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To achieve robust speaker verification, we propose a multimodal method which includes additional nonaudio features and
glottal activity detector. As a nonaudio sensor an electroglottograph (EGG) is applied. Parameters of EGG signal are used to
augment conventional audio feature vector. Algorithm for EGG parameterization is based on the shape of the idealized waveform
and glottal activity detector. We compare our algorithm with conventional one in the term of verification accuracy in high
noise environment. All experiments are performed using Gaussian Mixture Model recognition system. Obtained results show
a significant improvement of the text-independent speaker verification in high noise environment and opportunity for further
improvements in this area.

1. Introduction

Speaker Verification (SV) is the process of verifying the
claimed identity of a speaker using features extracted from
her/his voice. Conventional SV uses the recorded audio
signal as the sole source of information. This is based
on features such as linear predictive cepstral coefficients
(LPCC), mel-frequency cepstral coefficients (MFCC), or log
area ratio (LAR) [1–3]. Over the past several years, one of
the dominant approaches for modeling in text-independent
SV applications has been based on Gaussian mixture models
(GMMs) [1, 4–7].

In the case of speech being corrupted by environmental
noise, the distribution of the audio feature vectors is also
damaged. This leads to misclassification and poor recogni-
tion. For an SV system to be of practical use in a high noise
environment it is necessary to address the issue of robustness.
To combat this problem, researchers have put forward several
new algorithms, which assume prior knowledge of the noise,
like noise filtering techniques [8, 9], parallel model combi-
nation [10–12], Jacobian environmental adaptation [13, 14],
using microphone arrays [15, 16], or techniques of speech
enhancement which target the modeling of speech and noise

pdf [17, 18]. When there is insufficient knowledge of the
noise, one may attempt to ignore the contribution of highly
corrupted speech data [19, 20] or to combine multicondition
model training and the missing-feature theory to model
noise with unknown temporal-spectral characteristics [21].

It is possible to accomplish robustness by the utilization
of other sensing modalities to complement the audio signal
of speech. As a matter of fact, in almost every context,
carefully designed multimodal interfaces turned out to be
more beneficial than any single-modality interface [1, 22].
Some multimodal approaches are based on sensors where a
speaker is not connected to a recording device, like GEMS,
ultrasonic or video signal [23–25]. Other researches use
sensors physically connected to the speaker’s head, face
or throat, like electroglottograph (EGG), P-microphone,
bone-conducting microphone [22, 24, 26]. The practical
application of physically connected sensors is in specific
environment (military approach, battle field environment,
etc.) as well as in situations where the user is willing
to cooperate meaning amenable to attach the sensor on
herself/himself.

This study demonstrates that the specificity of the EGG
waveform is different relative to different speakers (see
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Section 3). We use EGG features representing the time
characteristics of an idealized EGG waveform. Then, we
concatenate both the EGG features and audio features by
applying a glottal activity detector. The main contribution
of this paper is to investigate the performance of this fusion
for SV problem in a high noise environment. In this research,
we also discuss the selection of an activity detector.

There are two stages in the SV process (see Figure 1). The
first is enrollment (training), where model parameters λi are
computed for each registered speaker,“i”, i = 1, 2, ..., N ,
represented by the feature vectors Xi. In the proposed SV, Xi

presents the new feature vectors, given by

Xi =
[
Xi,MFCC

Xi,EGG

]
=
[
x1i,MFCC x2i,MFCC ... xLii,MFCC

x1i,EGG x2i,EGG ... xLii,EGG

]
, (1)

where Li is number of feature vectors for ith speaker; Xi,MFCC

and Xi,EGG are the sequences of the audio and EGG feature
vectors xki,MFCC, x

k
i,EGG, respectively, where k = 1, ...,Li.

During this stage, the background model λi (alternative
hypothesis model) is created for each speaker using N − 1
vectors X j , j = 1, ...,N ; j /= i, which do not belong to a
certain person “i”. The background model becomes invariant
and common for to all Xi if N → ∞. In the second (testing)
stage, the classifier decides whether the new input utterance,
denoted by Xtest, belongs or not to the claimed registered
speaker, represented by model λclaim ∈ {λi}, i = 1, ..., N , by
comparing the conditional probabilities P(Xtest/λclaim) versus
P(Xtest/λclaim), where λclaim corresponds to the background
model, [5].

Computing of feature vectors (parameterization) is
common to both stages. The different nature of audio
and EGG signals requires specific methods for optimal
parameterization.

2. Parameterization

Parameterization is the transformation of an input signal
into a set of feature vectors which are less redundant and
more suitable for statistical modeling than the input signal.
The input signal is processed into frames creating a sequence
of vectors. Each frame corresponds to a time window tW with
overlapping between the consecutive frames.

The multimodal speaker verification, proposed in this
work, includes audio and EGG parameterization.

2.1. Audio Parameterization. Audio parameterization is usu-
ally based on the cepstral representation of an audio signal,
[6]. Prior to computing a short-term power spectra, the
audio signal is filtered with a first-order FIR filter to
spectrally flatten the signal. Pure cepstral coefficients of a
speaker “i”, denoted by Xi,C , are obtained applying the mel-
scaled filter banks up to 4 kHz. Time derivatives of cep-
stral coefficients are resistant to linear channel mismatches
between training and testing and have yielded significant
improvement in the recognition processes, [27]. These
coefficients ΔXi,C,ΔΔXi,C are derivatives of the time function
of the cepstral coefficients and are, respectively, called the

delta- and delta-delta-cepstral coefficients. Regarding this,
vector Xi,MFCC is

Xi,MFCC =
⎡
⎢⎣ Xi,C
ΔXi,C

ΔΔXi,C

⎤
⎥⎦. (2)

2.2. EGG Parameterization. The electroglottograph is a
device for the measurement of the time variation of the
degree of contact between vibrating vocal folds during voice
production. The degree of contact is proportional to the
impendence between two electrodes on the subject’s neck
when the current is in the MHz region. Typical waveforms
of EGG and related audio signal are shown on Figure 2.

For unvoiced segments, the EGG waveform contains
slow changes and very low-level high-frequency noise that
is easily distinguished, [28]. To remove disturbing low-
frequency (uninformative) fluctuations, the EGG signal is
usually filtered, using digital linear phase high or bandpass
filters.

The EGG signal can be considered as “almost periodic”
in voiced segments. One period of EGG signal with charac-
teristic segments is shown in Figure 3, synchronously with
audio signal.

For voiced segments, the EGG usually has only two
zero crossings per fundamental (pitch) period of voicing.
In order to obtain a quantitative description of the EGG
signal, a model based on the shape of the idealized waveform
as proposed in [29, 30] is used. The idealized waveform
has flat characteristics intervals although the original signal
has a typically parabolic shape. When the vocal folds are
open and it is ensured that there is no lateral contact
between the vocal folds, the impedance is maximal and
peak glottal flow occurs—open phase. The EGG waveform
in this segment is flat, with small fluctuations. Further on,
the movements of the margins of the vocal folds come into
the contact and the vocal folds continue to close—closing
phase. During the closing phase the vocal folds remain in
contact and the airflow is blocked. Like in the open phase,
limited fluctuations of the impedance are observed. However,
the waveform is not flat, but rather forms a smooth hill.
Pitch period—T0 and specific durations in EGG waveform:
t1, t2, t3, t4 are marked in Figure 3. Time from the
maximum contact to zero crossing (about half of the opening
phase) is marked as t1. Time t2 is next interval up to the
maximum of the open phase. Considering that the open
phase is rather flat, t2 could be calculated to the mean of the
open phase of idealized waveform. Next, t3, t4 are intervals
to second zero crossing and to the maximum in the contact
phase, respectively.

Assuming that the EGG signal contains specific infor-
mation about the speaker (see Section 3) and that EGG
sensor is robust in noisy environments [22], adding related
parameters to the features in the SV process, is expected
to be beneficial. The EGG features used are period of the
fundamental frequency T0 and a set of timing parameters:

xnEGG =
[
T0 t1 t2 t3 t4

]T
, (3)
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Figure 1: Stages of the SV process: parameterization (with activity detection), training, and testing.

where t1 to t4 are normalized time parameters t1 to t4, with
respect to T0, measured at the time instant n. These features
are correlated with the most salient glottal phenomena, that
is, glottal pulse width, skewness, and abruptness of closure.

Natural speech consists of speech segments, silence, and
background noise. To only extract features from speech
segments, the input signals are first fed to the activity
detector subsystem to separate speech from nonspeech.
Based on the activity detector output, features are extracted
and then normalized.

2.3. Activity Detection. Voice activity detector (VAD) is a
preprocessing subsystem designed for distinguishing speech
from nonspeech segments in an audio signal. Conventional
VAD algorithm is based on energy and zero-crossing rate
or cepstrum [31]. In a multimodal system, distinguishing
speech could be based on the additional signal produced by
nonaudio sensors.

While EGG signal retains the relevant information on the
excitation source, for only the voiced segments of the speech
signal, classical VAD includes both voiced and unvoiced,
the glottal activity detector (GAD) is used for the EGG
features extraction and fusion with cepstral coefficients in the
multimodal feature vectors.

3. Expected Discrimination Information of
EGG Features

Discrimination property of EGG features in the proposed
SV system could be analyzed and estimated in two ways: (i)
a priori, without the design of the classification system and
system’s performance estimation; (ii) a posteriori, comparing
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Figure 2: A speech segment represented by: (a) audio and (b) EGG
waveform.

the accuracy of the verification systems with or without
augmented EGG features. A posteriori approach will be
considered in Section 4, relative to the accuracy of the
analysis of the proposed system.

Based on the fact that the proposed SV system compares
the probabilities of GMM models, for the approach (i),
discrimination property of EGG features can be measured
by using Kullback-Leibler divergence (KLD) between corre-
sponding probability distributions of EGG features, [32].
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Figure 3: One pitch period of (a) audio and (b) EGG waveform,
showing the glottal opening and closure phases.

For each speaker the GMM model λi = {μi,Σi,wi}, i =
1, ...,N is created as mixture ofM Gaussian densities

p
(
xnEGG/λi

) = M∑
m=1

wmg
(
xnEGG/λi

)
, (4)

where xnEGG is an nth EGG feature vector, as in (3); wm

represents weights, where
∑M

m=1 wm = 1 and g(xnEGG/λi) is
single Gaussian density with mean vector μm and covariance
matrix Σm.

KLD is the fundamental measure between the statistical
distributions, which quantifies how close a probability
distribution p(x) is to another distribution q(x)

KLD
(
p‖q) =∑

x

p(x) log
p(x)
q(x)

. (5)

KLD(p(xn/H)‖p(xn/H)) can be interpreted as the
expected discrimination information between the null and
alternative statistical hypotheses, for discriminating in favor
for a hypothesis H , against hypothesis H , when hypothesis
H is true. If H represents a model denoted by λi, which
characterizes the hypothesized speaker in the feature space
of xnEGG, and H represents another model λ j , j /= i, expected
discrimination information becomes

KLD
(
i‖ j) = KLD

(
p
(
xnEGG/λi

)‖p(xnEGG/λ j

))
, j /= i, (6)

where λi, λ j are only based on corresponding EGG features.
KLD(i‖ j), defined in (6) is measured, when models

λi and λ j : (a) belong to the same speaker, denoted by
KLDintra(i‖ j) (intraspeaker variability) and (b) belong to
the different speakers, denoted by KLDinter(i‖ j) (interspeaker
variability). Figure 4 presents results for six speakers in the
form of histogram.

Table 1: Experiments for analyzing EGG signal contribution in
high noise environment.

Vector features Activity Detector

System 1 XMFCC VAD

System 2 XMFCC GAD

System 3 X =
[
XMFCC
XEGG

]
GAD

System 4 XEGG GAD

From Figure 4, it is clear that there is almost no over-
lapping between the two groups of divergences KLDintra(i‖ j)
and KLDinter(i‖ j). For all speakers in database (see Sec-
tion 4.1), max(KLDintra(i‖ j)) < KLDinter(i‖ j) is true in
94.2%. Considering this result, one can conclude that
EGG features, have speaker discriminative property, but the
contribution of these features, in the process of speaker
verification, will be examined in the following experiments.

4. Experiments

This section analyzed contribution of EGG features to the
proposed system, when the audio signal has been corrupted
by additive White-Gaussian noise. The proposed SV system
is compared to the audio-based (conventional) SV system.
In order to clearly show the contribution of EGG features,
four experiments were conducted. The first experiment was
conducted by using the conventional system and conven-
tional VAD. The second experiment was identical to the first,
except that VAD was replaced by GAD. The third experiment
involves multimodal parameters (audio and EGG features)
with the addition of GAD. The fourth experiment involves
only EGG features and GAD. SV error rates (ERRs) for
different values of SNR (from 0 to 30 dB) were analyzed for
all experiments. These experiments are illustrated in the four
systems summarized in Table 1.

4.1. Database. The corpus consists of 50 sessions with 16
speakers with up to 4 sessions per speaker. The utterances
for each session were very carefully chosen to provide a
very good representation of typical Serbian language [33].
Audio and EGG signals were recorded by microphone and an
EGG device (model EG-PC3 produced by Tiger DRS, Inc.,
USA) synchronously. Both signals were originally sampled
at 44 kHz. We used one session as enrollment and the
remaining 49 sessions were used for speaker verification. This
resulted in 49∗ 50 = 2450 speaker verifications tests.

4.2. Conventional Verification System (System 1). Conven-
tional verification system consists of the front-end audio
signal processing in order to produce feature vector, as in
(2). The audio feature vector is formed as a collection of
14 mel-frequency cepstral coefficients, plus corresponding
deltas, altogether D = 42 coefficients per frame. Each
frame corresponds to 1024 samples, for example, tW ∼=
23.2ms time window. The frames are overlapped to avoid
the risk of losing valuable transient. In our system, frames are
overlapped by one half of the frame length. After computing
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Figure 4: Expected discrimination information for six speakers, when models belong to the same speaker (white bars) and belong to the
different speakers (gray bar).

the MFCCs, a cepstral mean subtraction was done, [5]. To
separate speech frames from silent and noise, classical VAD
based on energy and zero crossing rate was used.

The model training was done in an office environment,
while in the SV testing phase, the audio signal was corrupted
by a Gaussian additive noise. The obtained ERR for different
SNR in the range of 0 to 30 dB is shown in Figure 5.

According to the obtained results, one can conclude
that the conventional SV system is quite sensitive to high
Gaussian noise. In noisy environments especially for SNR <
15dB, noise influence becomes very significant.

4.3. GAD versus VAD (System 2). The quality of the activity
detector is measured by the accuracy of speech/nonspeech
segment detection. GAD is based on EGG signal and there-
fore it is robust with the audio noise. Since the EGG signal
is only informative during glottal oscillations, GAD detects
voiced speech segments. On the other hand, VAD detects
both, voiced and unvoiced segments, and uses noise level
adaptive threshold causing the narrowing of the detected
segments for the increasing noise level.
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Figure 5: Speaker verification error for different SNR in conven-
tional verification system (System 1).

Figure 6(a) shows a part of natural speech for SNR =
30dB. Detected segments produced by classical VAD and
GAD are denoted by “VAD” and “GAD”, respectively. The
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Figure 7: SV error rate using cepstral vectors and GAD (System 2:
solid line) and VAD based on energy and zero crossing rate (System
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same part of the speech for SNR = 10dB is shown in
Figure 6(b). Obviously, detected segments by classical VAD
are shorter in Figure 6(b) then in Figure 6(a). At the same
time, the effective signal-to-noise ratio is higher for VAD
than for GAD. Figure 6(c) shows appropriate EGG signal
which is unchanged regardless of SNR value.

The verification system (System 2) used in this experi-
ment was identical as in the previously described System 1,
except that VAD was replaced by GAD. The obtained results
are plotted as a solid line curve in Figure 7.
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Figure 8: SV error rate using: GAD, EGG features (System 4:
dash dot line), GAD, EGG plus audio features (System 3: solid
line), GAD, audio features (System 2: dashed line), VAD and audio
features (System 1: dotted line).

Although the noise does not have an influence on GAD,
the speaker verification error is increased, even in a very
noisy environment. Obviously, the results are affected by the
choice of detector. VAD separates speech by using adaptive
thresholds depending on the level of background noise.
On the other hand, GAD-detected speech segments are
independent of this level.

4.4. Fusing the EGG Features with Cepstral Coefficients
(System 3). In this experiment, conventional feature vectors,
Xi,C , was augmented by EGG features, Xi,EGG, (altogether 47
coefficients), as in (1). GAD detector was used.

Evaluation and testing was done as in the conventional
SV system. The results are shown in Figure 8 as a solid curve.

4.5. Only EGG Features (System 4). Verification system 4 is
based only on the feature vectors defined as in (3). GAD
was the natural choice as the activity detector. After the
enrolment phase, the created GMM models were tested.
Considering that EGG feature vectors are not sensitive to
audio noise, the obtained result is shown in Figure 8 as a
horizontal line, that is, constant value in respect to SNR.

Verification error rates for the different SNR are shown in
Table 2. The result presented in the table show benefits δ1,δ2
as the difference between conventional SV system 1 and the
improved SV systems 3,4.

Throughout the analysis of the results presented here,
one can clearly note that the EGG features have a strong
influence on the performance of SV in a noise environment.
As indicated in Figure 8 and Table 2, substantial gains
in speaker verification in a high noise environment were
obtained. Analyzing the SNR performance, there are the
three different ranges, I, II, and III where System 1, System
3,and System 4 have the best performance, respectively.
Therefore, a composite SV can adaptively select one of the
three systems, based on the level of noise, achieving a total
error rate that is lower than any single system.
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Table 2: SV error rate for (I) conventional system, (II) augmented
vectors with GAD, (III) only EGG features with GAD and benefits
attained, δ1 = (I)− (II), δ2 = (I)− (III).

0 dB 5 dB 10 dB 15 dB

(I) System 1 18.46 13.40 10.54 2.45

(II) System 3 8.33 6.85 4.4 2.37

(III) System 4 6.32 6.32 6.32 6.32

δ1 = (I)− (II) 10.13 6.55 6.14 0.08

δ2 = (I)− (III) 12.14 7.08 4.22 −3.87

One can suggest the use of other speech sensors to create
stronger modality combinations that can further be fused
using the proposed method to boost the overall performance
of an SV system.

These results illustrate the potential of this method for
noise robust speaker verification.

5. Conclusion

Considering the sensitivity of noise to a conventional speaker
verification system, we examined the informativeness of
EGG features. In contrast to the conventional approach,
which only extracts cepstral features from audio signal, the
proposed method employs information contained within the
EGG signal.

The features of the EGG signal, which are robust in a
noise environment, are used to augment conventional audio
feature vector.

Since EGG signal is only informative during voiced
speech segments, the voice activity detector is replaced by a
glottal activity detector.

The presented experimental results show a significant
reduction of verification error within a noise environment,
especially for SNR < 15dB. As mentioned, there is further
improvement, by combining all the systems depending on
noise level. Another interesting aspect of the proposed
framework is that it could be applied to some other speech
modalities by appropriate selection of the activity detector.

As a part of further work, the feature set could be
augmented by some other modality which may be more
robust against noise, although such a claim would have to
be validated. Future work should also explore methods on
statistical significant of wider speaker populations to further
validate the results.
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