
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2010, Article ID 927920, 11 pages
doi:10.1155/2010/927920

Research Article

Parallelism Efficiency in Convolutional Turbo Decoding

Olivier Muller,1 Amer Baghdadi,2 andMichel Jézéquel2

1TIMA Laboratory, INP Grenoble, 46 avenue Félix Viallet, 38031 Grenoble, France
2 Institut Telecom, Telecom Bretagne, Université Européenne de Bretagne, UMR CNRS 3192 Lab-STICC,
Technopôle Brest Iroise, CS 83818, 29238 Brest, France

Correspondence should be addressed to Amer Baghdadi, amer.baghdadi@telecom-bretagne.eu

Received 25 May 2010; Revised 20 October 2010; Accepted 21 November 2010

Academic Editor: Norbert Goertz

Copyright © 2010 Olivier Muller et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Parallel turbo decoding is becoming mandatory in order to achieve high throughput and to reduce latency, both crucial in emerging
digital communication applications. This paper explores and analyzes parallelism techniques in convolutional turbo decoding
with the BCJR algorithm. A three-level structured classification of parallelism techniques is proposed and discussed: BCJR metric
level parallelism, BCJR-SISO decoder level parallelism, and Turbo-decoder level parallelism. The second level of this classification is
thoroughly analyzed on the basis of parallelism efficiency criteria, since it offers the best tradeoff between achievable parallelism
degree and area overhead. At this level, and for subblock parallelism, we illustrate how subblock initializations are more efficient
with the message passing technique than with the acquisition approach. Besides, subblock parallelism becomes quite inefficient
for high subblock parallelism degree. Conversely, component-decoder parallelism efficiency increases with subblock parallelism
degree. This efficiency, moreover, depends on BCJR computation schemes and on propagation time. We show that component-
decoder parallelism using shuffled decoding enables to maximize architecture efficiency and, hence, is well suited for hardware
implementation of high throughput turbo decoder.

1. Introduction

Turbo decoding [1] is increasingly proposed in emerging and
future digital communication systems, for example, fiber-
optic communication, wireless communication, and storage
applications. Practical turbo decoder designs, as the one used
for IEEE 802.16e, Long-term Evolution (LTE) or IEEE 802.11
standards, require high data throughput (several hundred
of Mbps) and low latency (ten ms or so). To cope with
these requirements, turbo decoder implementations have to
be massively parallel. Therefore, the parallelism involved in
implementations of this iterative process has to be carefully
analyzed through real industrial constraints such as area and
throughput.

In iterative decoding algorithms, the underlying turbo
principle relies on extrinsic information exchanges and iter-
ative processing between different Soft-Input Soft-Output
(SISO) modules. Using input information and a priori
extrinsic information, each SISO module computes a pos-
teriori extrinsic information. This constitutes the a priori
information for the other modules and is exchanged via
interleaving and deinterleaving processes. For convolutional

turbo codes, the SISO modules process the BCJR or forward-
backward algorithm [2] which is the optimal algorithm for
the maximum a posteriori (MAP) decoding of convolutional
codes. So, a BCJR SISO firstly computes branch metrics
(or γ metrics), which represent the probability of a tran-
sition occurring between two trellis states. Then a BCJR
SISO computes forward and backward recursions. Forward
recursion (or α recursion) computes a trellis section (i.e.,
the probability of all states of the trellis) using the previous
trellis section and branch metrics between these two sections,
while backward recursion (or β recursion) computes a trellis
section using the future trellis section and branch metrics
between these two sections. Finally, extrinsic information is
computed from the forward recursion, the backward recur-
sion and the extrinsic part of the branch metrics. Therefore,
turbo decoders, because of iterative decoding process and
BCJR complexity (bidirectional recursive computing), imply
optimal parallelism exploitation in order to achieve high-
data rates required in present and future applications.

Parallelism in convolutional turbo decoding has been
widely investigated in the literature over the last few years.
At a fine-grain level, parallelism was investigated inside

2 EURASIP Journal on Advances in Signal Processing

the BCJR algorithm on elementary computations [3, 4].
At a coarse grain level, explored parallelism techniques are
based on frame decoding schemes. State-of-the-art research
is mainly focused on parallel processing of frame subblocks
and on the parallel processing issues, such as computation
complexity [3, 5], memory saving [3, 5, 6], initializations
[5, 7], or on-chip communication requirements [8, 9].
Recently, a new parallelism technique named shuffled decod-
ing was introduced to process in parallel the component
decoders [10, 11]. However, interactions between these
diverse parallelism techniques and different granularity levels
are rarely discussed. Thus, predicting the combination of
these parallelism techniques, in order to reach optimal
parallelism for given performance requirements, becomes a
complex task of hardware implementation.

In this paper, we propose a three-level classification
of existing parallelism techniques in convolutional turbo
decoding with the BCJR algorithm and analyze more thor-
oughly the second level which includes subblock parallelism
and component-decoder parallelism. Performance analyses
of these techniques are conducted separately on the basis of
parallelism efficiency criteria. Then, efficiency of combined
parallelism techniques is improved collectively by taking into
account interactions between these parallelism techniques.

The rest of the paper is organized as follows. The next
section presents definitions of parallelism metrics that will be
used in the paper. Section 3 analyzes all parallel processing
techniques of turbo decoding and proposes a three-level
classification of these techniques. In Sections 4 and 5,
subblock parallelism and component-decoder parallelism
(shuffled decoding) are, respectively, analyzed on the basis of
parallelism efficiency criteria. Finally, Section 6 summarizes
the obtained results and concludes the paper.

2. Definitions of ParallelismMetrics

Parallelism corresponds to the simultaneous execution of
several independent processes in order to reduce processing
time. Thus, due to dependencies in a real system, parallelism
exploitation is naturally limited. In practice, algorithms
always contain a sequential and incompressible part (e.g.,
processing synchronization) and a parallelizable part. The
speedup S(d) of an algorithm is defined by

S(d) = t(1)
t(d)

= 1
rs + rp/d

, (1)

where t(1) is the execution time of the algorithm without
parallelism and t(d) its execution time using a parallelism
degree d. The speedup generally follows the well-known
Amdahl’s law [12], where rs is the sequential part ratio and
rp the parallelizable part ratio (such as rs + rp = 1)

For on-chip implementation purpose, parallelism has to
be evaluated according to other criterion than speedup (e.g.,
accuracy, flexibility, latency, consumption, and chip area).
In current implementations, the most important criterions
are throughput and chip area. Therefore, in this paper,
the efficiency of convolutional turbo decoder architectures,

denoted Me, is evaluated through execution time t and chip
area C for equivalent results in terms of error-rates

Me = 1
tC

. (2)

Let E(d) be the efficiency of a parallelism defined as

E(d) = Me(d)
Me(1)

= t(1)C(1)
t(d)C(d)

= S(d)
O(d)

, (3)

where Me(d) is the efficiency of a system using a parallelism
degree d for the studied parallelism and Me(1) its efficiency
without this parallelism. This metric can also be seen as the
ratio between decoding speedup of a parallelism and its area
overhead O(d) = C(d)/C(1), where C(d) (resp. C(1)) is the
chip area of the system using a parallelism degree d (resp.
without parallelism).

Since parallelism implies the duplication of only one part
of the architecture (the ratio of the duplicated part in a
nonparallelized chip area is denoted rdup), area overhead can
be rewritten

O(d) = 1 + rdup(d − 1). (4)

3. Parallel Processing Levels

In turbo decoding with the BCJR algorithm, parallelism
techniques can be classified at three levels: BCJR metric level
parallelism, BCJR SISO decoder level parallelism, and Turbo-
decoder level parallelism. The first (lowest) parallelism level
concerns symbol elementary computations inside an SISO
decoder processing the BCJR algorithm. Parallelism between
these SISO decoders, inside one turbo decoder, belongs to the
second parallelism level. The third (highest) parallelism level
duplicates the turbo decoder itself.

3.1. BCJR Metric Level Parallelism. The BCJR metric level
parallelism concerns the processing of all metrics involved
in the decoding of each received symbol inside a BCJR
SISO decoder. It exploits the inherent parallelism of the
trellis structure [3, 4], and also the parallelism of BCJR
computations [3–5].

3.1.1. Parallelism of Trellis Transitions. Trellis-transition par-
allelism can easily be extracted from trellis structure as the
same operations are repeated for all transition pairs. In log-
domain [13], these operations are either ACS operations
(Add-Compare-Select) for the max-log-MAP algorithm or
ACSO operations (ACS with a correction offset [13]) for the
log-MAP algorithm.

Each BCJR computation requires a number of ACS-like
operations equal to half the number of transitions per trellis
section. Thus, this number, which depends on the structure
of the convolutional code, constitutes the upper bound of the
trellis-transition parallelism degree.

Furthermore this parallelism implies low area overhead
(as only the ACS units have to be duplicated). In particular,
no additional memories are required since all parallelized
operations are executed on the same trellis section and, in
consequence, on the same data.

EURASIP Journal on Advances in Signal Processing 3

Fr
am

e

N

0

α

β

Extrinsic

Time

t/3

(c)

Fr
am

e

N

0

α

β

Extrinsic

Time

t/3

(d)

Fr
am

e

N

0

α

β

Ext
rin

sic

Time

t/3

(e)

Forward recursion
Backward recursion

Forward recursion +
extrinsic information

Backward recursion +
extrinsic information
State metric memories

Fr
am

e
N

0

α

β, extrinsic

Time

t

(a)

Fr
am

e

N

0

α

β, extrinsic

Time

2t/3

(b)

Figure 1: BCJR computation schemes: (a) forward-backward without parallelism, (b) original forward-backward, (c) butterfly, (d) replica
butterfly, (e) forward butterfly.

3.1.2. Parallelism of BCJR Computations. A second metric
parallelism can be orthogonally extracted from the BCJR
algorithm through a parallel execution of the three BCJR
computations (forward recursion, backward recursion, and
extrinsic information) [3, 5]. To preserve data dependen-
cies in the BCJR algorithm, computations are scheduled
following particular schemes as depicted in Figure 1. On
the depicted schemes, use of state metric memories is
represented by the gray regions. Size of this memory is equal
to maximum height of gray region during the decoding. State
memory requirement can be reduced using sliding window
method [6, 14].

Parallel computation of backward recursion and extrin-
sic information was proposed with the original forward-
backward scheme [2], depicted in Figure 1(b) In this scheme,
we can notice that BCJR computation parallelism degree is
equal to one in the forward part and two in the backward
part. Thus, it enables a speedup of 1.5 in comparison with the
sequential BCJR algorithm (BCJR computation parallelism
degree is always one as depicted in Figure 1(a)) and its state
metric memory depth is equal to frame length. To increase
this parallelism degree, several schemes were proposed [5].
The most common is the butterfly scheme (Figure 1(c))
which doubles the parallelism degree of the original scheme
through the parallelism between the forward and backward
recursion computations (degree 2 in the first half of the
butterfly and degree 4 in the second half) in order to perform
a speedup of 3. Various schemes have been derived from
this butterfly scheme. For example, the replica butterfly
scheme (Figure 1(d)) extends the extrinsic information
computations to the first half of the butterfly. This scheme
was proposed in [15] to improve the shuffled decoding
convergence, but it requires four BCJR computation units
(full-time usage for a speedup of 3) and state metric storage
between two consecutive iterations (since the extrinsic
information computations in the first half of the butterfly
require one recursion computation (forward or backward)

and take the other one (backward or forward) from the
state metric storage). Globally, memory size is the same
with this scheme as with the butterfly scheme or forward-
backward one. A further example is the forward butterfly
scheme (Figure 1(e)) that performs extrinsic information
computation only in forward direction. Consequently, its
BCJR computation parallelism degree is three on both half of
the butterfly. Furthermore, the state metric memory is twice
less deeper in this case. The resulting BCJR-SISO decoder
requires smaller area (typically 30% less in comparison with
others butterfly schemes), but the iterative process has a
slower convergence (see Section 4). We can note that, with all
these schemes, BCJR computation parallelism is performed
without any memory increase and only BCJR computation
resources have to be duplicated.

As a conclusion, BCJR metric level parallelism (trellis-
transition parallelism and BCJR computation parallelism)
induces a minimal area overhead as it does not affect
memory size, which occupies most of the area in a turbo
decoder circuit. Nevertheless the parallelism degree is limited
by the code structure and the decoding algorithm. Thus,
achieving higher parallelism degree implies exploring higher
processing levels.

3.2. BCJR-SISO Decoder Level Parallelism. The second level
of parallelism concerns the SISO decoder level. It consists
in using multiple SISO decoders, each executing the BCJR
algorithm and processing a subblock of the same frame in
one of the two component decoders. At this level, parallelism
can be applied either on subblocks and/or on component
decoders.

3.2.1. Subblock Parallelism. In subblock parallelism, each
frame is divided into dSB subblocks and then each subblock
is processed on a BCJR-SISO decoder using adequate initial-
izations [6, 16, 17]. In fact, only two different initialization

4 EURASIP Journal on Advances in Signal Processing

methods, namely acquisition and message passing (also
know as next-iteration initialization) exist and are analyzed
in Section 4.

Besides duplication of BCJR-SISO decoders, this paral-
lelism leads to an on-chip communication issue related to
the interleaver. Indeed, interleaving has to be parallelized in
order to extend proportionally the communication band-
width. In consequence, the complexity of communication
structure (and also communication time) increases with
parallelism degree and access conflicts may occur (even
if latest standards use conflict-free interleavers). The latter
problem can be resolved using an interleaving mapping to
avoid conflicts [8] or using a communication structure to
manage conflicts on the fly [9].

3.2.2. Component-Decoder Parallelism. The component-
decoder parallelism is a new kind of parallelism that has
become operational with the introduction of the shuffled
decoding technique [10]. The basic idea of the shuffled
decoding technique is to execute all component decoders in
parallel and to exchange extrinsic information as soon as
created. Using this method, the iteration period is halved
in comparison with originally proposed serial turbo decod-
ing [10]. Nevertheless, component-decoder parallelism may
require additional iterations as explained in Section 5.

This level of parallelism can reach a reasonable paral-
lelism degree and preserve memory area. Due to its great
potential for scalability and mastered area overhead, new
explorations are focused on this second level of parallelism.

3.2.3. Turbo-Decoder Level Parallelism. The highest level of
parallelism duplicates the whole turbo decoder to process
frames in parallel. Iteration parallelism occurs in a pipelined
fashion (each parallel instance works on different frames
and transmits their results to the instance in charge of the
next iteration) with a maximum pipeline depth equal to
twice the iteration number, whereas frame parallelism (each
parallel instance decodes completely its frames) presents no
limitation in parallelism degree. Nevertheless, turbo-decoder
level parallelism is too area-expensive (all memories and
computation resources are duplicated) and presents no gain
in decoding latency and thus it is not considered in this work.

4. Initialization in Subblock Parallelism

As described in Section 3, subblock parallelism takes place at
frame level and requires initializations. Proper initialization
is mandatory to achieve correct decoding since information
on recursion metrics is available at frame ending points, but
not at subblock ending points. Estimation of undetermined
information can be obtained either by acquisition or by
message passing between neighboring subblocks.

4.1. Initialization by Acquisition. This widely used initial-
ization method consists in estimating recursion metrics by
means of an overlapping region called acquisition window or
prolog. Starting from a trellis section, where all the states are
initialized to a uniform constant, the acquisition window will

be processed on its length, denoted AL, to provide reliable
recursion metrics at subblock ending points. This acquisition
length is determined at design time in order to achieve
negligible error-rate degradation. It is fixed according to the
number of redundancy bits in the prolog (typically 6 bits).
Another empirical rule recommends from 3 to 5 times the
constraint length of the code for this acquisition length [17].

To evaluate this initialization method, we assume that
the butterfly scheme is used in each subblock and that
information is available concerning the beginning and
ending states of the frame (circular trellis or tail-biting). So,
the decoding computation time of an architecture with dSB

subblocks (i.e., the parallelism degree is dSB) initialized with
acquisition method is:

tSB(dSB)=dec · it
((

N

dSB
+AL

)
tsym +tp(dSB)

)
for dSB>1,

tSB(1) = dec · it
(
Ntsym + tp(1)

)
,

(5)

where dec represents the number of component decoders
(typically 2), it the number of iterations (note that it is
independent of dSB), N the frame length in symbols, tsym

the time required to process one symbol and tp(dSB) the
propagation time spent by extrinsic information in commu-
nication resources between component decoders (note that
tp is usually negligible). The corresponding speedup is:

SSB(dSB) = tSB(1)
tSB(dSB)

= Ntsym + tp(1)

(N/dSB + AL)tsym + tp(dSB)

= 1 + tp(1)/Ntsym

1/dSB + AL /N + tp(dSB)/Ntsym
.

(6)

This speedup follows an Amdahl’s law where the
sequential and incompressible part is mainly related to
computations of acquisition windows, which are mandatory
to reliable initializations. Thus subblock parallelism with
initialization by acquisition encounters a throughput ceiling
value and the maximum speedup (obtained when dSB equals
N) is roughly equal to N/(AL +1) (by neglecting tp).

4.2. Initialization by Message Passing. The second method
initializes dynamically a subblock with recursion metrics
computed during the last iteration in the neighboring
subblocks [16]. So this technique does not require addi-
tional memory except for on-chip communication resources
between BCJR SISO units. It was shown in [7] that the
asymptotic error-rate, that is, the error-rate achieved with an
infinite number of iterations, is not affected by the message
passing approach whatever the parallelism degree. Conse-
quently, it ensures that initialization by message passing can
be used without error-correction performance degradation
at the expense of additional iterations.

Let it(dSB) be the mean number of iterations for an
architecture with dSB subblocks communicating with the
message passing technique. For accuracy reasons, it(dSB)
is obtained with the genie stopping criterion, that is, the

EURASIP Journal on Advances in Signal Processing 5

Table 1: Message passing parameter for different code rates for
double binary codes (DVB-RCS).

Code rate 6/7 3/4 1/2 1/3

f 21.5 13.5 8 6.5

decoding is stopped immediately after an iteration returning
the right codeword and is not started for undecodable frame.

Through large number of simulations, we observe that
it(dSB) increases linearly with the parallelism degree and its
slope varies with the inverse of the block size. Thus, we can
express empirically it as:

it(dSB) = it(1)

(
1 +

f

N
(dSB − 1)

)
, (7)

where f is a constant value, that depends of the code rate and
components codes.

For example, Table 1 gives the constant value f for
different code rates of double binary codes. Note that f
increases with the code rate since a lower code rate makes it
possible to provide reliable metrics (recursion and extrinsic
information) on shorter subblock size and, consequently, are
less affected by parallelism effects.

Thus, the decoding time with this initialization technique
can be refined in

tSB(dSB) = dec · it(dSB)
(
N

dSB
tsym + tp(dSB)

)

= dec · it(1)

(
1 +

f

N
(dSB − 1)

)(
N

dSB
tsym + tp(dSB)

)
,

(8)

and its speedup is

SSB(dSB) = tSB(1)
tSB(dSB)

=
it(1)

(
N tsym +tp(1)

)

it(1)
(
1+
(
f /N

)
(dSB−1)

)(
(N/dSB)tsym +tp(dSB)

)

= 1+tp(1)/Ntsym((
1− f /N

)
/dSB + f /N

)(
1+dSBtp(dSB)/Ntsym

) .
(9)

Like subblock parallelism with initialization by acqui-
sition, an Amdahl’s law can be recognized in this speedup
equation if tp terms are neglected. Thus, the sequential part
of the subblock parallelism with message passing initial-
ization is around f /N (compared to AL /N for acquisition
initialization). Similarly, we can show (by neglecting tp terms
and by remarking that f is much smaller than N) that the
maximum speedup (obtained when dSB equals N) is roughly
equal to N/(f + 1).

4.3. Subblock Parallelism Efficiency and Performance Com-
parison. To evaluate the efficiency of initialization methods,
a comparison of their subblock parallelism speedups is

0

5

10

15

20

25

30

Su
bb

lo
ck

pa
ra

lle
lis

m
sp

ee
du

p

20 40 60 80 100

Parallelism degree

Initialization methods:

Acquisition (AL = 32)
Acquisition (AL = 24)
Message passing with prolog (AL = 24)
Message passing

Figure 2: Simulated normalized speedup for several initialization
methods, DVB-RCS, R = 6/7, 188 bytes frame, Eb/N0 = 4.2 dB,
5 bit quantization, Max-Log-MAP algorithm.

accurate enough since the ratios (rdup) between the BCJR-
SISO decoder area and the overall architecture area are very
close for both methods (the initialization methods only
require memorization overheads, that are negligible with
respect to the BCJR-SISO decoder area).

Each subblock parallelism speedup takes into account
acquisition overhead and additional iterations. Note that
using additional iterations with the acquisition method has
quite no effect on error-correction performance.

For example, Figure 2 compares subblock parallelism
normalized speedups obtained by simulations of a double
binary turbo code at rate 6/7 for several initialization
methods: message passing, acquisition with 24 and 32
symbols and message passing with a 24-symbol prolog (i.e.,
an acquisition is just perform for the first iteration). The
figure shows clearly that the message passing technique
outperforms the acquisition one whatever the acquisition
length. The difference becomes sharper at high subblock
parallelism degree. These results were also validated by
simulations under various conditions (code rate, block
size). Concerning the initialization of the first iteration, a
prolog provides more reliable initialization than a uniform
initialization. This enables to reduce the iteration number.
But this reduction only improves the speedup if the gain
is larger than the prolog overhead. In fact, improvements
with prolog are only obtained for high code rate and at low
parallelism degrees.

Concerning error-rate performance, initialization by
message passing induces no degradation as stated in the
parallelism efficiency definition, while initialization by acqui-
sition may degrade error-rate performance, if the acquisition
length is not long enough. For example, Figure 3 illustrates

6 EURASIP Journal on Advances in Signal Processing

10−5

10−4

10−3

10−2

10−1

100

FE
R

3.6 3.8 4 4.2 4.4 4.6 4.8

Eb/N0

Initialization methods:
Message passing
Acquisition (AL = 24)
Message passing with prolog (AL = 24)
Acquisition (AL = 32)
Ref. without subblock parallelism

Figure 3: FER and initialization methods for high parallelism
degree (47), DVB-RCS,R = 6/7, 188 bytes frame, 5 bit quantization,
Max-log-MAP algorithm.

Frame Error Rate (FER) performance for the same initial-
ization methods and conditions as Figure 2 considering a
DVB-RCS code [18] with a 47 subblock parallelism degree.
In this case, the initialization with 32-symbol acquisition
length implies a 0.15 dB degradation in comparison with the
message passing initialization or the reference curve without
parallelism.

Comparison between both techniques tends clearly in
favor of the message passing technique, which enables better
error-rate performance and better subblock parallelism
efficiency. However, whatever the initialization method, the
subblock parallelism speedup reaches a ceiling at high par-
allelism degrees. Therefore, in order to find the parallelism
degree maximizing the architecture efficiency, we have to
consider the subblock parallelism efficiency. For the message
passing method, the subblock parallelism efficiency is:

ESB(dSB) = SSB(dSB)
O(dSB)

= 1 + ε(
1 + rdup(dSB − 1)

)((
1− f /N

)
/dSB + f /N

) ,

(10)

where 1 + ε = (1 + tp(1)/Ntsym)/(1 + dSBtp(dSB)/Ntsym).
The first derivative of the efficiency (once neglecting the

tp terms) equals zero when its numerator does

(
1− rdup

)(
1− f /N

)
d2

SB
− rdup

f

N
= 0. (11)

Thus, the subblock parallelism efficiency has an
extremum when the parallelism degree is equal to

√
(1/rdup − 1)(N/ f − 1). Indeed, this extremum is a

maximum as the first derivative is positive below this
value (the denominator is always positive) and negative
above. The maximum efficiency depends on rdup, on the
block size, code rate and component decoders. Above this
value, the architecture efficiency is degraded and other
parallelisms have to be considered such as component-
decoder parallelism.

5. Component-Decoder Parallelism Analysis

As described in Section 3.2.2, component-decoder paral-
lelism takes advantage of the shuffled decoding technique
that executes all component decoders in parallel and
exchanges extrinsic information as soon as created. However,
the relevance of this technique depends greatly on other
parallelism choices and on interleaving rules.

5.1. Shuffled Decoding Speedup. By definition, the shuffled
decoding process starts a new iteration without waiting the
propagation of extrinsic information through the communi-
cation resources. In other words, decoding and information
exchange are performed concurrently in shuffled decoding.
Thus, the shuffled decoding time only depends on the time
needed to process a subblock and can simply be expressed as:

tshuffled(dshuffled,dSB) = itshuffled(dshuffled,dSB)
N

dSB
tsym, (12)

where dshuffled is the component-decoder parallelism degree
(equals to dec for shuffled decoding), dSB the subblock
parallelism degree used in each component decoder, and
itshuffled the number of iterations required by the shuffled
decoding process.

Then, by dividing the decoding time of the serial process
with a subblock parallelism degree of dSB—see (8)—by the
shuffled decoding time, we get the shuffled decoding speedup

Sshuffled(dshuffled,dSB)

= tserial(dSB)
tshuffled(dshuffled,dSB)

=
dec · itserial(dSB)

(
(N/dSB)tsym + tp(dSB)

)

itshuffled(dshuffled,dSB)(N/dSB)tsym

= dshuffled
itserial(dSB)

itshuffled(dshuffled,dSB)

(
1 +

dSBtp(dSB)

Ntsym

)
.

(13)

The impact of the propagation time will be dis-
cussed in Section 5.3. In Section 5.2, a zero propagation
time will be considered and the convergence speed of
the shuffled decoding process, defined as CSshuffled =
itserial(dSB)/itshuffled(dshuffled,dSB), is analysed.

Simulation results demonstrate that the convergence
speed of shuffled decoding ranges from 0.6 to 0.95 depending
on the choice of parallelism techniques and on the interleav-
ing scheme.

EURASIP Journal on Advances in Signal Processing 7

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
on

ve
rg

en
ce

sp
ee

d
of

sh
u

ffl
ed

de
co

di
n

g

20 40 60 80 100

dSB

Butterfly schem
Replica butterfly schem
Forward butterfly schem

Figure 4: Evolution of convergence speed of shuffled decoding with
subblock parallelism degree, message passing initialization, random
interleaver, R = 6/7, 188 byte frame.

5.2. Combining Shuffled Decoding with Other Parallelism
Techniques. Considering to BCJR computation parallelism
and subblock parallelism, the convergence speed of shuffled
decoding is very disparate.

In [15], the influence of BCJR computation scheme was
pointed out with the replica scheme proposal. The replica
principle consists in generating two extrinsic information
per symbol per iteration (one in the forward and one in
the backward), instead of one extrinsic information in other
schemes. Thus, decoders have more up-to-date extrinsic
information and converge faster. Using the schemes pre-
sented in Figure 1, our simulations also reveal that shuffled
decoding convergence speed is always the greatest with
the replica butterfly scheme (convergence speed observed
around 0.8) and the lowest with the forward butterfly
scheme (convergence speed observed around 0.6). However,
in these conditions, shuffled decoding is not valuable for
implementation, since its resulting speedup is less than
the one obtained using subblock parallelism (same number
of BCJR-SISO decoders) instead of component decoder
parallelism.

Therefore, we proposed in [7] to combine component-
decoder parallelism and subblock parallelism in order to
improve the convergence speed of shuffled decoding. By
definition, this latter is the iteration number required by
a sequential execution of component decoders (using dSB

BCJR-SISO decoders) over the iteration number required
with shuffled decoding (i.e., dshuffled dSB BCJR-SISO decoders
working in parallel). Figure 4 illustrates the behavior of shuf-
fled decoding convergence speed with respect to subblock
parallelism degree. Whatever the BCJR computation scheme,
we can observe that convergence speed increases with the
subblock parallelism degree. Additionally, the convergence
speed with butterfly and forward butterfly schemes tends,

at high subblock parallelism, towards the convergence speed
with replica scheme. Note that this latter for high subblock
parallelism degree is close to the perfect convergence speed
(equal to 1). In these conditions, component-decoder paral-
lelism has to be used rather than subblock parallelism, which
suffers from Amdahl’s law.

To help the selection of parallelism techniques and
schemes for hardware implementation, the parallelism effi-
ciency of BCJR-SISO decoder level parallelism (i.e., including
subblock and component-decoder parallelisms) has to be
considered

E(dshuffled,dSB) = tserial(1)/tshuffled(dshuffled,dSB)
O(dshuffleddSB)

= SSB(dSB)Sshuffled(dshuffled,dSB)
1 + rdup(dSBdshuffled − 1)

,

(14)

where SSB (resp. Sshuffled) is the subblock parallelism speedup
(resp. the shuffled decoding speedup). Note that the area
overhead is considered to be similar for both parallelisms.
Consequently, the global overhead depends on the product
of the parallelism degrees.

Using the subblock parallelism speedup obtained with
the message passing technique (9), the parallelism efficiency
can be refined in

E(dshuffled,dSB)

=
dSBdshuffledCSshuffled

(
1 + tp(1)/Ntsym

)
(
1− f /N +

(
f /N

)
dSB
)(

1 + rdup(dSBdshuffled − 1)
) .

(15)

As the convergence speed varies nonlinearly with dSB, the
parallelism degree that maximizes the parallelism efficiency
can not be expressed like in Section 4. Therefore, the
parallelism efficiency is represented in Figure 5 in a typical
implementation context example for four configurations
initializing subblocks with message passing technique. The
first configuration only uses subblock parallelism and offers
the best result for low parallelism degree. The other con-
figurations use additionally component-decoder parallelism
with the butterfly scheme, the forward butterfly scheme or
the replica butterfly scheme. We can observe that configura-
tions using shuffled decoding enable better speedup for high
parallelism degree. In this typical implementation context,
a BCJR-SISO decoder represents 25% of the circuit area with
butterfly and replica butterfly schemes and 18% of the circuit
area with forward butterfly scheme. Due to its lower com-
plexity, the configuration with the forward butterfly scheme
is the most efficient for high parallelism degree. However,
it is more interesting to find the configuration maximizing
the efficiency of BCJR-SISO decoder level parallelism and,
in consequence, the architecture efficiency. Indeed, from this
maximal point, it becomes more efficient to increase the
throughput using turbo-decoder level parallelism (without
effect on architecture efficiency) than using BCJR-SISO
decoder level parallelism. In the presented case, this point is
obtained with the configuration using shuffled decoding and
replica butterfly scheme.

8 EURASIP Journal on Advances in Signal Processing

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Pa
ra

lle
lis

m
effi

ci
en

cy

10 20 30 40 50 60 70 80 90 100

BCJR-SISO decoder parallelism degree

Subblock parallelism only
+ butterfly shuffled decoding
+ replica shuffled decoding
+ forward shuffled decoding

Figure 5: Parallelism efficiency with respect to BCJR-SISO decoder
parallelism degree, message passing initializations, random inter-
leaver, R = 6/7, 188 byte frame, tp = 0, rdup = 25% (butterfly,
replica) or = 18% (forward).

5.3. Shuffled Decoding Implementation Issues

5.3.1. Propagation Time Effect on Shuffled Decoding. In real
implementations of a parallel turbo decoder, exchanged
extrinsic information is not immediately updated in the
targeted SISO. We define the propagation time as the time
required to update the extrinsic information value of a
symbol. It includes the computation time of the extrinsic
information value and the communication time. As com-
plex communication structures (complexity increasing with
subblock parallelism) are needed to perform interleaving
without conflicts, communication time is particularly not
negligible. However, for most of hardware implementations,
propagation time is less than 3tsym.

Because of this propagation time, consistency conflicts
(i.e., a component decoder performs a read access before the
write access of the other component decoder is completed.)
may occur in extrinsic information memory. Hence, the
symbols suffering from consistency conflict must have one
memory bank per decoder and their extrinsic information
values are exchanged in the time interval of two iterations
instead of one for other symbols. Consequently, the conver-
gence of the shuffled decoding process is slowed down.

With simulations using random interleavers, we observe
the mean degradation on the convergence speed implied
by the propagation time for replica shuffled decoding
(Figure 6) and for butterfly shuffled decoding (Figure 7).
Time unit is the time required to process one symbol
(tsym). In both figures, the convergence speed slows down
when propagation time increases, but replica scheme is
more robust. In addition, we can observe that degradations
become significant when processing time of a subblock
becomes comparable with propagation time. In this case, the

0.75

0.8

0.85

0.9

0.95

C
on

ve
rg

en
ce

sp
ee

d
of

re
pl

ic
a

sh
u

ffl
ed

de
co

di
n

g

20 40 60 80 100

Subblock parallelism degree

Propagation time = 0
Propagation time = 1
Propagation time = 3

Propagation time = 6
Propagation time = 10

754 84 44 30 23 18 15 13 12 10 9 8 8 7

Subblock size (in symbols)

Figure 6: Convergence speed of replica shuffled decoding and
propagation time, random interleaver, R = 6/7, 188 byte frame.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

C
on

ve
rg

en
ce

sp
ee

d
of

re
pl

ic
a

sh
u

ffl
ed

de
co

di
n

g

20 40 60 80 100

Sub-block parallelism degree

Propagation time = 0
Propagation time = 1
Propagation time = 3

Propagation time = 6
Propagation time = 10

754 84 44 30 23 18 15 13 12 10 9 8 8 7

Sub-block size (in symbols)

Figure 7: Convergence speed of butterfly shuffled decoding and
propagation time, random interleaver, R = 6/7, 188 byte frame.

percentage of symbol reliabilities not updated in the running
iteration becomes very high. For example, in Figure 7, the
limit where no symbol reliabilities are updated during the
iteration is observed for propagation times 6 and 10. In this
case, convergence of the butterfly shuffled decoding process
tends towards 0.5. This means that the shuffled process
spends the same computation time as the serial process
to converge. Then, the speedup is only obtained through
communication time, which is concurrent to computation
time for shuffled decoding.

EURASIP Journal on Advances in Signal Processing 9

N

1

In
te

rl
ea

ve
d

or
de

r

1 N

Natural order

←−
t0 (n)

−→
t0 (n)

tp

−→
t1 (n)

←−
t1 (n)

(a)

N

1

In
te

rl
ea

ve
d

or
de

r

1 N

Natural order

←−
t0 (n)

−→
t0 (n)

tp
−→
t1 (n)

←−
t1 (n)

(b)

Figure 8: Interleaver masks for: (a) butterfly scheme and (b) replica butterfly scheme.

Thus, preserving a good convergence speed of the
shuffled process requires the preservation of a reasonable
percentage of exchanging symbol reliabilities in the process.
To better understand the influence of propagation time
and interleaving rules on this percentage, we propose a
geometrical explanation.

5.3.2. Geometrical Explanation of Propagation Time Effect.
Let Skj be the SISO decoder that processes the kth subblock
of the frame on the jth component decoder (e.g., j = 0, 1 for
a concatenation of two convolutional codes). Let tp denote
the propagation time. According to the considered scheme
of BCJR computations (Section 3.1.2), at the ith iteration, Skj
can deliver extrinsic information for the estimated symbol ûn
in the forward recursion or/and in the backward recursion.
Extrinsic information transmission time will be denoted
�t j(n) for transmission in forward direction and

←
t j (n) for

transmission in backward direction.
To avoid propagation time effect for a symbol, updating

extrinsic information has to happen before processing for
each SISO decoder. As forward and backward transmissions
can be combined in both component decoders, each symbol
has four possibilities to be updated during one iteration and
one is sufficient for a good convergence. Thus, considering
the interleaver Π, the previous condition is expressed by:

∣∣∣�t0(n)− �t1(Π(n))
∣∣∣ > tp

or∣∣∣∣�t0(n)− ←
t1 (Π(n))

∣∣∣∣ > tp

or∣∣∣∣←t0 (n)− �t1(Π(n))
∣∣∣∣ > tp

or∣∣∣∣←t0 (n)− ←
t1 (Π(n))

∣∣∣∣ > tp.

(16)

To describe the interleaving design rule, the two-
dimensional representation of an interleaver introduced in
[19] is well suited. In this representation, the natural order
(resp. interleaved) is depicted on the horizontal-axis (resp.
vertical-axis) and the symbol with index n in natural order is
represented with the point (n,Π(n)). On this representation,
(16) is translated into banned regions constituting the mask
of the interleaver [20]. So, symbols have a slower convergence
inside the interleaver mask than outside.

Depending on BCJR computation schemes, (16) can
define various interleaver masks. For example, Figure 8
represents interleaver masks of butterfly and replica butterfly
schemes. The first example (a), the butterfly scheme is used

by both component decoders. For this scheme, �t j and
←
t j

are defined only on the second half of processing time
and have exclusive existence for each symbol. Consequently,
each symbol is only concerned by one inequality and the
four inequalities define four half-diagonal banned regions.
Combining these banned regions constitutes the interleaver
mask associated to butterfly scheme. Note that the mask
covers the entire space as soon as the propagation time
is equal to half the frame length. In these conditions,
extrinsic information exchanges need exactly the time of two
iterations. This means that the convergence speed of shuffled
decoding in this case is one half. This result exactly match
with the simulation results previously observed in Figure 7.

For the interleaver mask of replica butterfly scheme

(Figure 8(b)), �t j and
←
t j are both defined for each symbol.

Hence, each symbol is concerned by the four inequalities,
which define four diagonal banned regions. Thus, the
interleaver mask is the intersection of these diagonals, that
is, the square in the middle and the one distributed on the
corners (iterations are assumed to be executed continuously,
that is, the first and last symbols of the frame are neighbors
in processing time). In comparison with butterfly mask, the
replica mask is smaller. So, in random interleaving case,
the replica mask allows more exchanges and, consequently,

10 EURASIP Journal on Advances in Signal Processing

enables a better convergence of the iterative process. Like
for butterfly mask, the replica mask covers the entire space
when tp is equal to N/2. However, convergence speed is not
slowed down to 0.5 (see Figure 7) since, with replica scheme,
additional extrinsic information exchanges exist in the time
interval of one iteration. Indeed, one information update is
used at two different instants (forward and backward), but
(16) only consider the closest instant. Additional exchanges
are the secondary reason of the robustness of replica shuffled
decoding to long propagation time.

5.3.3. Concluding Remark on Real Shuffled Decoding. Finally,
in a real implementation context (propagation time less
than 3 tsym), the propagation time effect on the convergence
speed (and efficiency) of the shuffled decoding process
introduces loss always less than 10% for replica shuffled
decoding and less than 12% for butterfly shuffled decoding.
Therefore, with the efficiency gap observed in Figure 5
between implementations using only subblock parallelism
and implementations using ideal shuffled decoding, we can
conclude that real shuffled decoding implementations based
on replica and butterfly schemes are more efficient for high
parallelism degree.

6. Conclusion

This paper thoroughly examines parallel convolutional turbo
decoding. We have analyzed and classified the various paral-
lelism techniques that could be used in convolutional turbo
decoding with the BCJR algorithm. The three-level clas-
sification proposed includes: BCJR metric level parallelism,
BCJR SISO decoder level parallelism, and Turbo-decoder
level parallelism. Considering its achievable high parallelism
degrees and mastered area overhead, our analyses focus
on the BCJR SISO decoder level, which includes subblock
parallelism and component-decoder parallelism. On the one
hand, we demonstrate that subblock initialization is more
efficient with the message passing technique than with the
acquisition technique and also that subblock parallelism
becomes inefficient for high subblock parallelism degrees.
On the other hand, we show that component-decoder paral-
lelism efficiency depends on the BCJR computation scheme,
on subblock parallelism degree, and on propagation time.
Furthermore, results point out that the shuffled decoding,
until now never considered in hardware implementation,
improves the efficiency of very high-throughput low-latency
implementations.

Acknowledgment

This work was supported in part by the UDEC project of the
French Research Agency (ANR).

References

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near SHAN-
NON limit error-correcting coding and encoding: turbo-
codes,” in Proceedings of the IEEE International Conference on

Communications (ICC ’93), pp. 1064–1070, Geneva, Switzer-
land, May 1993.

[2] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding
of linear codes for minimizing symbol error rate,” IEEE
Transactions on Information Theory, vol. 20, no. 2, pp. 284–
287, 1974.

[3] E. Boutillon, W. J. Gross, and P. G. Gulak, “VLSI architectures
for the MAP algorithm,” IEEE Transactions on Communica-
tions, vol. 51, no. 2, pp. 175–185, 2003.

[4] G. Masera, G. Piccinini, M. R. Roch, and M. Zamboni, “VLSI
architectures for turbo codes,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 7, no. 3, pp. 369–379,
1999.

[5] M. M. Mansour and N. R. Shanbhag, “VLSI architectures for
SISO-APP decoders,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 11, no. 4, pp. 627–650, 2003.

[6] C. Schurgers, F. Catthoor, and M. Engels, “Memory optimiza-
tion of MAP turbo decoder algorithms,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 9, no. 2, pp.
305–312, 2001.

[7] O. Muller, A. Baghdadi, and M. Jezequel, “Exploring par-
allel processing levels for convolutional turbo decoding,”
in Proceedings of International Conference on Information &
Communication Technologies: From Theory to Applications
(ICTTA ’06), April 2006.

[8] A. Tarable, S. Benedetto, and G. Montorsi, “Mapping inter-
leaving laws to parallel turbo and LDPC decoder architec-
tures,” IEEE Transactions on Information Theory, vol. 50, no.
9, pp. 2002–2009, 2004.

[9] M. J. Thul, F. Gilbert, T. Vogt, G. Kreiselmaier, and N. Wehn,
“A scalable system architecture for high-throughput turbo-
decoders,” Journal of VLSI Signal Processing Systems for Signal,
Image, and Video Technology, vol. 39, no. 1-2, pp. 63–77, 2005.

[10] J. Zhang and M. P. C. Fossorier, “Shuffled iterative decoding,”
IEEE Transactions on Communications, vol. 53, no. 2, pp. 209–
213, 2005.

[11] O. Muller, A. Baghdadi, and M. Jézéquel, “On the par-
allelism of convolutional turbo decoding and interleaving
interference,” in Proceedings of the Global Telecommunications
Conference (GLOBECOM ’06), December 2006.

[12] G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” in AFIPS Spring
Joint Computing Conference, pp. 483–485, April 1967.

[13] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and sub-
optimal maximum a posteriori algorithms suitable for turbo
decoding,” European Transactions on Telecommunications, vol.
8, no. 2, pp. 119–125, 1997.

[14] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-
input soft-output maximum a posteriori (MAP) module to
decode parallel and serial concatenated codes,” TDA Progress
Report, 1996.

[15] J. Zhang, Y. Wang, M. Fossorier, and J. S. Yedidia, “Replica
shuffled iterative decoding,” in Proceedings of the IEEE Interna-
tional Symposium on Information Theory, Adelaide, Australia,
September 2005.

[16] S. Yoon and Y. Bar-Ness, “A parallel MAP algorithm for low
latency turbo decoding,” IEEE Communications Letters, vol. 6,
no. 7, pp. 288–290, 2002.

[17] T. Wolf, “Initialization of sliding windows in turbo decoders,”
in Proceedings of the 3rd International Symposium on Turbo
Codes and Related Topics, pp. 219–222, Brest, France, Septem-
ber 2003.

[18] C. Douillard, M. Jezequel, C. Berrou, N. Brengarth, J. Tousch,
and N. Pham, “The turbo code standard for DVB-RCS,” in

EURASIP Journal on Advances in Signal Processing 11

Proceedings of the 2nd International Symposium on Turbo Codes
& Related Topics, pp. 535–538, Brest, France, 2000.

[19] C. Heegard and S. B. Wicker, Turbo Coding, Kluwer Academic
Publishers, Dodrecht, The Netherlands, 1999.

[20] D. Gnaëdig, E. Boutillon, J. Tousch, and M. Jezequel, “Towards
an optimal parallel decoding of turbo codes,” in Proceedings of
the 4th International Symposium on Turbo Codes and Related
Topics, Munich, Germany, April 2006.

	1. Introduction
	2. Definitions of Parallelism Metrics
	3. Parallel Processing Levels
	3.1. BCJR Metric Level Parallelism.
	3.1.1. Parallelism of Trellis Transitions.
	3.1.2. Parallelism of BCJR Computations.
	3.2. BCJR-SISO Decoder Level Parallelism.
	3.2.1. Subblock Parallelism.
	3.2.2. Component-Decoder Parallelism.
	3.2.3. Turbo-Decoder Level Parallelism.

	4. Initialization in Subblock Parallelism
	4.1. Initialization by Acquisition.
	4.2. Initialization by Message Passing.
	4.3. Subblock Parallelism Efficiency and Performance Comparison

	5. Component-Decoder Parallelism Analysis
	5.1. Shuffled Decoding Speedup.
	5.2. Combining Shuffled Decoding with Other Parallelism Techniques.
	5.3. Shuffled Decoding Implementation Issues 5.3.1. Propagation Time Effect on Shuffled Decoding.
	5.3.2. Geometrical Explanation of Propagation Time Effect.
	5.3.3. Concluding Remark on Real Shuffled Decoding.

	6. Conclusion
	Acknowledgment
	References

