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The task of localizing underwater assets involves the relative localization of each unit using only pairwise distance measurements,
usually obtained from time-of-arrival or time-delay-of-arrival measurements. In the fluctuating underwater environment, a
complete set of pair-wise distance measurements can often be difficult to acquire, thus hindering a straightforward closed-form
solution in deriving the assets’ relative coordinates. An iterative multidimensional scaling approach is presented based upon
a weighted-majorization algorithm that tolerates missing or inaccurate distance measurements. Substantial modifications are
proposed to optimize the algorithm, while the effects of refractive propagation paths are considered. A parametric study of the
algorithm based upon simulation results is shown. An acoustic field-trial was then carried out, presenting field measurements to

highlight the practical implementation of this algorithm.

1. Introduction

The capability of reliable underwater modem technology
[1, 2] has led to a growing number of emerging underwater
applications, presenting with them new possibilities and
challenges. One of these applications is the deployment of
a cluster of underwater sensors [3], which offers benefits
ranging from oil-platform monitoring [4] to ecosystem
monitoring, surveillance, and early warning systems for
tsunami. A typical application of a sensor deployment
generally involves the collection of data and the delivery
of these data [5, 6]. In the former, the knowledge of
sensor positions may play an important role in aiding
the interpretation of the recorded data or in improving
the performance of signal processing algorithms such as
in array processing [7]. In the latter, where the collected
data are sent or relayed to a destination, the estimation of
sensor position enables the implementation of more energy
and latency efficient routing and channelaccess protocols
[8, 9]. Therefore, in situations where the positional infor-
mation are not available to the sensors prior to deploy-
ment, or that it changes after deployment, there exists the

motivation to localize the sensors with existing modem
capabilities.

The aim of this paper is to present and evaluate an
algorithm using the weighted-majorization [10, 11] mul-
tidimensional scaling (MDS) approach for the localization
of sparsely deployed sensors within the underwater envi-
ronment. Based on extensive study of sensor localization in
the radio frequency domain, the underpinning methodology
can be broadly categorised into range-free and rangebased
schemes [12]. Range-free schemes are effective in obtain-
ing estimated positions for applications requiring limited
accuracies but usually impose constraints on the flexibility
of deployment. Range-based schemes are based upon the
accurate measurements of Euclidean distances between the
sensors, which can be derived from two-way ranging delays,
time-of-arrivals, angles-of-arrival, or received signal strength
indicator (RSSI). In the underwater environment, RSSI
measurements are affected by multipaths and back-scattering
especially in a shallow water environment such as in coastal
waters or within a busy harbour. Also, acoustic modems
generally operate within a frequency band that captures
many external sources of noise, varying from shrimps [13]
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(in tropical waters) to breaking waves in a stormy weather
[14], thus contributing to a high and fluctuating level of
ambient noise. These factors can potentially lead to incon-
sistency in RSSI measurements. Similarly, measuring angles-
of-arrival to a high accuracy may prove prohibitive unless
every node is equipped with the necessary hydrophone array.
The viable methods are therefore by using time-of-arrival
measurements which require strict synchronization amongst
all the nodes or by two-way ranging. The latter method
requires no synchronization and operates by measuring
the two-way propagation time assuming that the queried
modem sends a reply packet after a fixed time-delay.

The task of underwater sensor localization can be
considered as a two-step process; first by the localization of
the sensors in the 3D Euclidean space with respect to one
another using measurements of internode distances only,
and then, if necessary, the anchoring of these positions
to a reference or geodetic coordinate system. A relatively
straightforward method of resolving the sensors’ relative
locations using only pairwise distance measurements is by
metric multidimensional scaling, as a special case where one
assumes that the measure of dissimilarities is represented
by Euclidean distances, and that a set of coordinates within
the relevant dimensions explain the observed distances. This
concept has its roots in the field of psychometrics [15],
in which an early analytical solution was presented by
Torgerson [16] and referred to as classical MDS. In order to
apply classical MDS to the problem of sensor localization, all
the pairwise distances between the nodes need to be obtained
[17]. This implies that every node needs to have acoustic
visibility to all the other nodes. Such a requirement may often
be difficult to meet in practice, as ranging measurements may
be erroneous or unsuccessful between nodes that are further
apart, as well as nodes that are partially obstructed (such as
by harbour walls) and have no complete visibility to all the
other nodes.

The contribution of this article is in addressing the
problem of relative localization using incomplete pairwise
distance measurements. By applying a robust approach based
upon an iterative, weighted, cost-minimization algorithm
known as stress-majorization [18, 19], it is shown that
a cluster of sensor nodes can be efficiently localized in
the absence of complete pairwise distance measurements.
The key improvements introduced herein are a robust
and effective method of initialization of the algorithm, a
parametric study of the proposed approach, and a case-study
of its practical application based upon experimental field
measurements. The next section relates the contribution of
this paper with regard to previous research effort within sim-
ilar domain. Section 3 presents the analytical formulation of
the problem and the algorithm of the proposed approach. In
Section 4, simulation results provide a parametric evaluation
on the algorithm’s performance. Section 5 describes a field
trial being conducted with 12 nodes using acoustic time-
of-arrival measurements, capturing the issues related to the
implementation of this algorithm and verifying the results
predicted in the simulation study. Section 6 presents a short
discussion on the scope of this article while Section 7 draws
the conclusion from this work.
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2. Related Work

Sensor localization is an area of active research in both
the radio [20-24] and underwater domains [25-29], where
various solutions based on different levels of constraints and
assumptions on infrastructure availability have been studied.
Broader reviews on this subject can be found in [12, 30].

In [23], Patwari et al. applied maximum likelihood esti-
mation techniques to approximate a node’s relative location,
but the accuracy of the approximations (and the validity of
the derived lower Cramer-Rao bounds) depends on having
complete pairwise distances for all the nodes and knowledge
of the probability distribution underlying the observed
data. Although one can assume that the pairwise distances
are Gaussian distributed (the validity of which increases
with higher signal-to-noise ratios [31]), the requirement of
obtaining all pairwise distances may introduce a challenging
constraint in practice for the application scenario considered
in this article. In [22], Moses et al. also presented a self-
localization approach method using a maximum-likelihood
estimator, relying on both time-of-arrival measurements
and angle-of-arrival measurements. It is also acknowledged
that with incomplete data measurements, the maximum
likelihood estimator may not yield a unique solution.

In [17], Shang et al. applied classical-MDS by eigenvalue
decomposition (EVD) for the localization of nodes using
distance measurements. It is demonstrated that closed-form
solutions can be obtained without the need for iterative
computations, but this is restricted by the condition that
global information of pairwise distances in the network
needs to be made available to a central processor or to all
individual nodes. Ji and Zha [32] applied a majorization-
MDS approach for sensor localization, allowing for missing
pairwise distances. This removes the requirement for com-
plete pairwise distance measurements. However, a random
start configuration is applied for the estimation of the
initial point coordinates, and the possible existence of non-
linear propagation paths was not discussed. The work is
extended by Costa et al. in [33], where arbitrary non-negative
weightings can be applied to distance measurements, such
that adaptive weightings can be applied to account for
different levels of confidence amongst the pairwise dis-
tances. The proposed algorithm is decentralised such that
each node estimates its local cost function iteratively, then
communicates this to their neighbours in order to achieve
cost minimization globally across all the nodes. However,
there is little emphasis on the method for estimating initial
node positions, and the algorithm similarly assumes that
the measured distances are an accurate representation of
Euclidean distances between the nodes. Also, since the focus
is on adaptively choosing neighbours based upon the quality
of measurements by allocating the appropriate weightings,
the work did not investigate the tolerance of the algorithm to
varying levels of missing pairwise measurements.

An experimental study of sensor self-localization in
the free-space outdoor environment was conducted using
acoustic ranging by Kwon et al. in [34]. In addressing
the issue of missing and noisy distance measurements, a
weighting function that was coupled with a soft constraint
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of minimum distances were introduced. The key difference
in their approach is in that a gradient descent algorithm was
applied in the process of minimization, and that a multiple
restart scheme was used to avoid local minima. Separately,
an alternative method of addressing missing distances within
a 3D environment was studied by Birchfield [35], which
iteratively uses a subset of points (up to 4 for 3D) with the
highest availability of distance measurements to derive an
estimate of local coordinates, until all the coordinates based
on relative distances are obtained. Simulation results showed
that this can effectively mitigate the need for classical MDS in
cases where the condition, that each node has a minimum of
m + 1 unique distance measurements to nodes that satisfies
the same condition, is met, where m is the total number
of dimensions. This condition is more easily met when the
total number of sensors is high compared to the number of
dimensions which is usually only up to 3 in a Euclidean space.

The focus of this work is on a majorization-MDS
algorithm for the relative localization of underwater sensors,
or nodes, by using only incomplete inter-node distance
measurements, given no other a priori information. Central
to this approach is the application of classical-MDS using
approximated distances in replacement of missing pairwise
distances for obtaining the initial estimates of coordinates for
the majorization algorithm. This is shown to be effective in
avoiding local minima, and mitigates the need for multiple
restarts with different sets of random estimates.

3. A Weighted and Iterative
Minimization Approach

Iterative majorization, a term coined by Heiser [11], is a
minimization method formulated in the field of geomet-
ric data representation [10, 18], and can be applied to
multidimensional scaling [19, 36]. One of the attractive
features of this algorithm is that a non-increasing sequence of
function values are yielded, implying a quick and guaranteed
convergence. However, it is worth noting that the algorithm
does not necessarily converge at the global minimum. On the
contrary, the point of convergence would, in most cases, be
at a local minimum [37], hence the importance of having
an effective approach to find the global minimum when
applying this algorithm.

The sensor nodes are assumed to be stationary, or
drifting at such a rate that the change in position during
localization is negligibly small. Nodes are also assumed to
have protocols to broadcast their presence to the other nodes,
to perform mutual ranging measurements, and to share their
range measurements with the other nodes. This assumption
does not reduce the practicality of the algorithm proposed
herein. In its simplest form, this can be based on a classical
time-division protocol, where nodes broadcast their ID
and any known pairwise measurements before performing
ranging measurements to any previously unknown nodes,
and repeating the process several times. Time-slots can be
uniquely allocated based upon each node’s unique ID [38],
while the slot length is defined in order to mitigate the
need for strict time-synchronization across all the nodes.
Optimized distributed protocols can be found in [33, 39].

3.1. Problem Formulation. Relative-localization involves cal-
culating a set of relative coordinates in the relevant dimen-
sions of the Euclidean space for all the nodes within a cluster,
such that their corresponding pairwise distances closely
match the measured pairwise distances. Given n number of
sensor nodes, the coordinates of these nodes are represented
by an n X m matrix X where m is the number of dimensions.
The pairwise distance between any two nodes is a function
of the set of coordinates X, and for a Euclidean space can be
expressed as

. 12
dij(X) = [Z(xia _xja)z] , (1)

a=1

where d;; is the pairwise distance between nodes i and j,
calculated using their respective m dimensional coordinates.
The elements d;; form a symmetrical n X n pairwise distance
matrix, D. Similarly, the measured distances between nodes i
and j, §;j, form a symmetrical pairwise distance matrix A.
The mismatch between the measured distances and those
which are calculated for the approximated coordinates X,
can be expressed as

o(X) = X (8 — d(0)’, 2)

i<j

where w;; is the weighting for the distance between node
i and j that corresponds to element (i, j) in both the
matrices A and D. The condition of i < j denotes the
elements in the upper triangle of the symmetrical matrices.
The weightings are normalized to values between 0 and 1
where a 0 represents a missing distance measurement. The
function o is commonly referred to as the stress function in
related literatures [40]. The remaining task is to approximate
the coordinates of the nodes, X,j, such that the value of o is
minimized.

3.2. Classical-MDS. When all the pairwise distance measure-
ments are available, classical-MDS offers a solution without
iterative computations. Using the matrix A, the computation
steps for classical-MDS [16, 24] are given as follows.

(1) Calculate a covariance matrix, Z, from the square
of the distance matrix, A?> by multiplication with
centring matrices, producing a centred matrix Z =
(—1/2)JA*) where ] =1 — L/n, Lis an identity matrix
of size n, and L is a square matrix of ones of size .

(2) Compute the eigenvalues, G, and eigenvectors, Q, by
applying eigen-decomposition on Z.

(3) The approximated coordinates, X,, is then given by
Qn,mGn,nl/ 2 where Q,.,, is the first n x m elements
of Q, while G,,, is the first n X n elements of G that
usually correspond to the non-negative eigenvalues in
the diagonal.

3.3. Iterative Majorization Initiated by Approximated
Classical-MDS. 1f some of the pairwise range measurements
cannot be obtained, for example as a result of obstruction



to the line-of-sight, then the measured pairwise distance
matrix A will be incomplete (in which the elements &;; that
correspond to the unavailable measurements are 0). In such
cases, the function in (2) can be iteratively minimized by
updated approximations of Xy,j. This is achieved by using
a majorization function that satisfies a chain of inequality
towards the stress function, resulting to new approximations
of Ximaj that yield a smaller value for the stress function. The
derivation of the majorization function is well documented
in [36]. For the purpose of clarity in describing the proposed
modifications, the usual procedures of the algorithm are
herein described.

(1) Set the weights w;; corresponding to the i-j pairwise
distances, using 0 for missing measurements and
1 otherwise, or, if a priori knowledge is available
to provide indication towards the relative levels of
confidence in the measurements, positive ratios of up
to 1 are allocated.

(2) Initialize X0 to a set of random coordinates, and
the number of iterations, k = 0, then calculate oy
using (2).

(3) Calculate an update for Xmajx by using the relation-
ship:

Xmaj,k+1 = V+Bk (Xmaj,k)Xmaj,k) (3)

where V* = (V + L)fl, V is a matrix with elements
v;j formed from the allocated weightings such that
vij = —wj if iz jand vy = X7, ;. ;wi for the
diagonal elements. Recall that L is a square matrix of
ones of size . By contains elements b;; calculated in
the following manner:

i'ai' . .
bij = d,]zv)ém;k) for i# j, dij (Xma,',k) #0,
bij =0 for i?ﬁj, d,‘j (Xmaj,k) =0, (4)

n
bi = Z bij for the diagonal elements.
j=Li#i

(4) Calculate ox4+; and repeat from step 3 if ok — 0% >
h, where h is an arbitrarily small positive constant
acting as a threshold beyond which is indicative of a
convergence, or if k < K, where K is the maximum
number of iterations allowed. Otherwise, the relative
locations are given by the coordinates in Xpmaj k1.
The corresponding distance matrix is DpajRandinit-
The value of h can be set as 0y/10°, such that it is
suitably small to indicate that any further iterations
yield negligible minimisation of the error parameter
0, hence no further improvements to the estimate of
relative positions.
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3.4. Algorithm Optimization. A common method to opti-
mise the iterative algorithm in Section 3.3 is to apply multiple
restarts (i.e., performing the complete iterative algorithm
repetitively) using different sets of random initial coordinates
in order to avoid local minima. This may be computationally
intensive for embedded processors on deployable nodes,
which usually implies greater power consumption. An
alternative method is herein proposed for mitigating random
restarts, and is shown in Section4 to have comparable
performance but with a significant reduction in computation
requirement.

Central to the proposed approach is the observation that,
albeit with poor results, classical-MDS can be performed
on a distance matrix with missing measurements. One
may choose to obtain a relatively inaccurate, but rapid,
approximation of the missing measurements by taking the
mean of available pairwise distances corresponding to both i
and j nodes (i.e., mean of available measurements across the
rows of i and j). The algorithm of classical-MDS described in
Section 3.2 can be applied to A, but m is set to n so that X,
is a set of coordinates in a larger number of dimensions than
the Euclidean space. By principle component analysis [41],
one then notes that the columns of X, that have larger values
of standard deviations would represent the more principal
axes, or dimensions, in the data. It is then possible to discard
the dimension with the least standard deviation, recalculate
an updated distance matrix, and obtain a new X, ,_; with a
smaller number of dimensions, until the coordinates in 3-
dimensional space are obtained. This is applicable because
distance measurements corresponding to the Euclidean space
are often restricted to within 2 or 3 dimensions, such that
m < n. However, the final result is often a few orders
of magnitude inferior to the results obtained from iterative
majorization with multiple restarts. This is because some
useful information in the discarded axes is inevitably lost
during dimensionality reduction.

A more robust approach therefore is to merge this
technique with the iterative majorization algorithm, such
that the coordinates X, can be used as the initial estimates
for the iteration. The complete steps are described as follows.

(1) Obtain rapid approximations of the missing pair-
wise distances using simple averaging for available
measurements corresponding to the pair of nodes,
yielding Aqpprox-

(2) Perform classical-MDS on Agpprox to obtain X, such
that the coordinates have n number of dimensions.

(3) Set Xmajo = Xen and perform the majorization
algorithm in Section 3.3 using the original A and
corresponding weightings.

(4) Upon convergence, calculate a new set of distances,
Aconv, by using Xingj k+1.

(5) Perform classical-MDS on Acny with m = 2 or 3
depending on the desired number of dimensions.

(6) Using the obtained X, as initial estimates, per-
form the majorization algorithm to obtain the final
coordinates. The corresponding distance matrix is
D 114 MDSInit-
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FIGURE 1: Refracted path modelled as an arc of curvature given the
assumption of constant sound velocity gradient.

To distinguish between the two approaches, this
approach is named as MDSInit while the random multiple
restart approach is named as RandInit. The results from
a parametric study comparing MDSInit and RandlInit are
shown in Section 4.

3.5. Issues Related to Underwater Sound Propagation. There
are two issues related to underwater sound propagation
that have a direct impact on the measurement of pairwise
distances. The first is the estimation of sound velocity.
The distances are usually obtained from the time or time-
delay-of-arrival measurements using an estimated sound
velocity. However, this estimated velocity may contain an
error if the sound speed profile is not measured prior to
localization of the assets. By making the assumption that
the estimated velocity is the velocity at the corresponding
depth of the node, the error can be compensated using a
simple scaling factor. However, the accurate scaling factor
cannot be directly optimized using the implied distances
because the actual path of sound propagation is usually
greater than the shortest Euclidean internode distance
assumed by MDS algorithms, which leads to the second
issue.

The refraction experienced by a sound wave is propor-
tional to the gradient of velocity with respect to depth.
Although the modelling of the precise path is more involved,
it is possible to approximate a relationship between the short-
est distance and the non-linear path using the Ray theory
[42], which in the underwater environment is applicable for
higher frequencies of a few kHz and above. This is applicable
for underwater modems that have effective range of up to
a few kilometres, hence operating within a relatively high
frequency band, typically from 2 to 20 kHz. If the operating
environment is assumed to have a depth of not more than
100 m, the velocity gradient can be treated as quasi-constant
such that there is no significant fluctuation in the underlying
trend [43]. This is usually representative of shallow coastal
waters, and may not encapsulate all possible deployment
environments for underwater sensor networks. Given this
assumption, the non-linear path then becomes an arc of
curvature for a circle with a radius r as shown in Figure 1,
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FIGURE 2: Error from shortest distance due to refracted propagation
path.

expressed as (by Snell’s law):

c
" gcos(6)’ )
where ¢ is the velocity of sound corresponding to the depth
of the source, g is the gradient of the velocity variation, and
0 is the launch angle of the ray. The relationship between the
length of the refracted ray, s, and the shortest distance a can
be stated as (by trigonometry of an isosceles triangle):

a= 2rsin(2s7). (6)

As an example, if the ray is horizontally launched by a node
at 50m depth, and the velocity profile has a gradient of
2 ms~!/100 m, the relationship between (s—a) and s is shown
in Figure 2, indicating that for the assumed environment, the
error introduced by sound refraction is mild for ranges under
4000 m. With time-delay-of-arrival measurements, this error
is doubled due to the two-way propagation path.

Compensating for this error requires the availability
of sound velocity profile data during localisation. Figure 2
shows that in very shallow water environments with relatively
benign velocity profiles and short ranges (i.e., under 4000 m),
the error caused by sound refraction is relatively small (i.e.,
0.02% of the range) compared to the ambiguity errors that
are potentially introduced by a large percentage of missing
pairwise distances (typically in the order of 10 to 20%
of range). Another common compensation approach is by
using a set of available anchor points of which the precise
coordinates, and hence shortest inter-node distances, are
used to predict a best-fit velocity profile by matching against
ranging measurements. These anchor points are also used for
mapping the relative locations onto geo-coordinates by using
m-axis vector translations along with m-axis rotations.

It must be noted that the nonlinearity of the propagation
path is only insignificant in very shallow waters where the
variation of sound velocity with respect to depth is small.
However, this assumption is no longer valid in deeper waters,
and therefore, it is important in such cases to compensate
for the associated errors. An effective numerical solution is



presented by Berger et al. [44] that evaluate and compensate
for the stratification effect of the depth-dependent sound
velocity by using only the depth and sound velocity profile
information, and allows for noisy (Gaussian) time-of-arrival
and depth measurements.

3.6. Weighting Matrix. The weighting matrix can be used
to set the level of influence exerted by the corresponding
distances in the outcome of the algorithm. Intuitively, the
weightings are a representation of confidence in the mea-
sured data, and with the appropriate levels that best matches
the actual underpinning conditions, one seeks to obtain an
optimal weighting matrix that produces the relative locations
with the smallest error. A priori data can be used to guide
the allocation of weighting. As an example, if a modem
is known to produce an error that is proportional to the
measured distance, then one would penalise the weighting
for a larger distance measurements. Such information can
also come from detailed channel modelling for a known
environment. Without a priori data, the estimation of an
optimal weighting matrix relies heavily on the availability
of statistical information that can be extracted from the
measured data.

With both time-of-arrival measurements and time-
delay-of-arrival measurements, it is possible to obtain mul-
tiple measurements, and adjust the weighting based upon
the standard deviations of these repetitive measurements,
such that data with large standard deviations are allocated
smaller weights. This assumes that the error influencing
the deviations has a nonzero mean. Otherwise, taking
the average of a sufficiently large number of repetitive
measurements would give a similarly confident result. In
the case of time-of-arrival measurements, the difference
between the measurements in opposite directions provides
an indicator to the bias in the distance measurement. For
the acoustic experiments detailed in Section 5, the wind
speed was estimated using the differences in time-of-arrival
measurements, and the weighting matrix is adjusted based
upon the standard deviations of repetitive measurements.

4. Parametric Simulations

Simulations were carried out in order to obtain a comparison
between the initialization approaches. The approach of using
MDS and dimensionality reduction to initialize points is
named as MDSInit, while RandInit denotes the use of
multiple sets of random initial points.

The environment was a 10000 X 10000 X 3000 m 3-D
space. As the purpose of the simulation is to carry out a
parametric and comparative study of the algorithms within
a 3-D space, using a very shallow environment (i.e., <100 m
depth) would reduce the dimensionality problem to a 2-D
approximation. A number of nodes, #, were randomly placed
in this environment with uniform probability on all 3 axes.
It is usually desirable for underwater sensors to be deployed
on the sea-bed with sensing elements buoyed to known
depths. However, given a priori knowledge of sensor depth
and a relatively flat sea-bed, the 3-D MDS problem becomes
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reducible. The random placement of the sensor in the
depth dimension simulates the unknown variation of depth
amongst the sensors, and can be reasonably assumed to be a
superset of the equi-depth and known-depth scenarios.

The majorization algorithm was performed using both
the MDSInit and RandInit approaches. After obtaining the
relative coordinates, the inter-node distances were calculated
and compared to the inter-node distances from the actual
coordinates. The elapsed processing time was also logged.
This was then repeated with an increasing percentage of
missing pairwise distances. The distances were removed in
the order of their magnitude, such that the largest distances
are first removed, until the required level is reached. The
number of random multiple restart allowed for RandInit
is limited to 50, from which the solution with the lowest
stress function value was selected. The results are shown in
Figures 3—6. It is worth noting that the scale on the Y-axis
of the figures have been adjusted in order to give a better
visual comparison. Any off-the-chart points, with values
beyond the maximum on the Y-axis, are considered to be
the point at which the corresponding percentages of missing
distances become large enough to contribute to significant
performance degradation.

Each data-point of the simulation results is obtained by
averaging over 10 random geometrical configurations. This
relatively small number of random trials contributed to the
non-smoothness in the data, but this sufficiently illustrates
the trend of relationship between the parameters. Figure 3
shows the result under ideal measurement conditions, while
Figure 4 shows the result where the distances are corrupted
with Gaussian noise of zero mean and 5m standard
deviation. Both the MDSInit and RandlInit approaches are
shown to have comparable minimization performance in
terms of error from the actual distances, while the MDSInit
approach has a lower tolerance to incomplete pairwise
distances. Where the distances are corrupted by Gaussian
noise (Figure 4(a)), the error performance is dominated by
the noise, demonstrating that the error performance is very
similar in both approaches. The spikes in the error charts
are due to a node’s coordinate being resolved inaccurately,
hence biasing the average error. As the missing pairwise
measurements are those with the furthest distances, this
occurred in the random arrangements where a single node
was located much further away than the rest of the nodes,
hence sharing most of the missing distances. This is verified
by the results in Figure 5 obtained using ideal distance
measurements, but with distances set to missing in a random
manner as opposed to the largest distances. When missing
distances are set as missing in a random manner, there
is a smaller probability that any one node would suffer a
much higher loss of measurements, hence the higher missing
pairwise tolerances in both the approaches.

The simulation results also demonstrate that the process-
ing time for the RandInit approach is significantly longer.
Where a 50-time multiple restart was applied, the RandInit
approach provided consistent error performance and outper-
formed the MDSInit approach in terms of missing-pairwise
tolerance, at the expense of a processing time that is up
to 20 times longer. Figure 6 shows that when the number
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of multiple restarts was reduced to 15, the empirical level
at which both the error performance and missing pairwise
tolerance is comparable, the processing times were reduced
to a level of up to 3 times longer.

5. Acoustic Field Trial

A practical demonstration of the localisation capabilities of a
partially interconnected set of sensors was conducted during
June 2009. A blustery, humid day was deliberately chosen
to provide anisotropic propagation velocity conditions. The
sensors were located on an undulating site to provide
a 3D topography. This site was chosen to be adjacent
to a road and under an airport flight path in order to
provide intermittent noise conditions. Finally, high buildings
surrounded two sides of the site in order to provide extreme
multipath propagation conditions. Photographs of the site
and equipment setup are shown in Figure 7.

Twelve microphones were located at positions previously
determined using a survey-grade, carrier-phase-tracking
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FiGure 4: (a) Error performance; (b) processing time versus
percentage of missing pairwise distances using distances with added
0 mean and 5 m standard deviation Gaussian noise.

global positioning satellites (GPS) receiver, as shown in
Figure 8. Five of these microphones were colocated with a
projector, whilst a roving projector was manually moved to
the remaining seven microphone positions. Each projector
was sequentially excited by a Hann weighted, linear fre-
quency modulated sinusoid sweeping the band from 0 Hz to
16 kHz in 5.26 seconds. The receiver consisted of a bilaterally
weighted matched filter providing a processing gain of some
46 dB against white noise. However, the coloured traffic-
noise environment and blustery conditions typically resulted
in a processing gain varying from 20 to 35 dB.

A constant probability of false alarm (CFAR) detector
[45, 46] was used to automatically detect the occurrence
of the direct-blast originating from the projectors. This
consisted of a 30 ms noise-estimation window and a 2ms
signal-estimation window, separated by a guard-band of
Ims. A 20dB detection threshold was applied in order
to reduce the false alarm rate. A typical matched filter
output is shown in Figure9, this shows that the direct
blast is frequently of smaller amplitude than the multipath
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FIGUrRe 5: (a) Error performance; (b) processing time versus
percentage of missing pairwise distances using ideal distances,
where the missing distances are randomly selected.

reverberation from the adjacent buildings and that the
reverberation decays as an inverse square law. This is often
associated with the adverse propagation conditions in the
vicinity of the air-ground interface resulting from wind-
shear and thermal profiles and unpredictable phase-changes
[47]. A dynamic range of received signal strength in excess of
60 dB was encountered during the experiment.

Both the microphones and projectors have dimensions
that are large in terms of wavelengths at the higher operating
frequencies and thus become directional. The identification
of the direct blast becomes virtually impossible under noise-
and reverberation-limited conditions, resulting in a random
selection of a multipath, as shown in Figure 10.

Under such circumstances, the approach adopted was to
determine the cumulative distribution function and to place
more confidence in results with tightly clustered distribu-
tions. The zero-mean range estimate ensemble average of
the cumulative distribution functions from fifty six available
sensor pairs is illustrated in Figure 11. The limit of the shaded
area equates to one standard deviation from the mean. It will
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FIGURE 6: (a) Error performance; (b) processing time with the
number of multiple restart is constrained to 15, an empirical level at
which both the error and missing distance tolerance performances
are comparable for both approaches.

be noted that the standard deviation of the majority of range
estimates is less than 1 m. With a temperature of 22°C, the
wind-free sound velocity is estimated as 345 ms~!.

The standard deviation of the range estimates may be
used to compute a scoring matrix for use within the MDS
algorithm, as shown in Figure 12. The value of the scoring
matrix is calculated from 1 — 0,/6,, where o, and d, represent
the standard deviation of a sensor pair range estimate and the
peak standard deviation of all the sensor pair range estimates,
respectively. Values of unity are associated with sensor-pairs
with a low standard deviation. Where a higher value of
standard deviation is encountered, or associated with the
random selection of a multipath, a low score is returned and
this measurement has less impact on the position estimation
algorithm.

The range estimates can also provide information about
the anisotropic propagation velocities by considering the
difference between elements mirrored by the leading diag-
onal of the range estimation matrix. This may be directly
mapped back to wind speed and direction. A display of wind
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F1GURE 7: The experimental site and the equipment setup on the site.
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Figure 8: The actual positions of the nodes as surveyed by the
carrier-phase tracking. GPS with regard to a local reference point.
The contours depict the varying height of the site.

vectors derived from sensor pair measurements is shown in
Figure 13. The centre of each cluster of vectors corresponds
to the microphone position. The average length of the vectors
varies significantly across the site because some microphones
were nestling in hollows and were well shielded from the
wind, whilst others were mounted on stands of typical height
Im and placed in positions exposed to prevailing wind
conditions.

The averaged wind speed across the sensor field was
estimated as 1.94 m/s (7 km/hr) and a heading of 160 degrees.
This compares with the meteorological wind speed measured
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FIGURE 9: Typical matched filter output.

on the day of 19km/hr from the North East direction,
obtained from the nearest weather station at an airport about
12 km away. Therefore, the wind speed on the experimental
site varied due to local conditions such as the presence of
urban landscapes. The wind speed estimate was obtained
from the difference between the time-delay measurements
in opposite directions, a method applicable only when using
time-of-arrival measurements.

The estimated ranges formed a 12 x 12 distance matrix,
A. The actual distances as surveyed by GPS was stored
in matrix Dyca and was only used to calculate errors of
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the final results from the algorithms. The error-per-node was
calculated by taking the average of the absolute difference
between Dgcrual and Dp,j. Both the RandInit and MDSInit
algorithms as detailed in Sections 3.3 and 3.4, respectively,
were applied on the estimated ranges. The estimated ranges
were first processed with a unity weighting matrix such that
w;; equals to 1 for available distance entries or 0 otherwise,
over an increasing percentage of missing pairwise distances,
chosen from the larger distances. This was then repeated with
randomly chosen missing pairwise distances. The results are
shown in Figures 14 and 15, respectively.

It can be observed that the results are comparable
with the prediction from the simulation study. The error
performance is dominated by external factors such as varying
wind conditions and the presence of bursty noise associated
with the traffic. Therefore, the error performances of both
the RandInit and MDSInit approaches are almost identical.
Where the missing distances are set with largest distances,
the tolerance to the level of missing distances is significantly
lower as the error from the furthest node increases the
average error.

The data were then processed by using a nonuniform
weighting matrix that was scored in an inversely proportional
manner to the standard deviation of the measured data. The
results are shown in Figures 16 and 17.

The improvement in error performance from the use of
an adjusted weighting matrix is minimal. This is because
the algorithm is minimizing the error between the distance
matrix of the estimated relative coordinates and the measured
distance matrix. Figure 18 shows the final stress values in the
MDSInit approach for both uniform weighting and adjusted
weightings, demonstrating lower stress values (as expressed
in (2)) for the adjusted weightings across all the levels of
missing pairwise distances. The lower stress value indicates
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FiGUure 14: (a) Error performance; (b) processing time versus
percentage of missing pairwise distances with uniform weighting
and largest distances missing.

that the adjusted-weighting yields estimates that better fit the
measured distances. Figure 19 shows the individual errors of
the pairwise distances with respect to the actual distances,
highlighting the fact that the average error per node can be
biased due to the failure to resolve the relative location of a
small number of nodes in the cluster.

The average wind speed estimate, as shown in Figure 13,
can be used to build a compensation matrix for the resolved
distances. By using the matrix dot product, the variation
in sound velocity experienced by the path between any
pair of nodes can be calculated. Figure 20 shows that
the error from the actual distances is reduced when the
velocity compensation matrix is applied based upon the
average value of 1.94 m/s with a 160 degree heading. Both
were processed with the MDSInit approach using adjusted
weighting. Where all distance measurements are available,
the average error per node from actual, GPS-surveyed,
distances is 0.2 m. It is worth noting that the GPS survey
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Figure 15: (a) Error performance; (b) processing time versus
percentage of missing pairwise distances with uniform weighting
and random missing distances.

data has a standard deviation of about 0.05 m, while the co-
location of the projector and microphone has an ambiguity
of approximately 0.03 m.

For completeness, the relative coordinates are mapped
onto the reference coordinate shown in Figure 8. Three
anchor points are chosen arbitrarily (nodes 1, 2, and 3)
and the coordinate transformation matrix involving a 3-axes
translation and a 3-axes rotation is derived using Nelder-
Mead minimization [48]. Figure 21 shows the mapped
coordinates of the nodes for different percentages of missing
largest distances.

6. Scope of Study

The proposed algorithm inherently seeks the points that
best fit the measured distances. In most realistic scenarios,
the measured distances will contain some errors from the
actual distances. It was shown that compensating the bias
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FiGure 16: (a) Error performance; (b) processing time versus
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in sound velocity using the estimated wind vector reduces
the error between the estimated distances and the actual
distances. Similarly, in underwater applications where the
sound velocity profile is available, the refraction path can be
estimated to produce an adjustment matrix for the estimated
distances. Also, the actual distances between available anchor
nodes can be used to evaluate the reliability of the measured
distances. More involved research related to the area of
optimising the fit between the estimated and actual distances
using information from anchor points can be found in
(49, 50].

The relative-localization problem considered in this arti-
cle is for a cluster of node, but the solution is not necessarily
restricted to a single-hop cluster. In a distributed, multi-
hop arrangement of underwater nodes, relative-localization
is usually reduced to the local positioning of a cluster of
nodes with local anchor points, before iteratively optimizing
the relative positions between the clusters. Therefore, the
incomplete pairwise distance matrix can be considered as an
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20% largest distances missing, and (c) 20% random missing distances.

irreducible matrix from a larger, global distance matrix for a
distributed network of nodes.

A theoretical analysis on the performance constraints of
relative location estimation as a function of the number of
links to an anchor node and the total number of unanchored
nodes is documented in [51].

Although the acoustic environment in which the exper-
imental trial was conducted was also affected by ambient
noise, multipath signal arrivals, and wind distortions, there
are, nevertheless, notable differences from the underwater
environment. The spectral characteristics of the ambient
noise differ between the air-acoustic and the underwater
environment. In the experiment, the main sources of ambi-
ent noise were from the nearby traffic. In the underwater
environment, the performance-limiting ambient noise may
originate from various sources local shipping in coastal

waters, organisms such as snapping shrimps in tropical
waters, and breaking waves. In both cases, the ambient
noise would be expected to have non-stationary statistical
characteristics. In terms of multipaths, reflections came from
the buildings as well as the ground in the experimental
environment, whilst in the underwater environment there
are sea surface and sea bed reflections as well as multipaths
from refractive spreading. The experimental environment is
relatively homogeneous, and therefore gave rise to negligible
refraction. The same is only valid in a very shallow water
environment.

7. Conclusions

A robust approach for relative location estimation is pre-
sented, based upon a minimization method known as



14

Error reduction from velocity compensation
. .

Average error per node (m)

0 10 20 30

Percentage of missing pair-wise distances (%)

—*— With velocity compensation
—v— Without

FIGURE 20: Reduction of error per node by velocity compensation
using the average wind vector estimate.

Mapped node positions

5
(cm)

East (m)

North (m)

FiGure 21: Mapped node positions with respect to actual surveyed
positions using anchor nodes 1, 2, and 3. Circles are actual surveyed
positions, crosses are positions resolved with complete set of pair-
wise distance, triangle are resolved with 10% largest distance miss-
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iterative majorization, which allows the estimation of relative
coordinates using an incomplete pairwise distance matrix.
An optimized initialization approach is proposed which
demonstrated comparable minimization performance while
requiring approximately 20 times less computing cycles.

It is shown that for underwater applications, sound
refraction can contribute to the error between the measured
and actual distances. However, in relatively shallow waters
where the sound velocity gradient is benign and for ranges
under 4000 m, the difference is likely to be small, but should
be taken into account if the sound velocity profile is known.

Simulation study on the proposed approach demon-
strated that the tolerance to missing pairwise distance is
in the region of 8% to 30% depending on the number of
nodes in the cluster and the pattern of missing distances.
In cases where the missing pairwise distances are the largest
distances, the tolerance is lower compared to randomly
missing pairwise distances. This is because the higher loss
of pairwise distances at the furthest nodes leads to failure to
resolve their positions.
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An acoustic field trial was carried out to evaluate the
proposed algorithm. The results demonstrated that the
application of a weighting function adjusted by the standard
deviation of the observed data optimizes the fit between the
estimated and measured distances, while the improvement
in fit between the estimated and actual distances is much
smaller. The estimated distances are then corrected using an
estimate of the wind vector to calculate the variation from
wind-free sound velocity during the trial. This leads to an
observed reduction in the error of the estimated distances.
The error performance and tolerance to missing pairwise
distances of both approaches, as well as the significant
reduction in processing time of the proposed approach are
similarly demonstrated with the field trial measurements.
Finally, the relative coordinates of the nodes are also mapped
onto the reference coordinate of the site, showing good
agreement with the actual nodes’ positions as surveyed by
a carrier-phase-tracking GPS. Although both the simulation
and experimental field trial results provided an indication to
the practicality and robustness of the proposed algorithm in
the context of optimising the process of relative positioning
using incomplete distance measurements, it is worth noting
that a direct extrapolation to predict its performance in an
underwater environment is still constrained by variables that
are not herein considered due the fundamental difference
between the air-acoustic and the underwater environment.
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