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Designing matched pulse shaping filters with their cascade satisfying the Nyquist condition for minimum intersymbol interference
constitutes an important task for almost all digital data radio transceivers processing an incoming data signal on the sample-
by-sample basis. Despite their practical importance, there are only few sets of Nyquist filter definitions and design techniques to
devise digital filter coefficients available for a designer. In this paper we propose a set of Nyquist filters that balance the time- and
frequency-domain parameters in favor of a filter stop-band attenuation and residual intersymbol interference compared with the
already existing Nyquist filter sets. Using a number of filter examples, this paper shows that the proposed Nyquist filters can be a
good option for applications that need to fulfill strict limits of adjacent and alternate channel power attenuation while providing a
low level of residual intersymbol interference and group delay of the digital filter.

1. Introduction

If the digital receiver processes a data signal on the sample-
by-sample basis, a typical problem which arises from
the strict band limitation of the signal spectrum is the
phenomenon called intersymbol interference (ISI). To lower
the amount of ISI to zero, the overall transmitter-channel-
receiver frequency response should fulfill the first Nyquist
criterion defined in the frequency domain as [1-3]

iG(f+§)=T, |f}s$. (1)

k=—o00

For a minimum double-sided signal bandwidth equal to the
Nyquist frequency 1/T, where T is the modulation symbol
period, the Nyquist condition yields a unique solution with
its time representation being a sinc pulse. For the signal
bandwidth exceeding the Nyquist frequency, innumerable
filter characteristics should exist [1]. However, to the best
of the present authors’ knowledge, there are only two sets
of filter frequency responses explicitly defined by their
continuous piecewise function definitions [4, 5]. The first
one is the well-known raised cosine (RC) filter. In spite

of their practical importance there are only few design
techniques that can be used to directly devise a matched
combination of digital Nyquist filters. The Matlab software
and its Digital Filter Design application [6] provide Nyquist
filters based on a truncated version of the (square root) raised
cosine filter. Such filters create a single balance between
the time- and frequency-domain parameters. Additional
weighting window can be used to compromise the out-of-
band suppression for the excess bandwidth; however the
coefficients of square root filter version cannot be explicitly
calculated and for most of the windows, the minimum excess
bandwidth is limited by the equivalent noise bandwidth of
the window being used [7]. When the same design approach
is used to calculate the coefficients of the square root RC filter
directly, the residual ISI is increasing rapidly, since the design
technique significantly violates the first Nyquist condition.
Other techniques for designing the pulse shaping filters that
have been reported are based on optimization techniques
with a specific objective function such as maximizing the
robustness against timing jitter [2, 3, 8-10] minimizing the
duration of the impulse response [11-13] or minimizing
the peak to average power ratio (PAPR) at the transmitter
filter output [14]. Besides the complex way of calculating



the filter coefficients, filters that are obtained by optimization
techniques are usually of nonlinear phase [11, 12] or they
cannot be directly partitioned into matched filter pairs [2,
3, 8-10, 15-17] having linear phase characteristic. The same
holds true for the IIR Nyquist filters as discussed in [17, 18].
The most recent methods for designing Nyquist filters are
based on linear programming technique [8-10, 16]. The
latest and a well-written reference along this line concerning
with the problem of designing matched pairs of digital
Nyquist (M) filters with balanced performance and linear
phase characteristic can be found in [19]. The method is
based on numerical calculation and does not provide an
exact definition of the filter characteristic, which complicates
the design of matched filter pairs with different values of the
group delay parameter and oversampling ratio. However, it
offers a wide range of communication filters and will also be
used for comparison in this paper.

If the time- and frequency-domain parameters of the
raised cosine filter are taken as a standard, the aim of
this paper is to formulate an alternative Nyquist filter
definition that reasonably balances the parameters in favor
of filter stop-band attenuation, which is directly related to an
adjacent channel power as one of the most critical parameters
of the several practical applications. Giving a number of filter
examples, this paper also provides a detailed comparison of
the proposed filters and the existing Nyquist filter sets.

2. Nyquist Filters Design Analysis

The problem of designing a modulation filter can be seen in
that the designer needs to consider carefully both representa-
tions of the signal, the time and the frequency one. Therefore,
when designing modulation filters one representation has
to be compromised at the expense of the other and it is a
particular application that defines the final compromise. As
shown in [1], the first Nyquist criterion for zero ISI level
has two important implications for the modulation filter
design. First, the double-sided bandwidth of the processed
data signal cannot be less than 1/T without introducing
the intersymbol interference. Second, the spectrum of the
signal should be symmetrical around the centre frequency,
and it should also embody an odd vestigial symmetry around
the frequency of 1/2T. In addition to these conditions, the
overall Nyquist filter is typically split into its transmitter
(TX) and receiver (RX) parts to fulfill the matched filtering
condition for maximizing the signal-to-noise ratio at the
decision stage [1]. The condition can be written in the
frequency domain as follows:

Hye(f) = Hrx (f) exp(—=j2nfT), (2)

and in the time domain as follows:
hrx (1) = hex(T = 1). (3)
It says that the matched filter impulse response should be

the time reversed variant of the signaling pulse, where T
is its time duration. Thus, to meet all these conditions the
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transmitter and receiver filter frequency characteristic should
follow a square root version of the Nyquist filter

|Hrx (f) | = [Hrx () | = G(f). (4)

Although both filters are assumed to be the same, there
are different requirements placed on the design of each of
them. They can be summarized into the following four
conflicting requirements [19].

(i) The length of the impulse response h(t) should be
kept as small as possible to minimize the implemen-
tation cost and the propagation delay of the DSP part
of the radio transceiver.

(ii) The Nyquist criterion should be satisfied as closely as
possible to minimize intersymbol interference.

(iii) At the transmitter side, the primary issue is the trans-
mission bandwidth defined by the adjacent channel
power requirements. Thus the adjacent channel and
alternate channel power limits dictate the stop-band
attenuation of the transmitter filter Hrx(f).

(iv) The lower the magnitude of the impulse response
side-lobes the better is the eye opening, hence the
better timing jitter immunity can be reached [3].

In several applications, there is also a demand to
minimize the peak-to-average power ratio of the transmitted
pulses [14, 19]. Such an optimization of the transmitter and
receiver filters yields a filter pair that is no longer mutually
matched and therefore it is not considered in this work.

The most widely used Nyquist filters follow the raised
cosine (RC) frequency response defined by

Gre(f) =

1, 0<f<B(1-a),

%{14{05(%@—3(1—0‘)))}) B(1-a)<f=<B(l+a),

0, B(l+a) < f,
(5)

where B is the single-sided filter bandwidth corresponding to
1/2T, and «a is the excess bandwidth parameter usually called
roll-off factor. The corresponding continuous time impulse
response of the raised cosine filter can be written as

t) cos(ma(t/T)) ()

t) = sinc( — .
gre(t) SmC<T 1 - 402(t/T)?

The lower the roll-off factor, the narrower is the occupied
bandwidth of the signal. However, with a low roll-off
factor the original modulation (modulated) signal becomes
more vulnerable to timing jitter as the eye pattern of
the received signal narrows down and becomes practically
almost undetectable for the roll-off factor equaling zero. The
second negative effect resulting from lowering of the roll-off
factor is related to the practical aspects of the digital filter
design and that is the length of the filter impulse response
or the decay of its tails to zero. The lower the roll-off factor,
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Ficure 1: Decomposition of the modulation filters impulse
responses. (a) Sinc(¢/T) function, the ideal Nyquist filter. (b)
Typical windowing functions used to limit its impulse response.

the longer the impulse response of the raised cosine filter has
to be taken into account when designing a digital filter with
comparable stop-band attenuation.

It is only recently that another set of modulation filters
has been reported [5]. In [5], modulation filters marked
as “better” than the Nyquist filter are defined in frequency
domain by (7). Although, the present authors disagree with
the attribute “better”, because any filter fulfilling the Nyquist
criterion can be regarded as a Nyquist filter, thus there cannot
be a better filter in this filter family, the “B” index is used for
all the related characteristics of this filter in the following text

1, 0=<f=<B(l-a),
i exp{%[B(l—a)—f]}, B(l-a)<f<B,
() = |
l—exp{%[f—3(1+oc)]}, B<f=<B(l+a),
L0, B(1+a) < f.
(7)

The excess bandwidth parameter o can be used to trade
off the occupied bandwidth and the time duration of the
pulse. In both definitions (6) and (7) the excess bandwidth is
assumed to be lower than 100%. Although there are Nyquist
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Figure 2: Amplitude frequency characteristics of the truncated RC
filter with & = 0.47 and its Hann window weighted variant with
a=0.3.

filters with the excess bandwidth exceeding 100% [20], they
are not a primary concern of this work.

From an analysis of (6) it is evident that the impulse
response of the raised cosine filter differs from the minimum
bandwidth Nyquist filter by the window function used to
truncate the sinc pulse. The design of the digital filter thus
boils down to selecting an appropriate window function [3].
The same holds true for most of the modulation filters with
the zero ISI property. An example of the impulse response
decomposition for the raised cosine, “B” filter and weighted
RC filter is shown in Figure 1.

In the above example, the group delay of the filters has
been chosen to be six modulation symbols, Gp = 6. It should
be noted that this delay also determines the length of the filter
impulse response L as well as the filter order Ny according to
the following:

No=L~-1=2NGp, (8)

where N is the number of samples per one modulation
symbol.

It can be seen from Figure 1 that both the RC and the
“B” filter windowing functions for the chosen parameters
are in fact a cascade of the two windows, where the second
window, denoted w(t) in (9), is a rectangular pulse which
causes a widening of the amplitude frequency characteristic
and a relatively high level and slow decay of its sidelobes

g(t) = gre(Hw(t). 9)

A different second window can be selected in order to
improve these negative effects. In Figure 2 there is an example
of the RC filter with the roll-off parameter set to 0.3 weighted
by the Hann window [6, 7]. For the sake of comparison,
the truncated version of the RC filter with equivalent excess
bandwidth (« = 0.47) has been added to the plot.

It can be seen that for the same filter order (Ny = 96)
the weighted version of the RC filter has a better stop-
band attenuation, because its time domain characteristic
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FIGURE 3: Graphical comparison of the impulse responses of the
studied filters.
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FIGURE 4: Raised cosine window versus general Blackmann window
(ao = 3/8;&1 = 4/8;02 = 1/8)

(Figure 3) goes smoothly to the zero level and it is minimally
influenced by the truncation operation. However, as is shown
in Figure 3, there is an increase in the impulse response side
lobes level. Larger tails of the impulse response typically
result in a higher sensitivity to timing jitter [3]. Hence, the
weighted version of the RC filter cannot be classified as a
better filter; it represents an alternative balance between the
studied parameters. A major obstacle of the described design
method—one of the few methods available in MATLAB
software [6]—is that the frequency response Gprc(f) is
not known and it is a problem to calculate the Hy rc(f)
(4) as well as the matched filters coefficients. The numerical
method based on sampling the frequency response [21]
can be an option, however, such an approach yields to
approximated results with a high level of residual ISI. It is
therefore reasonable to start from the filter definition in the
frequency domain, derive all the coefficients by calculating
its inverse Fourier transform, and limit the resulting impulse
response in a certain interval. In fact, the term “raised cosine
filter” also originates from its definition in the frequency
rather than the time domain.
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3. Nyquist §-Filter Formulation

A closer analysis of (5) unveils the fact that the frequency
response of the RC filter is a convolution of a rectangular
pulse of duration 1/2T and a raised cosine window modified
by the roll-off parameter.

As shown in [7], there are other window shapes that
can converge to zero more smoothly. A good alternative is
a generally defined Blackmann window (10), which can be
continuously changed to the Blackmann, exact-Blackmann,
Blackmann-Harris, and cos*(x) windows by changing the
values of ag, a1, and a, in its definition

w(x) = ap + a; cos(mx) + ap cos(2mx). (10)

From the comparison shown in Figure 4 it can be seen
that although the general Blackmann window smoothly
converges to zero level, it does so at the expense of the
window width, and its shape does not satisfy the vestigial
symmetry property. Nevertheless, there is still the possibility
of decomposing the window into its upper and lower parts,
as shown in Figure 5, and using these functions to construct
a Nyquist filter by shifting them to the right by a distance
marked §. Respecting the typical notation of the Nyquist
RC filters, a general Nyquist §-filter defined in the frequency
domain can thus be written as follows:

Gs(f)
B 0= f=<B(-a),
1— ap — a; cos n(B(1+a) — (f +9))
2Bay
—ay coszn(B(lﬂle(;L_o(f*"s)))
= ] B(1-a)< f <B, (11)
ag + a; cos 7(B(1 +0;°1;a_ (f =9)
0
+a, coszﬂ(B(l+ZOB20;(f—5))’
B< f <B(l1+a),
L0, B(1+a) < f,
where
6=05— B(1—ap) — 2%
m

( (1a1—\/a%+8a%+4a2—8a2a0))
x |7 —arccos| .

a
(12)
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F1GURE 5: Decomposition of the Nyquist §-filter frequency response
into its upper and lower parts.

For a special case, where the parameters ao, a;, and a, equal
38, 48, and 1/8, respectively, the equations can be effectively
reduced to

1, 0<f<B(l-a),
(B +ao) — (f+8))\"
1—cos< 4Bay ) s
B(l-a)< f <B,
Gs(f) =1 (13)
o (TBU+a0) — (f +9)) !
4B(X0 ’
B< f <B(l+a),
0, B(1+a) < f,
and
4B(X0

6=05-B(1-ay) — arccos(zl—lﬂk). (14)

The quoted values of ag_, parameters are preferred in
this paper because they represent the boundary case for
which the Blackmann window approaches zero level without
a discontinuity. It is important to note that the Nyquist -
filter defined by (11)-(14) differs from the RC filter also
in the starting point of its stop-band region, and its first
null bandwidth. Therefore, to get the filter definition directly
comparable to that of the RC filter its notation is adopted
where

arc = & = ap + 0. (15)

Thus, when comparing both filters (Section 5) the RC filter
will have an equivalent excess bandwidth (15) adjusted by the
value of the § parameter.

The digital filter coefficients can be calculated (See the
appendix) from (11) to (14) by the inverse Fourier transform
of the frequency response

B(l+a)

@w=5j Gse?™/'df, (16)
2 J-B(1+a)

and equidistantly sampling the continuous impulse response
(16) over the limited time interval, which is defined by the
group delay parameter Gp as:

GpN

Z g(t) - 8(t—nTs).  (17)

n=—GpN

2.5(t) = gs(0)d7,(t) =

In (17), Ts is the sampling period defined in relation to the
modulation symbol period T as:

T
Ts=—, 18
s=N (18)
and Ors(t) is a train of unit impulses. In order to keep
the notation simple the coefficients of the Nyquist §-filter
impulse response have been denoted gs[n].
The matched filter pair (3), (4) can be calculated

analogously as a square root version of the Nyquist §-filter

B(1+a) )
ho) =3 [ Geensdf, (19)

2 J-B(1+a)

and its sampled version
hstx[n] = hs rx[—n] = hs[n] = hs(t)d7,(1), (20)

can be used for the transmitter and receiver filter directly,
since the impulse response hs[n] is symmetrical and there-
fore linear phase.

It is important to note that all the definitions of
the Nyquist and square root Nyquist filters either in the
frequency or the time domain were given in their noncausal
form and thus zero phase characteristics were implicitly
assumed.

4. Nyquist Filter Evaluation Criteria

Although all the studied filters calculated by their generic
relations (5), (7), and (11) have a negligible level of
intersymbol interference, when used as a cascade of the
transmitter and receiver filters of their truncated square root
versions (4), residual ISI appears and cannot be omitted. To
compare this property among different filters, the relative
level of residual ISI can be calculated as [19]

Zn:mN,m ¢0gI2{C[n]
Zn:mN,m#Ogg (1]

pPIs1 = 1010g (21)

In addition to (21), it is also reasonable to compare the
cascaded filter impulse response side lobes level according to:

GpN+1 2
2 non+1 8relnl

GpN+1 2 .
zngN +185 [}’l ]
The difference in stop-band attenuation between two filters
can be evaluated using [7]

ps. = 10log (22)

f* e (o)

I3 | Hs (e |2df

pss = 10log (23)



TaBLE 1: Numerical values of psg [dB], pisi [dB], psi [dB]. Square
root RC filter versus square root Nyquist §-filter. The oversampling
factor N = 5 is fixed and the group delay parameter Gp and roll-off
parameter « of the filters vary.

Square Root RC Filter/Square Root Nyquist §-Filter; N = 5

ao[—] 02 025 03 035 04 045 0.5
Gp (-] 0.027 0.034 0.040 0.047 0.054 0.061 0.068
al—] 0.227 0.284 0.340 0.397 0.454 0.511 0.568

pss[dB] 0.1 59 109 88 80 86 8.4
5 pgldB] —42 59 67 06 78 52 26
psL[dB]  —07 -09 -12 -15 -19 -23 -27
pss[dB] 42 108 85 82 86 75 68
6 po[dB] 39 68 46 66 43 59 113
psuldB] =07 —09 -12 -15 -19 -23 -27
pss[dB] 9.9 89 83 84 72 68 58
7 ps[dB] 104 20 67 38 114 104 6.6
psL[dB]  —07 -09 -12 -15 -19 -23 -28
pss[dB] 102 80 86 72 68 52 45
8 psldB] 50 76 43 109 106 71 82
psLldB]  —07 -09 -12 -15 -19 -23 -238

TaBLE 2: Numerical values of psg [dB], pisi [dB], psi [dB]. Square
root RC filter versus square root Nyquist d-filter. The group delay
parameter of the filters is fixed Gp = 6 and the oversampling factor
N varies.

Root Raised Cosine Filter/Root Nyquist d-Filter; Gp = 6

ao[—] 02 025 03 035 04 045 0.5
N 8[-1] 0.027 0.034 0.040 0.047 0.054 0.061 0.068
al-] 0.227 0.284 0.340 0.397 0.454 0.511 0.568

pss[dB] 4.6 108 84 83 86 74 68
4 pgldB] 43 65 58 64 41 71 109
ps[dB]  -07 -09 -12 -15 -19 -23 -28
psp[dB] 42 108 85 82 86 75 68
5 pe[dB] 39 68 46 66 43 59 113
pst[dB] -07 -09 -12 -1.5 -19 -23 -27
psp[dB] 41 108 86 82 86 76 68
6 pg[dB] 37 70 37 67 44 51 115
ps[dB] -07 -09 -12 -15 -19 -23 -27

where the stop-band of the Nyquist and also the square root
Nyquist filters is typically [4, 22] considered to start at the
normalized frequency f;

1+a

and to end at the normalized frequency 1 — f;.

5. Matched Nyquist Filters Evaluation

Firstly, the proposed Nyquist §-filter has been compared with
the truncated version of the RC filter. To get the numerical
results presented in Table 1, the oversampling ratio of the
filters has been set to 5 and the group delay parameter as
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TABLE 3: Numerical values of psg [dB], pisi [dB], psi. [dB]. Square
root “B” filter versus square root Nyquist d-filter. The oversampling
factor N = 5 is fixed and the group delay parameter Gp of the filters
varies.

Square Root “B” Filter/Square Root Nyquist §-Filter; N = 5
ao[—] 02 025 03 035 04 045 05

Gp d[-] 0.027 0.034 0.040 0.047 0.054 0.061 0.068
af—] 0.227 0.284 0.340 0.397 0.454 0.511 0.568
pss [dB 82 154 195 182 196 199 19.1
5 pisi [dB 3.2 88 69 128 134 83 10.1
ps. [dB -22 -29 -38 -49 -61 -73 -83
pss [dB 13.7 154 183 199 195 194 13.0

[dB]
[dB]
[dB]
[dB]
6  ps[dB] 55 123 147 111 74 151 175
[dB]
[dB]
[dB]
[dB]

pst. [dB -22 -15 -39 -50 -6.1 -73 -6.6
pss [dB 18.8 183 13.1 193 19.8 19.6 18.5
7 pisi [dB 119 122 11.7 84 189 148 17.9
ps. [dB -22 -30 -24 -50 -62 -74 -84

well as the excess bandwidth have been varied. It can be seen
that the square root Nyquist §-filter reaches better stop-band
attenuation and its cascade experiences lower residual ISI
level for the same filter order, but it does so in expense of
a higher impulse response side lobes level.

Secondly, the group delay parameter was set to 6 and the
oversampling ratio N was changed from 4 to 6. The results
shown in Table 2 express that the difference in performance
of both filters is approximately the same when compared to
the respective values shown in Table 1 and do not change
significantly with the oversampling factor.

Next, there is a set of results provided in Table 3 to
compare the proposed Nyquist §-filters with the digital filters
designed according to (7). It is evident that the “ B” filters
in contrast to the Nyquist §-filters move a balance in favor
of the time domain parameters and thus the difference in
stop-band attenuation and residual ISI is even greater than
in the case of the RC filter described before. Since all the
values are given in their relative form, one can easily make
a comparison between the RC and the “B” filter.

The results presented express that the Nyquist J-filter
represents an alternative balance between the parameters
studied and can be an option in applications that require
higher stop-band attenuation as well as a low level of
residual intersymbol interference. It should be noted that
the proposed filter set has been devised using a heuristic
approach and as such cannot be considered a globally
optimal solution. In fact, other filters might provide even
better stop-band attenuation, but as it has been shown, at
the cost of the higher residual ISI and/or worst side lobes
level. Table 4 gives a comparison of the Nyquist §-filter with
the filters devised by an iterative algorithm [19] for several
choices of its design parameters. It can be seen that the stop-
band attenuation of the Nyquist §-filter can be just reached
or can even be overcome at the additional cost of increased
side lobes level or ISI.

To further explore the absolute levels of the param-
eters studied, one particular combination of filters from
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TasLE 4: Numerical values of psg [dB], pisi [dB], psi. [dB]. Square root Nyquist (M) filter versus square root Nyquist §-filter. The N parameter
is fixed and the group delay parameter Gp, of the filter varies; y and yr are the design parameters of the iteration algorithm [19].

Square Root Nyquist (M)/Square Root Nyquist §-filter

Gp=5 N=5 yr=0

Gp =5 N =5; yr =0.05

ao[—1/6[-] y[—] 0.5 1 2 10 0.5 1 2 10
0.25 pss [dB] -1.2 -0.5 -0.3 0.0 -0.1 0.1 0.1 0.2
0.034 prsi[dB] 1.4 -26 -5.0 -6.6 3.5 -1.3 ~4.6 -6.9
pst. [dB] 0.0 0.1 0.2 -0.2 -0.3 -0.3 -0.2 -0.2
Gp=6; N=5 yr=0 Gp =6; N =5; yr =0.05
a[—1/8[—] y[-] 0.5 1 2 10 0.5 1 2 10
0.25 pss [dB] —2.6 -2.2 -2.1 -1.0 1.1 0.6 0.3 0.9
0:034 pisi [dB] —0.1 -3.1 —4.1 —5.2 8.5 3.2 -1.1 -5.0
pst. [dB] 0.2 0.2 0.2 0.1 -0.4 -0.1 0.0 0.0
Gp=7, N=5 yr=0 Gp =7, N=5; yr =0.05
ap[—1/8[—] y[-] 0.5 1 2 10 0.5 1 2 10
0.25 pss [dB] -9.6 -9.3 -9.3 —4.9 4.6 4.7 4.6 3.6
0:034 pisi [dB] —-1.4 -2.2 -2.5 —4.1 11.8 6.4 1.6 -5.0
pst. [dB] 0.4 0.4 0.4 0.3 -0.9 -0.4 -0.3 -0.1
0
_10 L p
720 L p
730 L p
i)
_ —40 N O T —~
% 50 L :\I'\‘\",\;\ ) ) ) l %
S - E'I ‘l"\‘l'll\ll’(\‘ll : "A " ‘\ PR -~ S
= 4 l 'q.r». l'”-\ NS ) T
—60 ]t ]l|| Il| ‘I ‘ |l h,‘ Nt N ‘“ n ’| | \_,-
: | 1 !r I ||I '|‘ '|| i “I, ‘:, N \\!11“1‘ ‘I'.['
-70 - - : - ;: U i ‘f’ i
! 1 ¥| [ ‘4 I‘ p
el EREER]
b d
790 L ﬂ . p
-100 . i
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fIN -]
--- RRC
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(a)

FIGURE 6: Amplitude frequency characteristics (log scale) of the truncated square root RC filter (RRC); square root B-filter (RBN); square
root Nyquist §-filter (RND) of the same filter order and equivalent excess bandwidth & = 0.284; Gp = 6; N = 5; No = 60.

the studied examples has been selected and their respective
characteristics have been calculated. In Figures 6, and 7
there are amplitude frequency characteristics of the square
root Nyquist filter variants clearly unveiling the significant
differences in stop-band attenuation. It is interesting to note
also the pass band ripple (Figure 7) of the characteristics
from which the “B” filter is the worst due to the discontinuity
already in first derivative of its frequency characteristic
function (7). On the other hand, Figure 8 depicts the impulse
responses of the filters, from which the increase in the side

lobes level is evident. Since this is only the transmitter part
of the Nyquist matched filter pair, it is reasonable to evaluate
the side lobes level after the cascade of both filters as shown
in Figures 10 to 12. The respective amplitude frequency
characteristics of the filter cascade are shown in Figure 9.
Seen in a linear scale, they should embody the vestigial
symmetry to fulfill the Nyquist condition in the frequency
domain (1). It can be seen from Figure 9 that this condition
is not reached fully for any of the filters; however, the Nyquist
d-filter is approaching the symmetrical shape very closely.
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From the eye diagrams shown in Figures 11 and 12 the two
facts are evident that were predicted by measurement results.
Firstly, the residual ISI level is the lowest for the Nyquist 8-
filter and the highest for the “B” filter, the difference being
14.5 dB. And secondly, the “B” filter reaches the widest eye
opening and should be therefore most robust from the three
studied filters as regards the timing jitter.

6. Conclusion

As has been shown in this paper, the conflicting requirements
placed on the design of the digital matched Nyquist filter
pair make the task complicated. From this point of view, the
typical truncated raised cosine filter represents a single bal-
ance between the time- and frequency-domain parameters.
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The Nyquist §-filter set, which was defined throughout
this paper, enlarges the family of Nyquist filters, and when
compared with the truncated square root raised cosine filter
cascade, it strikes the balance towards the frequency domain
parameters while reaching a low level of residual intersymbol
interference. It does so at the cost of a higher side lobes level

of the impulse response. An exact symbolic definition of the
Nyquist d-filter in the frequency domain gives the designer
scope to choose freely the arbitrary filter parameters such as
equivalent excess bandwidth, group delay and oversampling
parameters and derive coefficients for either the “normal”
or the square root filter variants. The filters generated
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are of linear-phase having symmetrical impulse responses, —S[d] :=cos(Pi* (B* (1 — alpha[0]) —

which directly contribute to efficient hardware realization f +delta)/(4*Bxalpha[0])) "4;
structures. — S[dm] :=cos(Pik (Bx (1 —
alphal0]) + (f +delta))/(4xBsxalpha[0])) "4;
Appendix _delta:=1/2 —
. . . 4xarccos((1/2) *x27(3/4)) *Bxalpha[0]/Pi —
Maple Script for Nyquist §-Filter B (1 — alpha[0]);
Coefficients Calculation _ alpha :=alphal0]+delta;
— restart; —G[d] :=piecewise(abs(f)<=B* (1 — alpha),
1, “‘and’’ (—Bx*(1 - alpha) >f, f>=-B),
—S[u] :=1— cos(Pi* (B*(1+ alpha[0]) —f — S[um], ‘‘and’’ ( - B > f,f>=
delta)/(4*B*alpha[0]))74; —Bx (1+alpha)),
S[dm], ¢‘and’’ (B*(1 — alpha)<=f,f <B),
— S[um] :=1 — cos(Pi* (B* (1 + alpha[0]) + (f — S[ul, ‘‘and’’ (B<=f,f <B*(l+alpha)),

delta))/(4%Bxalpha(0])) "4; S[d],Bx* (1+alpha)<=abs(f),0);
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—alpha[0] :=.25; T:=1; B:=1/(2%T);
al0]:= 3/8; a[l]:= 4x(1/8); a[2] :=1/8;

—evalf(delta);
— G[Rd] := sqrt(G[d]);

—plot([G[d],G[RA]],f=—-1..
[black,red]);

—alpha[RC] :=alpha;

— G[RC] := piecewise(abs(f)<=Bx* (1 —
alpha[RC]),1, “‘and’’ ( - Bk (1 +
alpha[RC]) < £,
f<= —B* (1-alpha[RC])),

1/2% (1 + cos(Pi*x (f +Bx (1 —
alpha[RC]))/(2*B*alphal[RC]))), ¢‘and’’
(B (1 -

alpha[RC]) < f,f<=B* (1 + alphal[RC])),
1/2% (1 + cos(Pi* (f — Bx (1 —
alpha[RC]))/(2%B*alpha[RC]))),

Bk (1+alpha[RC])<=abs(£f),0);

— G[RRC] :=simplify(sqrt(G[RC]));
plot ([G[RRC],G[Rd]],f=—-1..1,color =
[black,red]);

—glRd] :=
(1/2) *Pis* (Int (G[RA] *xexp ((I*2)*Pixf*
t), f=-1.. 1));

—gldelay] :=6; N:=5; step:=1/N; 1i:=
0;

1, color=

—for t from —gldelay] by step to
gldelay]
do t; i:=i+4+1; coef[i] :=
evalf (Re(evalf(g[Rd]))) end do; k:=1ij;

—for i to k do print(coef[i]) end do;
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