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A new noncooperative iris recognition method is proposed. In this method, the iris features are extracted using a Gabor descriptor.
The feature extraction and comparison are scale, deformation, rotation, and contrast-invariant. It works with off-angle and low-
resolution iris images. The Gabor wavelet is incorporated with scale-invariant feature transformation (SIFT) for feature extraction
to better extract the iris features. Both the phase and magnitude of the Gabor wavelet outputs were used in a novel way for
local feature point description. Two feature region maps were designed to locally and globally register the feature points and
each subregion in the map is locally adjusted to the dilation/contraction/deformation. We also developed a video-based non-
cooperative iris recognition system by integrating video-based non-cooperative segmentation, segmentation evaluation, and score
fusion units. The proposed method shows good performance for frontal and off-angle iris matching. Video-based recognition
methods can improve non-cooperative iris recognition accuracy.

1. Introduction

Performing noncooperative iris recognition is important for
a number of tasks, such as video surveillance and watchlist
monitoring (identifying most wanted criminals/suspects)
[1–4]. In addition, noncooperative iris recognition systems
can provide added convenience for cooperative users for
identification [5]. However, it is challenging to design an
iris recognition system that can work in a noncooperative
situation, where the image quality may be low and the eye
may be deformed, due to a nonfrontal gaze.

In recent years, several methods have been developed
for iris recognition [2, 3]. Most of these methods are
designed for frontal and high-quality iris images. Among
them, Daugman’s approach has been most widely used
in the commercialized iris recognition systems [6–9]. This
method transforms the segmented iris image into log-polar
coordinates, extracts the iris features using a 2D Gabor
wavelet, and encodes the phase information into a binary iris
code [7, 9]. Hamming distance is used to match two iris codes
[7]. Daugman’s method has been tested and evaluated using
large databases, such as the United Arab Emirates (UAE)

database with over 600,000 iris images with over 200 billion
comparisons [8]. Chen et al. proposed using Daugman’s 2D
Gabor filter with quality measure enhancement to improve
the recognition accuracy [10]. Matey et al. used Daugman’s
method in their Iris on the Move (IOM) system [11] with
better optics and illumination to perform iris recognition
at a distance. Masek and Kovesi found that Gabor wavelets
can have a DC component and proposed using a 1D Log-
Gabor filter [12]. Ma et al. proposed using a 2D filter similar
to the Gabor filter [13]. Other works include Wildes [14],
who proposed use of a Laplacian pyramid to decompose the
iris features for matching. Sudha et al. [15, 16] proposed
using edge maps to extract iris patterns and using Hausdorff
distance for pattern matching. Boles and Boashash proposed
using normalized wavelet transform zero-crossings [17]. Sun
et al. proposed using moment-based iris blob matching
[18]. Hollingsworth et al. proposed using the “best bits”
in the middle band to improve the recognition accuracy
[19]. Thornton et al. proposed using correlation filters with
Bayesian deformation estimation [20]. Du et al. proposed
using 1D Local Texture Patterns [21]. Velisavljevic used
oriented separable wavelet transforms to do iris feature
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extraction [22]. Miyazawa et al. used a 2D Fourier Phase
Code (FPC) method for representing iris information [23].
Tajbakhsh et al. used both visible light and near infrared iris
images for iris recognition [24]. None of these methods are
designed for nonideal situations.

In the past, several researchers have worked on non-ideal
iris recognition [25, 26]. Proenca and Alexandre [5, 27] have
worked on frontal iris recognition under visible wavelengths
using the UBIRIS database [28]. Compared to NIR images,
such as CASIA [29] and ICE [30] databases, there is more
reflection noise in the visible wavelength iris images. Vatsa
et al. applied a set of selected quality local enhancement
algorithms to generate a single high-quality iris image for
iris recognition [31]. In [32], we added several modules to
help the traditional iris recognition system work in nonideal
situations. However, all of these methods are designed for
frontal-gaze iris images.

For nonfrontal iris recognition, Daugman proposed
using Fourier-based trigonometry to estimate the two
spherical components of angle of gaze and used an affine
transformation to “correct” the image and center the gaze
[9]. Schuckers et al. proposed two methods to calculate
angle of gaze: using Daugman’s integrodifferential operator
and also an angular deformation calibration model [33]. It
is assumed that an estimate of the degree of off-angle is
available for the algorithms and subjects are required to place
their heads on a chin rest looking front (while the camera
is rotated horizontally in fixed angles). Both methods are
limited because “the affine transformation assumes the iris
is planar, whereas in fact it has some curvature” [9].

Recently, we proposed the Regional Scale Invariant
Feature Transform (SIFT) approach [34] for noncooperative
iris recognition which works for off-angle iris images. Iris
features are described without a polar or affine transforma-
tion and the feature point descriptors are scale and rotation
invariant. However, the iris region consists of both noise
and patterns, and Regional SIFT describes the area around
a feature point using gradient information, which is not
best suited for feature extraction. Most importantly, Regional
SIFT would not work well with local pattern deformation.

If the strengths of SIFT and Gabor wavelets can be com-
bined for feature extraction, it may improve the recognition
accuracy for off-angle iris images. A simple combination of
SIFT and Gabor wavelet method would not work, and it
is challenging to design a method that can take advantage
of the SIFT and Gabor wavelet. (1) The SIFT method
may select many feature points in a small region. This
increases the computational complexity. More importantly,
the heavy overlapping of the feature descriptors could result
in extremely high weighting for the matching results in the
small region. (2) The eyes are deformed in the off-angle
images. The global Gabor wavelet parameters would not
work for off-angle iris images. This means that we need to
design localized Gabor wavelets. How to design the Gabor
wavelets to locally describe the feature points is a challenge.
More importantly, how does one design the approach to
ensure local deformation invariance? (3) In the SIFT method,
the matching of the feature points does not incorporate
global information. In iris recognition, the feature location

is an important piece of information in performing the
matching. How does one incorporate the global information
in the matching to ensure accurate recognition results?
(4) For off-angle iris images, the image segmentation is a
challenge. How does one design a recognition method that
can be tolerant of small segmentation error?

It would be desirable if an iris recognition algorithm can
have the following capabilities:

(i) perform iris recognition for both frontal and off-
angle iris images,

(ii) be scale invariant in both local and global levels,

(iii) extract iris features efficiently and locally even under
the deformation situation,

(iv) be tolerant of segmentation error.

The goal of our work is to design such an iris recognition
algorithm. The proposed research effort has four novelties
as compared to the previous works. (1) To better extract
the iris features, we incorporated Gabor wavelets with SIFT
for feature extraction. (2) Both the phase and magnitude of
the Gabor wavelet output are weighted and fused in a novel
way for local feature point description. (3) To compensate
for the iris local deformation due to dilation/contraction
and off-angle image acquisition, provide global registration
information of the feature points, and improve the matching
efficiency, we used two feature region-based methods and
ensured that each subregion was locally adjusted to the
dilation/contraction/eye deformation. In this paper, we
propose two subregion maps for each image for feature point
detection. (4) To be tolerant of the segmentation error, we
allowed the feature point from one image to match with
feature points in its nearby locations from another image.

The rest of the paper is organized as follows. In Section 2,
we give a brief review of the SIFT-based methods and
discuss why these methods could not work in noncooperative
iris recognition. In Section 3, we introduce the proposed
Gabor descriptor method and provide technical details
about how to develop the feature subregion maps, select
the feature points, describe each feature point, and match
feature points from different images. The experimental
results, comparisons with the state-of-the-art algorithms,
and discussions are reported in Section 4. Section 5 describes
the proposed video-based noncooperative iris recognition
system and discusses the implementation results. Section 6
draws some conclusions.

2. Brief Review of SIFT-BasedMethods

Local descriptor-based methods are widely used. Local
descriptors computed for interest regions are distinctive,
robust to occlusion, and (sometimes) do not require segmen-
tation [35]. Lowe [36] proposed the scale invariant feature
transformation (SIFT) method, which describes an object as
a group of feature points such that the object can be found
in an image with invariance to scale, rotation, and affine
transformations. The SIFT features are local and based on
the appearance of the object at particular interest points,
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(a) Iris area (b) Subregion map 1 (c) Subregion map 2

Figure 1: Demonstration of the iris subregion selection. (Note that there are more subregions than shown here.) The subregion map 2 is
about half angular resolution shifting of subregion map 1.

and are invariant to image scale and rotation. This method
has been widely used in current object recognition. In [37],
Ke and Sukthankar applied Principal Components Analysis
(PCA) to the normalized image gradient patch. Carneiro
and Jepson [38] proposed a phase-based descriptor. In [35],
Mikolajczyk and Schmid proposed the gradient location and
orientation histogram (GLOH), which is an extension of
the SIFT descriptor. In [39], Cheng et al. proposed using a
multiple support region based SIFT approach for deformable
image recognition. In [40], Mortensen et al. proposed SIFT
method with global context vector that adds curvilinear
shape information from a much larger neighborhood. Some
other local descriptor methods include geodesic intensity
histogram [41], spin images [42, 43], shape context [44–46],
and steerable filter [47–50]. Recently, Lepetit and Fua [51]
proposed to use training to find the most repeatable object
keypoints. The application of this method is very limited
because it requires the training images have a well-registered
target object, which is often difficult in real-life scenarios.

In [52], Quelhas et al. used a SIFT-like method to
select the feature points and used bag-of-visterms (extended
concept of bag-of-visual-words ) to model the local features.
Bag-of-visual-words (BoV) model is analogous to the bag-
of-words (BoW) model in natural language processing and
information retrieval [53–56], where a text is represented as
an unordered collection of words, while grammar and even
word order was disregarded. The BoV in object recognition
used a similar concept to describe the local patterns using
feature vectors. A codebook of the features is generated by
offline quantization of local descriptors. The challenge in
BoV is to find general and representative feature vectors that
can describe the local pattern and training is often necessary
[57–59]. The BoV did not take the spatial relationships
into consideration, which introduces ambiguity in object
recognition. This hybrid model by Quelhas et al. [52]
can largely improve the recognition accuracy over using
BoV model alone. However, similar to general BoV, it is a
challenge to perform robust object recognition.

All the above methods are designed for general object
feature extraction, and did not take the iris features into
account. In [34], we proposed region-based SIFT approach
to improve the recognition accuracy over the traditional SIFT
method. However, as we discussed in Section 1, this method

0◦

(a) Masked feature point map for feature subregion map 1

0
◦

(b) Masked feature point map for feature subregion map 2

Figure 2: Masked Feature Point Map. (Note that these images are
for illustration only and do not show the full 720 bins used.) White
regions do not contain any feature points. Black regions have one
feature point each. The gray regions are noisy regions that should
not be used in matching.

has its own limitations. In [9], Daugman has used 2D Gabor
wavelet for iris recognition and showed that it worked very
well in iris pattern extraction. If the strengths of both local
descriptor and Gabor wavelet can be combined in feature
extraction, we can design a better local descriptor.

3. Gabor Descriptor-Based
Off-Angle Iris Recognition

To perform iris recognition, the first step is to segment the
iris images. The segmentation of an off-angle iris image itself
is a challenging problem [11, 27, 31, 60]. In [61], we designed
a video-based noncooperative iris segmentation method. In
this research, we use the general conic model in [61] for off-
angle image segmentation. In this paper, our focus is how to
design the iris feature extraction and matching method. Our
proposed method includes the following steps: feature point
selection, feature description, and region-based matching.
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Figure 3: Stable feature points found in two subregion maps in a
real image. The left image is an original image with feature points.
The top right and bottom right images show the feature points
detected in subregion map 1 and subregion map 2, respectively.

3.1. Feature Subregion Maps. The SIFT method finds many
points stable within scale space with many points possible
in a very small region. The goal of our approach is to
increase the opportunity to correctly match feature points
within a similar relative position with respect to the pupil
across multiple iris images; therefore, we should have a small
number of features in small areas. More importantly, iris
patterns have their own special characteristics, which need to
be considered when designing the feature extraction method,
(1) The spatial correlations in iris patterns are important
in recognition. Therefore, in designing the effective local
descriptor method, we should have global information of
feature points. (2) The pupil may dilate or contract. For off-
angle eyes, the distance between the pupil boundary and the
limbic boundary would not be uniform. As a result, the iris
patterns can be deformed locally. It is important to have
some local normalization process in selecting feature points.
(3) There could be noisy regions in an iris area, such as
eyelids, eyelashes, and glare. These areas should be identified
and removed in matching.

In this research, we divide the iris area into a fixed
number of subregions, and ensure each region has at most
one feature point. In this way, for each feature point, we know
its subregion and the correlation of the subregion to other
subregions. Therefore, we have the global information of the
feature points for matching.

To take local deformation into account, we should not
make the subregions to be same size; rather, we should take
eye deformation information into account when assigning
the subregions. We know that deformation of the eye would
change the iris ring radius (the distance between the pupil
and limbic boundaries in radius direction). Especially for
off-angle eyes, the radius distance is nonuniform over the
angular direction. In this research, we assign x bins in radius
direction and y bins from 0 to 2π in the angular direction,
where x represents the resolution in radius direction, and
y represents the resolution in the angular direction of the
region. It is important to select proper x and y sizes to ensure
the efficiency in matching and accuracy in feature extraction.

Total, we will have x∗y subregions in the entire iris
region. The research results by Daugman in [7] have shown
that 8 rings can work well with iris recognition. To include

(xp , yp)

(x, y)

SR

SA

θ

(xs, ys)

Figure 4: The description of SR, SA, θ, (x, y), and (xp, yp).

the tolerance of segmentation error of the pupil boundary
region and the limbic region (i.e., adding 2 more regions
in the radius direction), we use x = 10 in our research.
In the angular direction, by our observation, we found that
resolution of the iris patterns are usually within 5 degrees.
Therefore, we select y = 72. In this way, a normalized map
of size 10 by 72 is formed. For each sub region, it can only
have one feature point. In Section 3.2, we will discuss how to
ensure at most one feature point per subregion.

There could be noise (such as eyelids, eyelashes, and
glares) in an iris area. It would be important to mask these
noisy regions. Therefore, we have three kinds of subregions:
noisy regions, regions with one feature point each, and
regions without feature points.

The head may tilt and the start point of the subregion
map became arbitrary in terms of particular iris patterns. As
a result, some iris patterns may cross two subregions in the
angular direction. To take this into consideration, we created
an additional feature subregion map with the offset of half of
the angular resolution, that is, 2.5 degree offset (Figure 1). In
this way, if the feature point happens to be in the edge of a
subregion in one feature subregion map due to tilt, it will be
in the middle of the subregion of the feature subregion map.

3.2. Feature Point Selection. In this research, we used the SIFT
Difference of Gaussian (DoG) approach to find potential
feature points [36]. However, as we discussed inSection 3.1,
it is important to combine the selection of candidate points
with the feature subregion maps.

Below is a brief description of the candidate feature
points selection process using SIFT feature point selection
approach [36]. To find stable feature points, the first step is
to apply a nominal Gaussian blur, (1), resulting in I(x, y),

G
(
x, y

) = 1
2πσn2

e−(x2+y2)/2σn2
. (1)

Here σn = 0.5. Then, the nominally blurred image, I(x, y),
is progressively Gaussian blurred. The first Gaussian image is
created using

gσ =
√
σ2

0 + σ2
n , (2)

where σ0 = 1.5
√

2 so that

G
(
x, y, 1

) = Ggσ ∗ I
(
x, y

)
. (3)
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Figure 5: Examples of odd and even Gabor filters with different sizes and orientations. The first row is even filters and the second row is odd
filters.

The remaining Gaussian images are created using

σ = 1.5
(√

2
)m

(m = 0, 1, 2, 3), (4)

resulting in five Gaussian blurred images (G(x, y, s) (s =
0, . . . , 4)). The size of the Gaussian filter is always the
closest odd number to 3σ . These parameters were selected
empirically and are the same for all images. Then the four
DoG images are created by subtracting each Gaussian image
from the previous Gaussian image in scale:

D
(
x, y, s

) = G
(
x, y, s + 1

)−G
(
x, y, s

)
(s = 0, 1, 2, 3). (5)

In this research we only use the layers s = 1 and 2.
Unlike the general SIFT approach, we only allow one

feature point to be selected per layer. For D(x, y, 1) and
D(x, y, 2), the local minima and maxima with the highest
magnitude of all the points contained within the subregion is
stored so that every subregion contains two potential feature
points, one scale apart, unless some portion of the subregion
is occluded or masked due to noise.

For illustration purposes, Figure 2 shows an example
of how the iris area can be divided into multiple subre-
gions with subregions that include occluded pixels (eyelids,
eyelashes, or glare) being masked entirely. Since the pupil
and limbic boundaries are modeled as ellipses, the sizes of
these subregions vary in the radial direction for each of
the 72 angular bins. This is a major difference from the
previous Regional SIFT method in that the entire iris area
can potentially have feature points and every bin size changes
with dilation. For further illustration, Figure 2 shows how
some bins will contain a feature point corresponding to a
point in the annular iris region, whereas others will not.
(Note that for ease of viewing, Figure 2 does not show the full
720 bins used.) In addition, to compensate for feature points
that are on the boundaries of subregions, a second 10 by 72
normalized feature point map is created with a 2.5 degree
angular offset. Note: the two subregions may have different
feature points.

Once potential feature points are identified and mapped
to the feature point map, the 3D quadratic method is used to
eliminate unstable feature points. Using the Taylor expansion
(up to the quadratic terms) of the DoG images, D(x, y, s),
shifted so that the origin is at the selected point.

D(Δx) = D +
∂DT

∂x
Δx +

1
2

(Δx)T
∂2D

∂x2 Δx, (6)

where D and its derivatives are evaluated at the selected point
and Δx = (Δx,Δy,Δs)T is the offset from this point. Taking
the derivative of this function with respect to x and setting it
equal to zero, we determine the extremum, Δx̃, to be

Δx̃ = −∂2D−1

∂x2
∂D

∂x
. (7)

To reject points that have low contrast

D(Δx̃) = D +
1
2
∂DT

∂x̃
x̃. (8)

If |D(Δx̃)| is less than 0.03 for a given extrema point, that
point is rejected.

To determine if an extrema point is along an edge, the
Hessian matrix is used [18],

H =
[
Dxx Dxy

Dxy Dyy

]

, (9)

where D is the second partial derivative of the DoG image
D(x, y, s) at a scale s, the following inequality is used to find
edge and corner points. If

Tr(H)2

Det(H)
<

(r + 1)2

r
, (10)

the extrema point is considered to be a corner; otherwise, the
point is rejected as an edge point. Here r = 10.

After rejecting points based on contrast, edge value, and
stability, the remaining points are assigned a description.
However, if in one subregion, there are still 2 feature
points available (one feature point per scale), we will then
choose the more dominate one (i.e., the one with higher
|D(Δx̃)| value). In this way, we ensure that each subregion
can have at most one feature point. As we discussed in
Section 3.1, we will have 2 feature subregion maps per iris.
This means that we will have 2 sets of feature points per iris.
Figure 3 shows an example of stable feature points found for
an iris in two subregion maps.

3.3. Feature Description. For each feature point, a feature
description of length 64 is created based on the normalized
and Gaussian weighted position of each point within a
normalized window around a feature point (4 x-bins and
4 y-bins) and the magnitude and phase response (4 phase
orientation bins).
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Table 1: ICE 2005 database matching results. ∗In the NIST ICE Phase 2005, Duagman 1 and Duagman 2 were listed as Cam 1 and Cam 2.
The EERs are not clear to view from the report. The GAR at FAR = 01% and GAR at FAR = 0.01% were taken from the plot of the report in
[30].

(a) Right eyes.

Algorithm #Images EER GAR at FAR =.1% GAR at FAR =.01%

Daugman 1∗ 1426 — 0.9940 0.9910

Daugman 2∗ 1426 — 0.9950 0.9920

2D Gabor 1426 0.0062 0.9900 0.9850

1D Log-Gabor 1426 0.0079 0.9870 0.9735

Regional SIFT 1426 0.0557 0.7320 0.5640

Proposed 1426 0.0185 0.9588 0.9386

(b) Left eyes.

Algorithm #Images EER GAR at FAR =.1% GAR at FAR =.01%

Daugman 1∗ 1527 — 0.9880 0.9850

Daugman 2∗ 1527 — 0.9890 0.9880

2D Gabor 1527 0.0126 0.9750 0.9629

1D Log-Gabor 1527 0.0106 0.9739 0.9533

Regional SIFT 1527 0.0689 0.6346 0.3741

Proposed 1527 0.0257 0.9316 0.8916

Phase 1

Phase 2

Phase 3

Phase 4

(a) Normalised window (b) Gabor descriptor

Figure 6: The process of a Gabor descriptor. The different colors in
the left image shows that the Gabor filter results show they are in
different phase layers.

Imagery axis

Real axis

Phase 1Phase 2

Phase 3 Phase 4

(0, 0)

Figure 7: Phase areas.

For each feature point, we first choose its local window
for feature description. The window size is determined as

W =
⌊√

2 · SA · N + 1
2

+ 0.5
⌋

, (11)

where SA = (
√

(x − xp)2 + (y − yp)2) · (2π/360) · 5 and N
is the number of bins used to describe the relative position
of a point to a feature point (here N = 4). SA is the spatial
extension of the frame around the feature point (x, y) in
the angular direction, (xp, yp) are the coordinates of pupil
center. SA is used to normalize the window around that
feature point and changes in size based on the distance
between the feature point and pupil centre.

The coordinates of all pixels in the window are then
normalized: the pixel (x, y) is normalized as

(
nx,ny

)
=
(

(x − xs) cos θ +
(
y − ys

)
sin θ

SR

−(x − xs) sin θ +
(
y − ys

)
cos θ

SA

)

.

(12)

SR is the spatial extension around the feature point in the
radial direction, and is used to normalize the window around
that feature point and changes in size based on the amount
of dilation. SA is the same as what we defined in (11). (xs, ys)
is the feature point. θ is the angle between the line of the
pixel and the feature point to the line of the feature point and
the pupil center (Figure 4). It is used to orient the window
around the feature point such that the same feature point in
another image will be able to be matched despite differences
in angular position with respect to the pupil center.

In order to capture the iris features around a given feature
point, a bank of 2D Gabor filters are used:

G
(
x, y

)

= 1
2πσβ

exp

{

−π
(

(x − x0)2

σ2
+

(
y − y0

)2

β2

)}

× exp
[
i
(
ξ0x + v0y

)]
.

(13)
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Subregion map 1 from image X

Subregion map 2 from image X

Subregion map 1 from image Y

Subregion map 2 from image Y

score 1
score 2

sco
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3

score 4

Figure 8: Subregion matching between two iris images.
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(b) The feature points that are
located in the same location and
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(c) Feature point 1 from image X is matched
with feature points A to G from image Y

1A 1B 1C

1D 1E 1F

1G

Angular direction

Radial
direction

Figure 9: Feature point matching.

In this equation, (x0, y0) is the center of the receptive field of
the spatial domain, (ξ0, v0) is the frequency of the filter. σ and
β are the standard deviations of the elliptical Gaussian along
x and y directions. By properly designing these parameters,
we can change the Gabor wavelet to fit the specific region for
feature extraction. Figure 5 shows the example of Gabor odd
and even filters in different sizes and orientations.

For each point in the normalized window around the
feature point, the magnitude and phase response of the
appropriate 2D Gabor wavelet is calculated with the wavelet
centered on the point being considered. The magnitude is
then Gaussian weighted based on the relative spatial distance
from the feature point so that points in the window closest
to the feature point carry the most weight and points further
away carry less.

A Gabor descriptor is created by first computing the
gradient magnitude and orientation phase at each point in
a normalized window around the feature point location,
as shown on Figure 6. These are weighted by a Gaussian
window, indicated by the overlaid circle. These samples are
then accumulated into four phase quadrics. In this paper, we
separate the phase into 4 areas (Figure 7)

The weight of the Gaussian, wn, is calculated as

wn = e−.5((nx)2/2σ2
x +(ny)2/2σ2

y ), (14)

where σy = N/2 and σx changes based on the dilation
around the feature point. Finally, the weight of each point
is calculated as

weight = wn ·mg, (15)

where mg is the magnitude response of the 2D Gabor
wavelet, and weight is added to one of 64 bins based on
relative distance from the feature point and quantized phase
response of the 2D Gabor wavelet. The resulting 64 bin
feature point descriptor is then normalized to a unit vector
by dividing by the 2-norm of the descriptor:

descrnorm = descr
‖descr‖2

. (16)

Since each descriptor is normalized, the relative difference
in magnitude response from the 2D Gabor filter remains
the same for the same points around a feature point across
iris images with different global illumination. And since
phase is not affected by illumination, the same points in
two iris images affect the same descriptor bins. Therefore,
each feature point descriptor created has each of the 64 bins
uniquely affected by the surrounding points based on
distance from the feature point, and 2D Gabor wavelet
response magnitude and phase; and an accurate descriptor
is formed based entirely on the annular iris data.

3.4. Region-Based Matching. To match two iris images, the
set of two 10 by 72 feature point maps are compared and
the Euclidean distance is found between each feature point
descriptor (Figure 8). In other words, the two feature point
maps from image A are compared to the two feature point
maps from image B, resulting in 4 matching scores. The
smallest matching score is then used as the matching score
between the two images. Recall that the two feature point
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(a) (b)

Figure 10: Remote Iris Image Acquisition Station Set Up.

(a) Look Left (b) Look Center (c) Look Right

(d) Look Up-Left (e) Look Up (f) Look Up-Right

Figure 11: IUPUI Remote Iris Image Database: Multiple Angles.

maps for an iris image describe the same regions, but are
offset by half of the angular resolution of the bins. This is
done in order to accommodate feature points that fall on
boundaries of subregions within a feature point map.

To match two feature point maps, the average of the
distance scores between all overlapping feature points is
calculated and used as the matching score between two
feature point maps. To make the proposed method tolerant
of segmentation error and eye rotation, each feature point
in a feature point map 1 is compared to each feature point
in the fifteen surrounding bins (two bins on either side
and one bin above and below) in a feature point map 2
(Figure 9), and the minimum average distance score is stored
for the two feature point maps compared. In this way, the
proposed method is less sensitive to the segmentation error
that is prone to occur in nonideal iris images since feature
points can occur anywhere within a bin and allowances are
made to maximize the opportunity for the same two feature
points in two images to be compared. Algorithms that sample
the iris region and encode globally require more stringent

segmentation results so as to correctly match each encoded
point.

4. Experimental Results

4.1. ICE 2005 Database Results and Comparison. The ICE
2005 Database [30] from National Institute of Standards and
Technology (NSIT) consists mostly of frontal look eyes. It
includes 2 subdatabases: left iris image database with 1527
images from 120 subjects, and right iris image database with
1426 images from 124 subjects. In this experiment, we used
the left eyes and right eyes, respectively, as ICE protocol in
phase 2005 organized by NIST, and our goal was to compare
the proposed method with traditional methods using only
frontal eyes.

Table 1 shows the comparisons using different methods:
Daugman’s two methods called Cambridge 1 and Cambridge
2 methods [30], and our implementation of the traditional
2D Gabor wavelet matching and 1D Log-Gabor matching,
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Figure 12: Comparisons between the regional SIFT method and
the proposed Gabor Descriptor method using EER, GAR at FAR =
0.1%, and GAR at FAR = 0.01%.

our Regional SIFT, and the proposed method results on
annular iris images. The two Cambridge results are the best
in the list. It is unknown about the technical difference
between the two Cambridge methods. They could use dif-
ferent segmentation methods or Gabor wavelet parameters.
To be comparable, all our methods (our implementation of
2D Gabor wavelet, 1D Log-gabor wavelet, SIFT method, and
the proposed method) used one segmentation method. It is
shown that our implementation of the traditional methods
obtains good results which are close to Daugman’s results
and our proposed method obtains comparable results. Note,
Daugman’s methods used his own segmentation approaches

which are unknown to the public. The performance of
Regional SIFT is understandable given the limitations previ-
ously mentioned. To reduce the effect of segmentation error
to the traditional methods, manual segmentation was used to
find the pupil and limbic boundaries, which were modeled as
circles.

4.2. IUPUI Remote Iris Image Database Recognition Results
and Comparison. The IUPUI Remote Iris Image Database
was acquired at 10.3 feet from the camera to the subject
using a MicroVista NIR camera with Fujinon zoom lens.
6 videos were captured for each subject with different
scenarios: frontal look (1st video) reading from posters 15
feet from the subject and 5 feet behind the camera (2nd
and 3rd videos) (Figure 10(a)); searching the wall to count
the number of occurrences of a certain symbol (4th and 5th
videos) (Figure 10(a)); performing simple calculations using
numbers posted on the ceiling (6th video) (Figure 10(b)).
Each video was acquired at 30 frames per second with 1280×
1024 resolution. The average iris radius of the video images
in the database is 95 pixels. During the image acquisition,
subjects can move their heads and eyes freely to perform the
tasks, which simulates a remote, noncooperative situation,
such as when a subject looks at flight times in an airport.
In addition, the subjects can have their own emotions during
the acquisition process (Some of the subjects smiled in some
tasks). The authors are working with IRB to make this
database available publically.

In this experiment, a database with 10 video frames for
each iris for six classifications of angle with respect to the
camera were constructed (Figure 11) from both sessions:
looking center, left, right, up-left, up-right, and up. This
resulted in 60 images per iris, with the exception that three
iris videos were missing. The total number of images used
for this experiment was 3690 and included both left and
right eyes from 31 subjects (because 3 videos were incorrectly
acquired and were not used in this paper).

4.2.1. Frontal Look Recognition Results and Comparison.
Table 2 shows that our results using the proposed method
and the Regional SIFT method are comparable to the results
achieved using traditional matching on the centered eyes
from our noncooperative database. The pupil and limbic
boundaries were modeled as circles which is a simple
and reasonable approximation of the pupil and limbic
boundaries’ geometries. We did not perform this same
matching algorithm on the other classes since they are not
frontal looking images and it would be difficult to reliably
sample the iris pattern for off-angle images without some
transformation such as Daugman proposed [2]. While this
approach seems reasonable, we argue that due to the 3D
nature of iris patterns, it is more reasonable to encode
iris patterns without a transformation and more accurately
represent the patterns presented to the camera.

4.2.2. Multiple Angle Recognition Results and Comparison.
Table 3 shows the experimental results using the Regional
SIFT method. Table 4 shows the experimental results using
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Table 2: IUPUI remote database frontal look eyes matching results.

Algorithm #Images EER GAR at FAR
=.1%

GAR at FAR
=.01%

2D Gabor 610 0.0179 0.9297 0.8856

1D Log Gabor 610 0.0295 0.9235 0.8980

Regional SIFT 610 0.0350 0.9173 0.8572

Proposed 610 0.0273 0.9213 0.8761

the proposed method. Here all-to-all matching is used to
match all irises. The genuine matches are the matching
results from same eye with same-looking angles. The
imposters are the matching results from different eyes
with same- or different-looking angles. By comparing them
(Figure 12), we see that the Regional SIFT method does
not perform as well as the proposed method on the
noncooperative iris images. The main reason is because
Regional SIFT selects feature points using local gradient
magnitude and angle information, whereas the proposed
method encodes feature information around feature points
using the magnitude and phase response of 2D Gabor
wavelets which is more capable of capturing iris feature
characteristics. In addition, the proposed method is less
sensitive to segmentation error. The subregions of the
proposed method are locally area adjusted to the iris dilation,
contraction, and deformation.

For many methods, including the Regional SIFT method,
center gaze would achieve better recognition accuracy than
off-angle eyes. However, for the proposed method, our
experiment results show that the left and right looking eyes
have achieved higher accuracy than frontal looking images

Table 3: Recognition results of the regional SIFT method for same
eyes divided into classes based on angle of gaze.

Classes #Images EER GAR at FAR
=.1%

GAR at FAR
=.01%

Center 610 0.0350 0.9173 0.8572

Left 620 0.0454 0.7800 0.5865

Right 620 0.0454 0.8340 0.6980

Up-right 600 0.0567 0.7941 0.6530

Up-left 620 0.0610 0.7725 0.6170

Up 620 0.1392 0.6265 0.5320

All 3690 0.0588 0.8024 0.6763

(Figure 12 and Table 4). When the eye is looking left or right,
the image resolution for one side of iris (left or right) would
be reduced, but the resolution for another side of the iris is
increased. This increased resolution of the iris pattern helps
to select stable feature points in recognition. As a result, our
method performs slightly better for left-looking or right-
looking iris images. This shows that the proposed method
is well suited for use in a nonfrontal gaze situation.

5. Video-Based Noncooperative
Iris Recognition

5.1. Proposed Video-Based Noncooperative Iris Recognition
System. Figure 13 describes the proposed system which con-
sists of acquiring video sequences of iris data, using video-
based noncooperative iris image segmentation, evaluating
segmentation results, retaining the best segmented images,
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Table 4: Recognition results of the proposed method for same eyes
divided into classes based on angle of gaze.

Classes #Images EER GAR at FAR
=.1%

GAR at FAR
=.01%

Center 610 0.0273 0.9213 0.8761

Left 620 0.0214 0.9487 0.9108

Right 620 0.0162 0.9613 0.9180

Up-right 600 0.0540 0.8956 0.8422

Up-left 620 0.0492 0.8742 0.8079

Up 620 0.1251 0.6950 0.6358

All 3690 0.0478 0.8966 0.8476

feature extraction using the proposed Gabor descriptor,
feature matching, and fusion.

Matching Protocol. Under noncooperative situation, the iris
images tend to have lower quality and can be off-angle. To
ensure the accuracy, it will be important to have multiple
enrollment images with different eye-looking angle. In this
paper, we propose the matching protocol to be multiple
enrollment images with input video image (Figure 14).

Video-Based Noncooperative Iris Image Segmentation. Since
noncooperative iris images can be especially difficult to
segment using traditional methods [3, 9, 27–34], the video-
based noncooperative iris image segmentation algorithm
developed in our lab [61] is used in this paper. It uses a
course-to-fine approach and uses a general conic to model
the pupil and limbic boundaries. More details of this method
can be found in [61].

Segmentation Evaluation. The segmentation evaluation
method developed in our lab in [32] was used in this paper
to estimate the accuracy of the segmentation result.

Feature Extraction and Matching. The 10 images with the
best segmentation scores are used for recognition. The pro-
posed Gabor descriptor method (introduced in Section 3)
was used for feature extraction and matching.

Score Fusion. The matching score between the enrollment
image and the individual video frame is fused with the
segmentation evaluation score. After majority vote, if the best
matching score of the video to an enrollment iris satisfies the
matching threshold, the matching score will be the matching
result for the video to that enrollment eye. Matching results
from the video sequence to other enrollment eyes will be set
to 1 (1 means no match). If even the highest matching score
does not satisfy the matching threshold, this video will not
be matched to any eye.

5.2. Experimental Results and Discussion. In this experiment,
10 images per eye were used from the first session for
enrollment. They include the different off-angles (left, right,
up-left, up-right, and up). The total number of enrollment

images is 620 with 62 irises from 31 subjects. We automati-
cally match the enrollment images with the video frames in
the 5 videos for each person from the second session (the
frontal look only video was excluded as they are all frontal
images) for 30 subjects and 60 irises. 1 subject did not have
a second session and 2 subjects only had 4 videos from the
second session. Totally, we have 298 video sequences.

The result is FAR = 0 and EER = 0 for all thresholds since
only one or zero matching scores are retained for each video.
73 videos (about 24.5% of the videos) were not recognized
since some videos could not generate satisfactory matching
results. For the rest of the videos, there is 100% recognition
accuracy (0% FAR at 0% FRR). The results show that 100%
accuracy can be obtained using multiple enrollment images,
video sequences of an iris, and fusion of matching scores;
even in a noncooperative iris database.

6. Conclusion

In this paper, we proposed Gabor Descriptor-Based Non-
cooperative Iris Recognition. The proposed solution to
noncooperative iris recognition does not transform the
iris to polar coordinates, is normalized for changes in
dilation/contraction/deformation, and is tolerant of the seg-
mentation errors that are likely to occur in a noncooperative
situation. Experimental results show that the proposed
method is comparable to traditional methods on the ICE
2005 database [30] and performs well for the IUPUI Remote
Iris Image database. Results also show that visible iris features
change as the gaze of an iris changes and that video-based iris
recognition can greatly improve recognition accuracy when
multiple angle enrollment iris images are used.
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