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A novel signal representation using fuzzy mathematical morphology is developed. We take advantage of the optimum fuzzy
fitting and the efficient implementation of morphological operators to extract geometric information from signals. The new
representation provides results analogous to those given by the polynomial transform. Geometrical decomposition of a signal
is achieved by windowing and applying sequentially fuzzy morphological opening with structuring functions. The resulting
representation is made to resemble an orthogonal expansion by constraining the results of opening to equate adapted structuring
functions. Properties of the geometric decomposition are considered and used to calculate the adaptation parameters. Our
procedure provides an efficient and flexible representation which can be efficiently implemented in parallel. The application of
the representation is illustrated in data compression and fractal dimension estimation temporal signals and images.

1. Introduction

Signal representation is an area of great interest in the
signal and image processing. Many representation techniques
currently available are well developed and offer satisfac-
tory performance in many applications [1-6]. However, in
general, drawbacks of these techniques include intensive
computation, sequential implementation, and disregard of
geometrical information present in signals. In this paper, we
propose fuzzy mathematical morphology [7] to represent
one- and two-dimensional signals. Fuzzy morphological
operators, similar to morphological operator, are nonlinear
but well suited for efficient implementation in parallel.
Furthermore, they allow to extract geometrical information
in signals by appropriate transformations.

Among recently introduced representation techniques,
Martens [5, 6] proposes a linear combination of polynomial
to represent signals. Although the method achieves high
performance in data compression, it has high computational
complexity and a sequential implementation. Pitas and
Venetsanopaulos [8-10] propose a morphological signal
decomposition method to decompose a signal into a set of
morphologically simple function. Song and Delp [11] use
multiple structuring functions instead of a single function

to enhance the performance of morphological filters. In
developing the Fuzzy Morphological Polynomial (FMP)
representation [12], we take the advantage of polynomial
transform idea [5, 6], the morphological decomposition
recursive procedures [8—10] and using multiple structuring
functions [11] overcoming some of the problems mentioned
before.

Binary morphology, as developed in [13], is based on
the concept of fitting a structuring element to the signal. Its
extension to multilevel morphology was achieved by treating
the space underneath the signal (“umbra”) as a binary signal.
Recently, Shinha and Dougherty [7] propose an alternate
mathematical morphology based on fuzzy set theory. The
morphological operations are modeled on a “fuzzy” notion
of fitting, the umbra concept is not required and as such
binary morphology becomes a special case. The fuzzy fitting
yields one or zero for crisp fitting, and between zero and
unity for a partial fit. The closer to unity, the higher the
degree of fit.

The rest of the paper is organized as follows. In Section 2,
we briefly review fuzzy mathematical morphology. Then in
Section 3, we develop the one-dimensional FMP represen-
tation based on a recursive geometric decomposition for a
given signal membership function. The properties of our



FMP representation are investigated to develop algorithms
to compute the adaptive parameters. In Section 4, we extend
our algorithm to two-dimensions. We use the tensor product
of the two one-dimensional functions as fuzzy structur-
ing functions. The order of the two-dimensional fuzzy
structuring functions is explored and a rational solution
is recommended. In Section 5, we present our experiment
results of applying our algorithm to data compression and
fractal dimension estimation for one- and two-dimensional
signals, demonstrating the advantages of our algorithm. The
conclusion is in Section 6. Some of the results in this paper
were presented before in [12].

2. Fuzzy Mathematical Morphology

Recently, Shinha and Dougherty [7] proposed to consider
fuzzy set theory [14] instead of the classical set theory
to develop mathematical morphology. They have in fact,
obtained a new approach that considers simultaneously
binary and multilevel morphology. The concept of “umbra”
is no longer needed to develop the multilevel case. Morpho-
logical operations are then developed on the “fuzzy” fitting
so that for crisp sets the fitting still remains characterized
as either 0 or 1, but for fuzzy or noncrisp sets it is possible
to have a fitting characterized by a value between 0 and 1.
The closer to unity, the better the fitting of the structuring
element. As in the classical morphology, fuzzy morphology
[7] also consists in transforming a fuzzy set into another.
Such a transformation is performed by means of a fuzzy
structuring set containing the desired geometric structure.

If we let X be the universe of discourse and x be its generic
element, the difference between crisp and fuzzy sets is the
characteristic function of a crisp set C which is defined as ¢ :
X — {0, 1} while the membership functionyr : X — [0,1]
of a fuzzy set F is defined so that yr (x) denotes the degree to
which x belongs to the set F. Among the different operations
on fuzzy sets [15], the following are important operations to
be used later.

(a) Complement operation:
ppe(x) = 1 — prp(x). (1)
(b) Translation of a fuzzy set F by a vector v € X:
U (k) (X) = pp(x —v). (2)
(c) Reflection of a set F:
p-r(x) = pp(=x). (3)
(d) Bold union of two sets F and G:
prag(x) = min[1, pp(x) + pg(x)]. (4)
(e) Bold intersection FV G:

prvg(x) = max[0, up(x) + pug(x) — 1]. (5)
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The degree of fitting of a set A into a set B is measured
by an inclusion grade operator

I(A,B)

7tlé)f( pacap(x)

(6)

=1+ min{0, infrex [pp(x) — pa (x)]},

where A is the bold union operator. According to
the above index, the degree of subsethood of two
crisp sets A, B is either 0 or 1, while for fuzzy sets
Cand D I(C,D) € [0,1]. Moreover, if C = D then
I(C,D) = 1 and in general 0 < [(C,D) =< 1.
Using such an index [7] has shown that the erosion
operation can be defined, and from it the dilation,
opening, and closing operators are obtained. In fact,
if f(n) is a multilevel and k(n) is a structuring
element with supports F and K and membership
function p¢(n) and pi(n), then we have

Erosion:
urek(n) = L(T (k;n), f)

- r’%il?{min[l, 1 - i)+ ps(n+)]}, 7
Dilation:
prek(n) = ucreo—ky(n)
= max{max[o,yk(i) +up(n—i) - 1] }, (®)
ieK
Opening;
prok(n) = p(rerek(n), )
Closing:
prek(n) = psoner(n), (10)

2.1. Fuzzification. To apply the above fuzzy morphological
operators, the multilevel signal must be converted to its
membership function. Thus, in case of an image, the
membership function will determine the degree of belonging
to categories ranging over different intensities. The member-
ship function yy thus maps the image intensity range R into
[0,1],

gy R —[0,1]
f(x>}’) - [011])

according to some criteria. Some of them are the Linear (L)
function

(11)

238 (f;a,r) = {:2: (12)
S-function
2
2({:2), as<f<b,
ps (f3a,b,r) = (13)
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FiGgure 1: Fuzzification functions: L, S, Z function.

and 7m-function [16, 17]. In signal representation, the
fuzzification needed to be single valued and as such we will
not consider the 7-function fuzzification. We propose a new
fuzzification method, called Z-function fuzzification, which
has the inverse effect of the S-function fuzzification. The Z-
function is

uz(fsa,b,r) = (14)

where y is the membership function and f,a,b, and r are
the grey level, and the minimum, middle, and maximum
value of the image grey level. Notice that these three
functions are all single valued and monotonically increasing
in the analysis interval (minimum to maximum of the
signal). The fuzzification functions for image is shown in
Figure 1. Given that the fuzzification functions chosen are
single valued, the defuzzification process is easily achieved by
the inverse mapping.

The application of these fuzzification techniques in signal
analysis varies. For instance, the S-function enhances the
image contrast about the b level, and as such it could be used
for edge enhancement. On the other hand, the Z-function
decreases the contrast or blurs the image about the b level.
The linear fuzzification does not alter the contrast, it simply
normalizes the image to a range of [0, 1].

To illustrate the application of S-function in edge detec-
tion, consider the fuzzy morphological gradient (FMG)

pa(n) = pser(n) — prek(n) (15)

obtained as an extension of the classical morphological
gradient first proposed by Serra [18] and Evans and Liu
[19]. Applying the FMG to the real signal of an image in
Figure 2(a), we obtain the lower figure where the peaks
correspond to the edges. To enhance these edges, we con-
sider the fuzzification of this result to achieve considerable
enhancement of the edges as shown in Figure 2(b).

3. Fuzzy Morphological Polynomial (FMP)
Representation

The FMP representation is analogous to the morphological
polynomial transform [20] and the orthogonal polynomial
representation [5]. Using fuzzy morphological opening we
obtain a representation similar to a polynomial represen-
tation by means of a geometrical decomposition of the
signal. One of the difficulties encountered in the process
was the selection of the structuring functions, which can
be either arbitrary or derived from the signal. In our case,
we get them from a complete set of ordered real-valued
orthogonal polynomials in 0 < n < N — 1. In the
examples, we use the discrete Legendre orthogonal (DLO)
polynomials [21]. It should be noted that the corresponding
membership functions are not necessarily orthogonal. Let
pr(n) be the membership function of a given signal, and
pk,(n) : 0 < i < N —1} be one-dimensional fuzzy structuring
functions, such that 0 < ug(n) < 1. Let {a;} be adaptive
parameters used to make the fuzzy structuring function
fit us (n) closely. To consider all possibilities, the fuzzy
structuring functions {yy,(n)} are derived from a shifted and
normalized set of orthogonal polynomials {y,(n)} and its
complementary functions {u,(n)}. Figure 3 illustrates the
shifted and normalized functions {y,,(n)} when we consider
the discrete Legendre orthogonal polynomials for N = 5.

The geometric decomposition of the given membership
function s (n) is obtained recursively as follows.

(i) Windowing with W (n):
py,(n) = pg(n) x W(n—vN). (16)

(ii) Adaptive recursive approximation of p, (n):

u, (n) =z (n) = o (1), (17)

where i = 0,1,...,N — 1 relates to the structuring
functions a;y; (n),v = 0,1,2,... refers to the window
W, and a; are in [0,1] adaptive parameter. Each
window is processed similarly.

The term agu (n) is very important in the above
decomposition as it provides a coarse approximation to the
signal membership function while {aiyki(n),i > 0} gives the
fine information of u} (). Applying (17) recursively we have

N-1
ph(n) = D7 ul s () + ity (n), (18)

i=0

where the last term corresponds to the residual or the part of
the signal that cannot be well represented with N function
pk,(n). We will show in the next section that the above
representation can be considerably simplified by choosing
values of {a;} such that

Hroak, (1) = aipiy, (n) (19)
to convert (18) into
N-1
o (n) = > ai (n) +pl, (n), (20)

i=0
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FiGure 2: Effects of S-function on edge enhancement (a) Original signal and edge detected, (b) S-function enhanced version (solid edges)

of (b).

FIGURE 3: Fuzzy structuring functions using DLO polynomials for
N =5.

representation analogous to a polynomial representation of
the windowed signal.

Properties. The following propositions will give insight on
how the FMP representation works and how to develop
formulas to calculate the {a;} coefficients. Here, we work
on a frame signal only, and thus the superscript v can be
omitted. Also, we use min,, max, to stand for ming<,<y_i
and maxp<p<n-_1. In the following propositions, we assume
Uz(n), ux(n) are both defined on 0 < n < N — 1, and
{a;} € [0,1] then

Proposition 1. The opening
y;omh(n):=InaX[0ﬂhyh(n)4-yc-l], (21)

where pe = 1+ min{0, mine[p,, (€) — aiux, (€)1}.

This proposition provides a simplification of the nonlin-
ear opening and yield p, an index of the degree of fitting of
the structuring function in the signal membership function.

Proposition 2. There exists an optimum {a;} < [0,1]
(denoted as a’) such that i (n) = afu, 0 <n <N -1,
if and only if the following optimum condition is satisfied

mein[/,tzi(f) —afu, ()] = 0. (22)
The value a} is calculated as
P /()
i _0<rlr5\?1{ . (€) ' (23)

w, (070

Let J(a;) = ming [y, (€) — aiuk, (€)] be the fitting cost function,
and refer to

J(af) =0 (24)

as the optimum condition. There are two direct corollaries
that follow from this proposition.
Corollary 1. If the optimum condition is met, then, there are
the following.
(i) If a; > a], then J(a;) <0,0 <n <N -1,
(ii) If a; < af, then J(a;) >0,0 <n <N —1,
(i) a = min,[pz, (n)].
(iv) 0 < af < max[p;(n)] <1, 0<i<N-1.
Corollary 2. If the optimum condition is met for . (n), then
ayt = m,ftx[‘uzo(n)]. (25)

Proposition 2 gives a solution to the optimal fitting
problem. In the next section, we develop a geometrically
intuitive solution.
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Proposition 3. For y;(n), i = 0,1,...,N — 1 in (17), the

following relation holds

(1) 0 < g, (n) < pz(n) <1,
(ii) min, [pz,, (n)] = 0.

This proposition shows that the residual at each decom-
position step satisfies the membership function conditions,
decreases, and at least in one point is zero.

Proposition 4. If the optimum condition is met for a; and a;,
then the only value of a; is zero to satisfy the following equations
Yzioak (1) = it (n), tzjoai (n) = azpr,(n), for 0 <i<N-1,
where iz (n) £ p,(n) — ajug, (n).

This proposition establishes that once geometrical fea-
tures are decomposed from an input membership function,
opening with previously used fuzzy structuring function
gives zero.

3.1. Implementation. The representation of us(n) according
to (20) requires the calculation of the adaptive coefficient
{a;} and choosing the appropriate structuring functions.
There are two possible methods to find the coefficients {a;},
the first one is based on a geometrically intuitive argument,
while the second uses Proposition 2 given before. Consider a
given window, and for simplicity let us not indicate it in the
equation.

3.1.1. Calculation of {a;}

Iterative Method. Let a] be the gth iteration of a; (a} as
the optimum) when attempting to optimize the fitting cost
function

J@) = min [p(0) - aw,(0)], (26)

with respect to a;, the optimum value a;° is obtained when
the cost is zero, and such that p .k, (1) = a; px, (n).

According to (26) and Corollary 1, the following algo-
rithm can be used to find the optimum value of a;:

= max(p, (m)],
](a?) = min

OsesN—l[#zi(e) a a? #kf(e)]’ (27)
a?“ = a? +I(a?),

where g > 0. That J(al) converges toward zero when g
increases can be established. If we assume that a! > a¥, then
] (a?) < 0 (Corollary 1), and, thus
16 = i [0~ (1) 0]
(28)
> min [‘uzi(E) —al ‘ukl(€)] = ](a?).

0<f<N-1

Direct Method. As in Proposition 2, we can compute
a’ using (23). This method gives the same a as the iterative
method, but in a faster way.

3.1.2. Choosing Structuring Functions. Given shifted and
normalized orthogonal polynomials {, (1)} and their com-
plements {yg (1)}, we need to determine which of these two
should be used as the structuring functions {y,(n)} for the
representation. This needs to be done due to the positivity
condition on the adaptation coefficients {a;}. We decide this
by comparing the reconstruction error corresponding to the
coefficients attached to each of these structuring functions.

Let the coefficients a; and d; be the optimum values
for pg(n) and pg(n), respectively. We want to choose the
optimum value which gives us the smaller reconstruction
error. Let the reconstruction error membership function
corresponding to a; and a; be, respectively,

pe, (1) = piz,(n) — aipy, (n),
i (29)
pe,(n) = piz,(n) — Gipaye(n).
It can be easily shown that
N-1 N-1
i Y pe(n) = > pge(n), (30)
n=0 n=0
where «; is found to be
=N (31)
zn =0 /”g,(”)
(notice ¢y = 0 and 1 — pg, (1) = 0,50 = 1). If
t/l\,' < 5ioci, (32)
then we have that
N-1 N-1
D te(n) = D pe,(n). (33)
n=0 n=0
In that case, we then let o; = d; and py,(n) = 1 — the, (1).

Otherwise, we choose a; = @; and pu, (n) = g, (n).

4. Two-Dimensional Fuzzy Morphological
Polynomial Representation

The FMP representation can be easily generalized to two
dimensions. Let uy(m,n) be the given signal membership
function and, yk, (m,n), 0 < & < MN — 1 be ordered two-
dimensional fuzzy structuring functions, based on orthogo-
nal polynomialson 0 < m < M -1, 0 <n < N — 1. The
geometrical decomposition algorithm becomes

u' (myn) = ug(m,n) x W(m — uM,n — vN),
(34)
pay (myn) = p2y(m,n) — uz,, e, (m,n),
where @ = 0,1,..., MN—1isanindex related to the adaptive

structuring function ag ‘uk(a(m,n); and u, v are indices of
the block being considered. The above procedure is repeated
until the residual is insignificant or & = MN — 1. Each



block is decomposed similarly. As in (18)—(20), our two-
dimensional FMP representation for a frame signal is

MN-1

uer(mn) = > agup (myn)+ s’ (myn). (35
=0

Notice that the &, abbreviation of @(j, j), is an order-
ing function used for the two-dimensional structuring
functions. The properties of one-dimensioned FMP can
be extended to two dimensions easily, thus, we omit the
derivation here. As in the one dimension, the optimum
condition in the two dimensions is

Iriitn[yzg(s, 1) — ajuk, (s, )] = 0, (36)
where a; is an optimum value to satisfy this equation.

It is understood from the previous section that the
one-dimensional algorithm can be extended to two-
dimensional provided the generation and ordering of the
two-dimensional structuring functions are determined. Sep-
arable and nonseparable bivariate orthogonal polynomials
may be used to generate two-dimensional structuring func-
tions. Consider the separable structuring functions

pi,; (m,n) = py, (m) g, (n) (37)

obtained from the one-dimensional structuring functions.
Figure 4 shows an example of two-dimensional separable
structuring functions with size of 5 x 5.

An inherent problem in two dimensions is the ordering
of the structuring functions, which in the one-dimensional
case occurs naturally. Our approach first investigates the
structuring function properties and establishs the possible
guides to the order of the two-dimensional structuring
functions and then comes out a procedure to get the solution.

Proposition 5. If one multiplies two normalized one variate
structuring functions, derived from the discrete Legendre
orthogonal polynomials, uy,(m) of size M and py,;(n) of size N
as two-dimensional structuring function, that is, s (m,n) =
pe, (M), (n) with dimension of M X N, then one can have the
following properties:

(1) py; (myn) = px,;(m, n) for all i, j, m, n.
(i) pkyy (M, n) = p, ;(m, n) for all i, j, m, n.

(iii) pry, (m, 1) = /,tk,.,](m,n) for all i, j,m,n.

This proposition gives properties of the separable
two-dimensional structuring functions based on one-
dimensional DLO polynomials.

Proposition 6. If optimum condition is met for ag, ; and
‘%(s,t) and piy, (m,n) < pi,, (m,n) for a pair (i, j), (s,t)
and for all m, n, then the only value of ag ;) is zero to satisfy
the following equations:
*
Hz060050)) thgy) (m,n) = %)) Mk@(i,j>(m’”)’
(38)
_ %
Pz tip, (m,n) = ag, .”k@(s,”(m’”)’
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where Uz, (m,n) Hzo ) (M, 1)
e(m,n), with0 < e(m,n) <
that 0 < yzg(m(m,n) < 1.

- a%(l}j) Mk@(z,})(m’n) -
1, for all m,n and arbitrary such

This proposition gives guides of the structuring function
order. If the structuring function has higher amplitude values
than the other one at every point, then the structuring func-
tion must have a lower order otherwise the decomposition
gets zero.

By observation, the factor in addition to the amplitude
which affect the natural order of the one-dimensional struc-
turing function is its complexity. Based on the properties and
the observation, we come up with our rationale solution.
We first define the amplitude and complexity index to
quantitatively measure the structuring function amplitude
and complexity characteristic.

Definition 1. An amplitude index (AI) of a geometrical
structuring function g, (m,n) of size M X N is defined by
the summation of amplitude at every pixel as

N-1M-1

= > >, (m,n). (39)

n=0 m=0

AI(i, §)

Definition 2. A complexity index (CI) of a geometrical
structuring function g, (m,n) of size M X N is defined by
the distance between the adjacent pixel in the horizontal,
vertical, and diagonal directions as

M- _
= Z Z ‘ka,,-(m,n)—uk,.,j(m,n+1)‘2

2N- 2
Z “uki,j(m, n) — ‘ukiyj(m + 1,n)‘

‘.ME

=
b
=z
5]

2
+ “uki»j(m,n)—‘uki,j(m-i-l,n+1)‘

3
I
f=}
=
Il
(=]

b
=
.

2
+ ‘,uk,,,(m, n) —yk[,j(m - 1Ln+ 1)} .
0

3
I

n

(40)

Based on the CI definition, the membership function is
the simplest (constant) only if CI(i,j) = 0; if two fuzzy
structuring functions have the same geometrical structures
then they have the same complexity index CI(i, j) value.

The effects of the amplitude and complexity index of
the structuring function to order are that the smaller the
amplitude index, the higher the order of the structuring
function, and the greater the complexity index, the higher
the order of that structuring function. We combine these
definitions and their effects and come out, the structuring
index (SI).
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Definition 3. A structuring index (SI) of a structuring func-
tion g, (m, n) with amplitude index AI(i, j) and complexity
index CI(3, j) is defined as

SI(i, j) = 0.5[ N (ALG, ) ') + M (CIG 7)) |, (D)

where 0.5 is average factor and N (-) is a normalization
operator over the structuring functions.

Notice that the value of SI is in [0, 1].
Based on SI(j, j), the order of the fuzzy structuring
functions is

(i, j) < D(s,t),

i SI(i, j) < SI(s, 1),
(42)
or SI(i, j) = SI(s, £),

wheni<sori=s, j<t.

We can get the order of the two-dimensional fuzzy struc-
turing functions from one variate DLO polynomials. As an
example, this will order 5 X 5 two-dimensional structuring
functions as Table 1. Our ordering method, considering both
the amplitude and intrinsic geometrical complexity of the

TaBLE 1: Order of the structuring functions iy, ; (m, n) of size 5x5.

i
0 1 2 3 4
0 (0) (1) (4) (6) (16)
1 (2) (3) (8) (10) (8)
! 2 (5) 9 (12) (13) (20)
3 (7) (11) (14) (15) (22)
4 (17) (19) (21) (23) (24)

structuring function, is more reasonable than the commonly
used close-neighbor ordering method [22], considering only
the index of the structuring functions.

5. Applications

In this section, we show how the FMP representation is
applied to data compression and fractal dimension estima-
tion. We compare the data compression results with those
using the discrete cosine transform (DCT) method [23], and
the fractal dimension estimation results with those using
morphological covering (MC) method [24] and differential
box-counting (DBC) method [25].



TABLE 2: Signal to noise ratio (dB) for one-dimensional FMP.
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TaBLE 3: Compression ratio for one-dimensional FMP.

L Z S
window sizes
3 4 5 3 4 5 3 4 5

L Z S
window sizes
3 4 5 3 4 5 3 4 5

12553 23.43 21.84 25.53 23.43 21.84 25.53 23.43 21.84
23272 28.59 26.04 32.46 28.43 25.93 32.71 28.58 26.01
334.60 29.57 27.09 33.37 29.16 26.65 33.74 29.17 26.16
4 30.07 27.55 29.67 27.20 29.71 26.52
5 27.95 27.56 26.56

10.329 0.246 0.197 0.316 0.236 0.188 0.329 0.246 0.197
20.492 0.362 0.286 0.356 0.271 0.220 0.542 0.389 0.303
30.555 0.425 0.338 0.365 0.281 0.232 0.636 0.483 0.333
4 0.470 0.355 0.287 0.237 0.498 0.397
5 0.379 0.241 0.428

5.1. Data Compression. The application of the FMP repre-
sentation for data compression is shown in Figure 5. The
signal f(n) is fuzzified by # and then processed by the FMP
decomposition to get the adaptive coefficients. The signal
membership function is reconstructed and fN(n) is recovered
by the defuzzifier O. The block diagram for two dimensional
signals is similar. The pepper image with size of 512 x 512
shown in Figure 6 is used as a test image.

In the first example, the one-dimensional FMP algorithm
is used to process the test image horizontally. We consider
different fuzzification methods, window lengths. The fuzzy
structure functions are obtained from DLO polynomials as
shown before. The performance of our representation is
evaluated by the “peak-to-peak” signal to noise ratio (SNR
dB) and the entropy-based compression ratio (ECR). The
entropy-based compression ratio (ECR) is defined as

total L.c.of bits of compressed signal S Mil;

total l.c.of bits of original signal Myl
(43)

ECR =

where N is the number of subblock signals, M; is the number
of samples of the subblock i, [; is the bits/sample required to
code subblock i, I7 is the bits/sample required for the original
signal, Mt is the total number of samples of the original
signal. The average bits/sample /; required to code a subblock
signal is defined by entropy as

G-1

li=—=2> pjlogp; (44)

j=0

where p; is a probability of a sample with amplitude j, G
is the greatest amplitude of the signal. In Table 2, signal-
to-noise ratio (SNR dB) values for different fuzzification
methods and window sizes are shown. In Table 3, the
entropy-based compression ratio (ECR) for different fuzzi-
fication methods and window sizes are shown. These results
show that our one-dimensional algorithm has a high data
compression when using L or Z fuzzification methods. The
results also indicate that by using the Z fuzzification we
achieve a higher compression ratio with good SNR than
those results with L fuzzification.

In the second example, we apply our two-dimensional
FMP algorithm to process block by block the test image. The
fuzzy structuring functions are generated by multiplying two
one-dimensional structuring functions derived from DLO

TaBLE 4: Signal to noise ratio (dB) for two-dimensional FMP.

L Z S
window sizes
3X3 4X4 5X5 3X3 4X4 5X5 3X3 4%X4 5X5
22.41 20.29 18.73 22.41 20.29 18.73 22.41 20.29 18.73
2 2454 21.89 20.69 24.56 21.91 20.66 24.49 21.84 20.67
3 27.80 24.15 21.89 27.75 24.13 21.86 27.68 24.01 21.82

All29.01 26.12 23.05 28.89 25.04 22.66 28.79 25.91 22.57

TaBLE 5: Compression ratio for two-dimensional FMP.

L Z S
window sizes
3X3 4X4 5X5 3X3 4X4 5X5 3X3 4%X4 5X5
0.109 0.061 0.039 0.104 0.058 0.037 0.109 0.061 0.039
0.160 0.088 0.057 0.115 0.065 0.043 0.178 0.095 0.061
3 0.199 0.109 0.069 0.123 0.071 0.046 0.230 0.123 0.076

All0.281 0.163 0.119 0.128 0.075 0.050 0.370 0.207 0.152

polynomials. The order is determined by the structuring
index method discussed before. In Table 4, we show the
signal-to-noise ratio (SNR dB) for different fuzzification
methods and window sizes. In Table 5, the entropy-based
compression ratio (ECR) for different fuzzification methods
and window sizes is shown. Those results indicate that our
two-dimensional algorithm has a higher performance when
using L and Z fuzzification methods. The results also indicate
that the Z fuzzification achieves a higher compression ratio
with good SNR than the L fuzzification. To illustrate the
results, we show in Figures 7(a) and 7(c) and Figures 7(b)
and 7(d) the FMP component and the corresponding error
images, when using window size of 1 X 3 and 3 x 3, for L-
function fuzzification.

Since there is no published papers, as we know, using
the fuzzy morphology approach for data compression, we
want to show the high performance of our algorithm by
comparing with those obtained by commonly used high
performance method such as discrete cosine transform
(DCT) [23]. In order to have a fair comparison, we use
the coefficients with high energy of the DCT and FMP
such that the “peak-to-peak” SNR of the reconstructed
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FIGURE 5: FMP representation block diagram.
TasLE 7: Comparison for two-dimensional FMP and DCT.
FMP Z DCT
3x3 4x4 5X5 3X3 4x4 5X5
SNR (dB)  28.89 25.04  22.66  28.70  24.89 2254
ECR 0.128 0.075 0.050  0.147  0.092  0.061
TaBLE 8: Computation Complexity of FMP and DCT.
Operation FMP DCT
Mul./Div. N2 3N?+3N
Add./Sub. 4N 2N*-N
Min./Max. N?+2N —
F1GURE 6: Original Image for analysis. Lut/Chk N*-N N?
Total 3N? +5N 6N? +2N

TaBLE 6: Comparison for one-dimensional FMP and DCT.

FMP Z DCT
3 4 5 3 4 5
SNR (dB) 3246  29.67 27.56 3231 29.54  27.40
ECR 0.356  0.287  0.241 0.415 0312 0.262

image which is closely used in [26, 27], then we compare
their data compression ratio at each different window size.
The comparisons of SNR (dB) and ECR are shown in
Tables 6 and 7 for one and two dimension, respectively.
Those results indicate that our FMP representation using Z
fuzzification achieves the higher data compression ratio that
of DCT. We also provide, as an example, the one- and two-
dimensional reconstructed images in Figure 8 using the FMP
representation with Z fuzzification and the DCT method,
with window size of 3 and 3 X 3 cases, for visual quality
comparison purpose.

Figures 8(a) and 8(c) and Figures 8(b) and 8(d) show
the reconstructed images for one and two dimensions,
respectively. Figures 8(a) and 8(b) show the reconstructed
images using FMP with Z fuzzification. Figures 8(c) and
8(d) show the the reconstructed images using DCT. Those

results indicate that the visual quality of using our FMP
representation with Z fuzzification and DCT method is sim-
ilar. However, our FMP representation with Z fuzzification
achieves higher data compression ratio (fewer bits/pixel).
For computation complexity comparison, Table 8 shows the
required operations including addition/subtraction, multi-
plication/division, and minimum/maximum and look-up
table/check-up for FMP and DCT. Assume a window size
of N is used. Notice that the multiplication/division and
addition/subtraction operations contribute more computa-
tion complexity than the other operations. We can see clearly
that the FMP requires less number of operations than that of
the DCT.

5.2. Fractal Dimension Estimation Using FMP. To estimate
the fractal dimension (FD) of one- or two-dimensional
signals, we obtain the FMP representation of signal frames
of increasing dimension. This representation is used to find
an approximate cover of the windowed signal. It will be
shown that when using the discrete Legendre polynomials as
structuring functions, the covers can be obtained recursively
providing a better FD estimation at each recursion. Our
procedure can be easily extended to two dimensions.
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(c)

(d)

FIGURE 7: One- and two-dimensional FMP representation: (a) and (c) one-dimensional FMP component and error images, respectively, (b)
and (d) two-dimensional FMP components and error image, respectively.

5.2.1. One-Dimensional Estimation. Let ug(n), 0 < n <
M — 1, be the membership function of a signal f(n). For
each of the signal frames, we will use {y,(n)}, 0 < n <
[0,N — 1], as structuring functions based on the discrete
Legendre polynomials (see Figure 3 when N = 5). The
FMP algorithm provides the adaptation parameters {a;}, for
each frame membership function y,(n). Let then the support
length of us(n) be S = M — 1 (if we know the sampling
period Ts then S = (M — 1)T;) which is divided into an
integer number of windows of increasing length r = N — 1
(orr = (N — 1)Ts when T, is known).

For each of the frames, we will attempt to come up with
a cover that encloses the signal as tightly as possible. The
length of the cover can be calculated recursively from the
FMP adaptive coefficients and the values of the structuring
functions. For a frame v with corresponding length r, we
have that (See Figure 9 when r = 4)

vip) =
e()(r) - S:

d v 2

ti(r) = Z\/(#ki(j) —u (= 1)) () + <€’%(r)) i
j=1

(45)

where £5(r) is the geometric length corresponding to the
constant FMP decomposition, and i = 1,2,...,I, I <

r corresponds to the ith FMP geometric decomposition.
j = 1,2,...,r corresponds to the point of the structuring
function. The length calculation is done in each of the r
segments in which the window is divided (See Figure 9). The
height of the the cover d"(r) € [0, 1] can be found exactly in
the case where p}(n) is either a constant or has a great deal
of variation. In the first case, d"(r) = 0, and in the second,
d"(r) = 1. However, it should be noted that in these two
cases, we will have aj = 0, i > 0 that is only a constant
approximation is possible. In cases different from the above
ones, we cannot calculate d¥(r) exactly although a good
estimate of it can be obtained as the difference between the
maximum and minimum of the residual u}, (1) (see (18))
obtained after the Ith decomposition. Thus, the diagonal of
the cover in frame v

' (r) = (@ (1) + (d(r)) (46)

can be used as an estimate of the length of the signal for that
corresponding r.

Summing up the number of instruments contributions
for each r,

[S/r

Qr) = >

v=1

ler(r)
ty(r)’

(47)
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FIGURE 8: Reconstruction images: (a) and (c) for one-dimensional FMP Z fuzzification and DCT method, respectively, (b) and (d) for

two-dimensional FMP Z fuzzification and DCT method, respectively.

ap

ao

FIGURE 9: Frame signal length approximation.

Using least-square fitting in the log(Q(r)) versus log(1/r)
graph for various values of r, the slope of the line will
correspond to an estimate of the FD.

Remarks. (1) In order for the above discrete algorithm to
work properly, we need to choose r so that §/r is an integer
for every chosen value of r. Results vary for different choices
of r due to the global linear fitting. A better estimate might be

obtained by doing the the linear fitting piecewise, obtaining
a better estimate for linear fitting for small rs.

(2) If ug(n) is so smooth that the FMP gives a; = 0,
0 < i < I, for every v, then we have that d"(r) ~ 0, and
¢'(r)/€y(r) = 1 and, therefore, Q(r) = §/r for any value of r.
The estimation of the slope of log(Q(r)) versus log(1/r) for
two different values of r gives that the fractal dimension D is
one.
(3) On the other hand, if 1 (1) varies widely everywhere,
then the FMP gives aj = 0,0 < i < I, for every v, but due to
the large variation d*(r) ~ 1, in which case €/ (r) = €5(r). We

will then get that
e _ [, 88
o) " 1+ 2~ (48)

after substituting d¥(r) and £5(r), and using the fact that
S/r > 1 (i.e., we divide S into several windows) which will
give us Q(r) = $2/r?, so that the slope estimation for two
different values will give a fractal dimension close to two.

(4) According to 2 and 3 above mentioned we have that,
except for very smooth and very rough signal, the FD will be
a value between 1 and 2.
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FiGgure 10: WCF generated signals with different FD.

TaBLE 9: Estimated FD of WCF signal.

TrueD 1.2 1.3 1.4 1.5 1.6 1.7 1.8
OurD 1.237 1.271 1358 1.505 1.648 1.721 1.825
MCD 1.227 1.327 1424 1515 1.606 1.701 1.797

(5) Due to the significance of the constant of the FMP
approximation, a very efficient algorithm can be found when
only that component is considered. We then have that

e(r) =\ (€(1)? + (d (1)

[S/7] dV(T) 2
Qr) = > 1+(%(T)) ,

v=1

(49)

from which estimation of the FD can be done as before.

To test our algorithm, artificial fractal signals with known
FD are generated using the weistrass cosine function (WCF)
method [24, 28]. Figure 10 shows some WCF generated
signals, and when we apply our procedure to them. The
results are shown in Table 9. For comparison purpose, the
results of using MC method [24] are also shown in the table.

5.2.2. Two-Dimensional Estimation. Different from the one-
dimensional case, the estimation of the FD of a two-
dimensional signal can only be done using the constant and
linear term of the FMP approximation. Using just the first
three terms of the approximation, we have for an r X r block
of a square image of dimension S x S that get the following
recursive formulas:

o= (),

AP (1) = (@) AL () + (AL ),

EURASIP Journal on Advances in Signal Processing

where {a;”'} are coefficients found using the FMP. Notice
that these equations are similar to those in the one-
dimensional case, except that in this case the block is
not subdivided as we did with the window in the one-
dimensional case. A cube covering the signal can be thought
of having a base with area A}""(r) and an approximate height
of d*"(r) equal to the difference between the maximum and
the minimum of y¥(n). The diagonal plane of this cube has
an area equal to

AR (r) = (AP (1)) + AL (N(d(r), (51)

a formulation analogous to that in the one-dimensional case,
when we use only two components

AV (r)
A

Q(r)=>

u,v

(52)

Similar comments as those made in the one-dimensional case
can be made here. As before, $/r must be an integer and the
FD varies for different choices of r. Likewise a very smooth
signal has an FD close to 2, and a very rough signal has an FD
close to 3.

Finally if in the FMP approximation we only use the 4
component, the above algorithm simplifies to

= (L),

A% () = (A5 () + AP (D@ (), (s3)

B (d*(r))’
Q(r) = % 1+ T;

from which we can find an estimate of the FD of the given
two-dimensional signal.

We then apply our algorithm to estimate the FD of the
Brodatz texture images [29] shown in Figure 11. The code of
texture image is same as in the Brodatz album. The results
are shown in Table 10. This example shows the applicability
of our algorithm to estimate FD to images. We also show the
results of using DBC method [25] for comparison purpose.
The results of using these two methods are similar.

6. Conclusion

A novel signal representation using fuzzy morphological
approach has been proposed in this paper. Using the fuzzy
morphological operators and a set of structuring functions,
a decomposition and reconstruction procedure, similar to
polynomial transform [5, 6], is developed for the fuzzified
signals. Through using the fuzzy morphological approach, a
signal can be efficiently represented with several additional
advantages, such as lower computation complexity and
flexible in using the different fuzzification methods to extract
signal geometrical information for a better signal repre-
sentation. Furthermore, our representation can be imple-
mented very fast by parallel. We successfully use the fuzzy
mathematical morphology [7] approach to extend the work
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D03

D24 D28

13

D92
F1GUre 11: Texture images.
TasLE 10: Estimated FD of texture images.
D03 D04 D05 D09 D24 D28 D33 D54 D55 D68 D84 D92
Our D 2.55 2.69 2.49 2.67 2.54 2.64 2.51 2.46 2.60 2.7 2.72 2.64
DBCD 2.60 2.66 2.54 2.59 2.54 2.55 2.23 2.39 2.48 2.52 2.60 2.50

of the Pitas and Venetsanopoulos [8-10] and of Song and
Delp [11] on morphological signal representation. We have
applied our representation to data compression and fractal
dimension estimation for one- and two-dimensional signals,
the experimental results have shown the high performance
in data compression and applicability in estimating fractal
dimension as compared with those using the DCT [23], MC
[24], and DBC [25] methods.

Appendix
Proof of Proposition 1. By definition

MZ,‘Oll[k,‘ = H(Z,‘@ﬂik,‘)@a;k," (A'l)

According to fuzzy morphological erosion

/'lZi@aiki(n) = £r1111+1}{m1n[1, - ailk; (f) + /Jz,.(n + e)]}
- mein{min[l, 1 — aip, (€) + uz, (0)]} (A2)
= uc(n).
Now
Yeoak, (1) = e’neyeg{maX[O, aipy (€) + pcd(n - €) — 1]}
(A.3)

= max[O, a,-,uki(n) + e — 1].
Thus, pzeak (n) = max[0, aiyy (n) + pc — 1]. O
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Proof of Proposition 2. From Proposition 1,

aiy (n) + pe — 1,
[fiz,ca;k,(n) =
0, aiphy, (n) + pc —

iy (1) + pe — 120,

1<0,
(A.4)

One want pizoak,(n) = a,-‘uki(n). Since ajpi,(n) = 0, for all n,
then a sufficient condition for this to happen is to set
yc = 1. From Proposition 1, one can have y. = 1 +
min {0, mine [y, (£) — aiy; (€)]}. That yc = 1 means that
min {0, mine[y,,(€) — a,-/,tk[(E)]} = 0, which implies that

a,-‘uki(E)] > 0. (A.5)

min [ﬂz,(é’) -
The optimum (maximum) value of a; (denoted as aj*)
satisfying (A.5) is reached when the equality holds.

(1) Existence of a}*.
By contradiction, assume for all a; € [0, 1] such that
ming [y, (€) — a,»‘uki(e)] # 0. There are two cases:

(a) ming[pz(€) — apy (O)] > 0. = p;(€) >
aiyki({,’) for all ¢, which is not true, in particular
when a; = 1 and y,(¢) = 1 for some ¢.

(b) when ming [p,(€) — aip; (€)] < 0 is similarly
shown.

(2) Uniqueness of a;*.
ming[pz(€) — aipy (£)] =0 =
Yz, (€) = aiyki(t’), Ve (A.6)
If pi,(€) = 0, for some ¢ € [0,N — 1], then (A.6) is

always satisfied, so one needs to consider only when
pi (€) > 0, for which a; < p,(€)/u,(€), Therefore,

x )
i 0<Icglz{rl {‘uk (€)

1, (0)

(A7)

O

Proof of Corollary 1. (i) It follows from Proposition 2. If a; >
af, then
1z (€) — aipyy (8) < p,(€) — af py (£), (A.8)

taking minimum over ¢, we get J(a;) < J(a;") = 0.

(ii) If a; < af can be similarly shown.

(iii) By Proposition 2 and ui,(n) = 1.

(iv) By the antiextensive property of opening and
optimum condition piz,.ax, (1) = a;f ., (n) < ptzl(n)

By Proposition 1y ..k, (n) = 0 = 0<a; /,tki(n) <
Yz (n). Thus, 0 < a*max, [‘uki(n)] < maxn[yzi(n)] < 1,and
0 <af <max,[p, (n)] <1. O

Proof of Corollary 2. By Proposition 2 and p,(n) = 1. aj =
min, [pz (n)]. Thus, aj = max,[p, (n)]. O

EURASIP Journal on Advances in Signal Processing

Proof of Proposition 3. (i) According to the antiextensive
property of opening pzoak (1) =< Yz (n) then pg, (n) =

ez (1) = Uzoak,(n) = 0,50 py,, (n) < pg(n).
(ii) By (17) and Proposition 2, we get
nlnin[luziﬂ (I’l)] = mnin[‘uzi(n) - ‘”fo’ﬂiki(n)] = (A9)
O

Proof of Proposition 4. This can be proven easily using (22)
and (23). ]

Proof of Proposition 5. By definition,

ti;; (m, n) = pg, (m)pg; (n). (A.10)
We have
tko; (M, n) = pg, (m) g, (1)
(A.11)
> pk,(mpx;(n),  Vm,n,i,j.
Notice that p, (€)= gy (£), for all i, €.
(ii) and (iii) are similarly shown. L]

Proof of Proposition 6. By optimum condition,

Heownasisn ty,, (M 1) = Qg by, (M 1)
(s
{#zw(p q)} 0
Hegter gy o o (p.q)
{M,J (P>q) — agi jybksiy (P> ) — (p,q)}
b B o Hkyon (P> Q)

{MU (p>a) — ag; jybkgiy (P> q)}
rn1n

g pq Pk (p-q)

< min

{."‘Zas(i,j) (P’ q) - a:{r(i,j)[’lkgb(i,j) (P’ q) }

P ,
Py i) (PD) 70 Hessp (p9)

_ * ES

= AGi,j) ~ D))

=0.

(A.12)

Therefore, ag,=0. O
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