value
of p, that is, p = 1 and p = 4. The performance measure
considered here is the excess mean-square-error (EMSE).

Figures 2, 3, and 4 depict the convergence behavior
of the proposed algorithm for different values of α in
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Figure 1: Block diagram representation for the proposed algorithm.
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Figure 2: Effect of α on the learning curves of the proposed
algorithm in an AWGN noise environment scenario for p = 1.
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Figure 3: Effect of α on the learning curves of the proposed
algorithm in a Laplacian noise environment scenario for p = 1.
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Figure 4: Effect of α on the learning curves of the proposed
algorithm in a uniform noise environment scenario for p = 1.
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Figure 5: Learning curves of the proposed algorithm in different
noise environments scenarios for α = 0.2 and SNR of 0 dB.

a white Gaussian noise, Laplacian noise, and uniform noise,
respectively, for the case of p = 1. As can be depicted from
these figures the best performance is obtained when α = 0.8.
More importantly, the best noise statistics for this scenario
is when the noise is Laplacian distributed. An enhancement
in performance is obtained, and about a 2 dB improvement
is achieved for all values of α. Also, one can notice that the
worst performance is obtained when the noise is uniformly
distributed.

Figures 5, 6, 7, 8, 9 and 10 report the performance of the
proposed algorithm for an SNR of 0 dB, 10 dB and 20 dB,
respectively, for the case of p = 4. Figures 5 and 6 are
the result of the simulations for α = 0.2 and α = 0.8,
respectively. A consistency in performance of the proposed
algorithm in these scenarios for the uniform noise as far
as the lowest EMSE is reached by the proposed algorithm.
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Figure 6: Learning curves of the proposed algorithm in different
noise environments scenarios for α = 0.8 and SNR of 0 dB.
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Figure 7: Learning curves of the proposed algorithm in different
noise environments scenarios for α = 0.2 and SNR of 10 dB.
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Figure 8: Learning curves of the proposed algorithm in different
noise environments scenarios for α = 0.8 and SNR of 10 dB.
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Figure 9: Learning curves of the proposed algorithm in different
noise environments scenarios for α = 0.2 and SNR of 20 dB.

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iterations

E
M
SE

(d
B
)

Laplacian Gaussian Uniform

Figure 10: Learning curves of the proposed algorithm in different
noise environments scenarios for α = 0.8 and SNR of 20 dB.

Similar behaviour is obtained by the proposed algorithm in
Figures 7 and 8 where Figures 7 and 8 report the simulations
results of the proposed algorithm for α = 0.2 and α = 0.8,
respectively, for an SNR of 10 dB.

In the case of an SNR of 20 dB, Figures 9 and 10 depict
the results. The case of α = 0.2 is shown in Figure 9 while
that of α = 0.8 is shown in Figure 10. One can see that, even
though the proposed algorithm is still performing better in
the uniform noise environment, as shown in Figure 9, for
α = 0.2, however, identical performance is obtained by the
different noise environments when α = 0.8 as reported in
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Table 1: Theoretical and simulation EMSE for p = 4, α = 0.2.

Gaussian Laplacian Uniform

Theoretical Simulation Theoretical Simulation Theoretical Simulation

0 dB −16.9 −16.85 −9.62 −9.82 −22.81 −22.6
10 dB −26.02 −26.53 −19.33 −19.99 −31.64 −31.29
20 dB −44.14 −43.93 −40.34 −40.55 −45.14 −45.43

Table 2: Theoretical and simulation EMSE for p = 4, α = 0.8.

Gaussian Laplacian Uniform

Theoretical Simulation Theoretical Simulation Theoretical Simulation

0 dB −22.47 −22.6 −14.26 −16.02 −27.65 −26.59
10 dB −28.7 −28.64 −26.41 −26.32 −29.15 −29.57
20 dB −39.28 −39.87 −39.24 −39.58 −39.28 −39.92
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Figure 11: Learning behavior of the proposed algorithm in the
different noise environments scenarios for p = 4 and α = 0.2.

Figure 10. The theoretical findings confirm these results as
will be seen later.

From the above results, one can conclude that when
α = 0.2 the proposed algorithm is biased towards the LMF
algorithm, in contrast to the case when α = 0.8, the proposed
algorithm is biased towards the LMS algorithm.

Next, to assess further the performance of the proposed
algorithm for the same steady-state value, two different cases
for α are considered, that is, α = 0.2 and α = 0.8. Figures
11 and 12 illustrate the learning behavior of the proposed
algorithm for α = 0.2 and α = 0.8, respectively, both
are for p = 4. As can be seen from these figures that the
best performance is obtained with uniform noise while the
worst performance is obtained with Laplacian. The mixing
variable α had little effect on the speed of convergence of
the proposed algorithm when the noise is uniformly and
Gaussian distributed. However, as can be seen from Figure 12
in the case of Laplacian noise, α = 0.8 has decreased the
speed of convergence of the proposed algorithm from 55000
iterations (in the case of α = 0.2) to almost 2000 iterations.
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Figure 12: Learning behavior of the proposed algorithm in the
different noise environments scenarios for p = 4 and α = 0.8.

A gain of 3500 iterations in favor of the proposed algorithm
when the noise is Laplacian distributed.

Finally, the analytical results for the steady-state EMSE
derived for the proposed algorithm given in (66) are com-
pared with the ones obtained from simulation for Gaussian,
Laplacian, and uniform noise environments with an SNR
of 0 dB, 10 dB, and 20 dB. This comparison is reported in
Tables 1-2, and as can be seen from these tables, a close
agreement exists between theory and the simulation results
as mentioned earlier, for the case of p = 4 and α = 0.8, that
similar performance by the different noise environments is
obtained for and SNR of 20 dB as shown in Table 2.

6. Conclusion

A new adaptive scheme for system identification has been
introduced, where a controlling parameter in the range
[0, 1] is used to control the mixture of the two norms. The
derivation of the algorithm is worked out, and the convexity
property is proved for this algorithm. Existing algorithms,
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for example [16–18] can be considered as a special case of the
proposed algorithm. Also, the first moment behaviour as well
as the second moment behaviour of the weights are studied.
Bounds for the step size on the convergence of the proposed
algorithm are derived. Finally, the steady-state analysis was
carried out; simulation results performed for the purpose of
validating theory are found to be in good agreement with the
theory developed.

The proposed algorithm has been applied so far to a
system identification scenario, for example, echo cancella-
tion. As a future extension, recent work is going on the
application of the proposed algorithm to mitigate the effects
of intersymbol interference in a communication system.
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