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This paper presents a general expression for the marginal distributions of the ordered eigenvalues of certain important
random matrices. The expression, given in terms of matrix determinants, is compacter in representation and more efficient in
computational complexity than existing results in the literature. As an illustrative application of the new result, we then analyze the
performance of the multiple-input multiple-output singular value decomposition system. Analytical expressions for the average

symbol error rate and the outage probability are derived, assuming the general double-scattering fading condition.

1. Introduction

Random matrix theory, since its inception, has been known
as a powerful tool for solving practical problems arising
in physics, statistics, and engineering [1-3]. Recently, an
important aspect of random matrix theory, that is, the
distribution of the eigenvalues of random matrices, has been
successfully applied to the analysis and design of wireless
communication systems [4]. These applications, mostly
concerning the multiple-input multiple-output (MIMO)
systems, can be summarized as follows. In single-user MIMO
systems, the eigenvalue distributions of Wishart matrices (a
Wishart matrix [1] is formed by multiplying a Gaussian
random matrix (of the size m X n) with its Hermitian
transposition (given that m < n). If m > n, the product
matrix was termed the pseudo-Wishart matrix [5]) were
widely applied to the analysis of MIMO channel capacity
[6-11] and specific MIMO techniques, such as MIMO
maximum ratio combining (MIMO MRC) (MIMO MRC is
a technique that transmits signals along the strongest eigen-
direction of the channel. It was also known as maximum-
ratio transmission [12], transmit-receive diversity [13], and
MIMO beamforming [14]) [15-17] and, MIMO singular
value decomposition (MIMO SVD) (MIMO SVD, also
known as MIMO multichannel beamforming [18], and

spatial multiplexing MIMO [19, 20], is a generalization
of MIMO MRC. It transmits multiple data streams along
several strongest eigen-directions of the channel). [18-21],
given that the MIMO channel was Rayleigh/Rician faded.
For channels that are not Rayleigh/Rician faded (e.g., the
double-scattering [22] fading channel to be discussed in
Section 4), the eigenvalue distributions of Wishart matrices
also played an essential role in the performance analysis of
MIMO systems [23-30]. Even for relay channels, statistical
distributions of the eigenvalues were shown very useful
in the derivation of the channel capacity [31, 32]. In
multiuser MIMO systems, the eigenvalue distribution of a
random matrix (characterized by the channel matrix of the
desired user and that of the interferers) was applied to the
performance analysis of MIMO optimum combing (MIMO
OC) [33-41]. Furthermore, in cognitive radio networks, the
eigenvalue distributions of random matrices were recently
applied to devise effective algorithms for spectrum sensing
[42-44].

Given its importance in various applications, the eigen-
value distribution of random matrices is arguably one of the
hottest topic in communication engineering. During the past
two years, general methods for obtaining these eigenvalue
distributions were developed, applying for a general class
of random matrices. To be specific, Ordoénez et al. [20]



presented a general expression for the marginal distributions
of the ordered eigenvalues, while Zanella et al. [45, 46]
proposed alternative expressions for the same distributions.
The results, however, need separate expressions to cover the
Wishart and pseudo-Wishart matrices. This problem was
later avoided in the new expression of Chiani and Zanella
[21], which was given in terms of the “determinant” of
the rank-3 tensor. After that, a simpler expression for the
eigenvalue distribution was presented by Sun et al. [41],
where only conventional (2-dimensional) determinants were
involved.

In this paper, we aim at finding a new expression for
the eigenvalue distribution, which is even simpler than Sun’s
result. To that end, we first show that many important
random matrices, especially those in the summary above,
share a common structure on the joint distributions of
their (nonzero) eigenvalues. Based on the common structure,
we then derive the marginal distributions of the ordered
eigenvalues, using a classical result from the theory of
order statistics, along with the multilinear property of
the determinant. It turns out that the new expression
we obtained is compacter in representation and more
efficient in computational complexity, when comparing with
existing results. The new result can unify the eigenvalue
distributions of Wishart and pseudo-Wishart matrices with
only a single expression. Moreover, it is given in con-
ventional (2-dimensional) determinants, and importantly,
it replaces many functions in Sun’s result with constant
numbers, greatly improving the computational efficiency.
As an illustrative application of the new expression, we
analyze the performance of MIMO SVD systems, assuming
the (uncorrelated) double-scattering [22] fading channels.
It is worth noting that, different from the Rayleigh/Rician
fading channels, where the performance of MIMO SVD
were well-studied in [18], the behaviors of MIMO SVD in
double-scattering channels is still not clear (expect for some
primary results in [47] by the authors). In this context, we
derive first the joint eigenvalue distribution of the MIMO
channel matrix, using the law of total probability. Then,
based on the joint distribution, we apply the general result
to get the marginal distribution for each ordered eigenvalue.
After that, we analyze the performance of the MIMO SVD.
Analytical expressions for the average SER and the outage
probability of the system are derived and validated (with
numerical simulations). As the simulation results illustrate,
the analytical expressions agree perfectly with the Monte
Carlo results.

The rest of this paper is organized as follows. Section 2
presents the common structure of the joint eigenvalue
distributions. Based on the common structure, Section 3
derives the general expression for the marginal eigenvalue
distributions. Then, in Section 4, we analyze the performance
of the MIMO SVD in double-scattering channels, by apply-
ing the general result. Finally, we summarize the paper in
Section 5. Next, we list the notations used throughout this
paper: all vectors and matrices are represented with bold
symbols; -T denotes the transposition of a matrix; - denotes
the Hermitian transposition of a matrix; 0,,x, denotes an
m X n matrix with only zero elements; I, denotes the m X m
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identity matrix; A € C™" denotes that A is an m X n
complex matrix; {A}; jis the (i, j)th element of a matrix
A; | - | denotes the determinant of a matrix; [{a; ;}| is the
determinant of a matrix whose (i, j)th elementis a; ;; E¢(-)
is the expectation of a random variable with respect to &;
A ~ CNuxnM, Q, X) denotes that A is an m X n complex
Gaussian matrix with a mean value M € C™" a row
correlation Q € C"™*" and a column correlation X € C"*",

2. Joint Distributions of Ordered Eigenvalues

In this section, we show that the random matrices discussed
in Section 1 share a common structure on the joint probabil-
ity density functions (PDFs) of their eigenvalues. (Although
the common structure can be found in various random
matrices (Rayleigh, Rician, and double-scattering, etc.), it
is not true that all random matrices have this structure
on the joint PDF of their eigenvalues. A good example
in this point is the Nakagami-Hoyt channel, whose joint
eigenvalue PDF of the channel matrix is different from (1),
see [48, Equation (10)], for more details. It is also worth
noting that, for non-Gaussian random matrices, obtaining
exact expressions on their joint eigenvalue distributions
is generally difficult. Very few results can be found in
the literature. In this paper, we focus on exact eigenvalue
distributions, and thus, we consider mainly Gaussian and
Gaussian-related random matrices.) Indeed, this common
structure (formulated as the proposition below) was previ-
ously reported in [20, 45, 49] among others.

Proposition 1. Let W denote a Hermitian random matrix
discussed in Section 1, and let A = (A1, Aoy Am), b = A =
Ay = -+ = Ly = a, denote the nonzero ordered eigenvalues
of W. Then, the joint PDF of A can be expressed as

AX) = K@) |E@)] [7(x), "
i=1 1

bzx1z2x=2++"=2x, =qa),

where X = (x1,...,%m), fa(+) is the joint PDF of A, K is a
constant coefficient, ¥(-) is a generic function, ®(x) and ¥(x)
are n X n and m X m matrices (n = m), respectively, whose
elements are given by

‘/’i(xj), i=1...,n j=1,...,m,

{(D(X)}i,j: ) .
i js i=1,...,n j=m+1,...,n,

{Ex)}; ;= Ei(xj), i j=1,...,m,
(2)

with ¢;, j being an arbitrary constant, ¢;(-)’s and &(-)’s being
a generic function.

Next, we verify the proposition above with random
matrices discussed in Section 1. (Let G; and G, denote two
mutually independent complex Gaussian matrices).
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(i) Single-user MIMO systems:

(a) (uncorrelated) Rayleigh fading channels: Let G; ~
C Ny (Onxams In, Ing) with N > M, then the joint
PDF of the eigenvalues of the Wishart matrix W =
GG, is [6]

M
AX) = KO |E)|] [xNMe ™,

i=1 (3)
(0 >x7 >+ =xy=0),
where A = (A1,...,Am), x = (x1,...,Xum), and
_ 1
[T (N = )M = )Y
@)}, =" i j=1,...,M, (4)
B} j=x" i j=1...M

Clearly, the joint PDF above is in the form of (1).
For semicorrelated Rayleigh and uncorrelated Rician
fading channels, one can also verify that the joint
PDFs are in the same form as (1), see [18, 20, 45, 46].

(b) Double-scattering ~ channels: Let G ~
C My, xn. (0N, xne> In,s In,)s and G, ~
G:/VNstt(ONstt, INS) IN,), with N,, N,, and N;
being three natural numbers, then the nonzero
ordered eigenvalues of W = GY'GI'G|Gy/N; are
jointly distributed as

M
= K|®x)|IEx)[] [x¥5,

Hx)
i=1 (5)

(0 >x1=---=2xy=0),

where A = (A1,...,Am), x = (x1,...,%Mm), and

S= min(Nr, NS): T= maX(Nrr NS):

M = min(S, N;), N = max(S, Ny),
SM)(S+M-1)/

(_1)( -M)(S+tM-1) ZNSST

IS (ST - T (N, — i)

(7)

and the matrices ®(x) and E(x) are defined by
{®d(x)}, j

([ xj\(T-Neti=12
Z(FS) KT—Nﬁi—l(Z Nsxj)a
i=1,..,8 j=1,...,M.

DS (T=M=N+i+j—2)INg "M N

i=1,.,8% j=M+1,...,S

ji—1

{E(X)},»,j:x{ , b j=1,...,M,

(8)

with K, (-) being the modified Bessel function of the
second kind [50, Equation (8.432.6)].

Proof. See Appendix A. O

Again, the joint distribution fits well in the from of
Proposition 1. More results pertaining to double-scattering
channels can be found in [47, Lemma 1].

(ii) Multiuser MIMO systems:

(a) OC without thermal noise: Let G; ~ CANpxo(M,
2, IQ) with Q = P, G, ~ CNpxn(0pxn, Z, In)
with N > P, and MPX"'M has P positive and
descendingly ordered eigenvalues (ui,...,up), then
the eigenvalues of W = G} (G,GY ) 'Gy are jointly

distributed as [38]

£QP
ﬁ\(X) K|®(x)||E(x) |HW, ©)
(0>x7>+++-=xp=0),
where A = (A1,...,Ap), x = (x1,...,xp), and
i P _pyt
K = e 11 (N+C'2 P).."
HlskjsP(ﬂi —,Mj> izl(Q_P)-(N— i)!
{(D(X)}ij= 1F1(Q+N—P+1;Q—P+l; i) ),
’ 1+x;
i, j=1,...,P,
(E®}j=x" i j=1..,P,
(10)

with 1F;(+;-;-) being the generalized hypergeomet-
ric function [50, Equation (9.210.1)].

Obviously, the joint PDF here also belongs to the class
defined by Proposition 1. For more examples, see [40, 51].

(b) OC with thermal noise: Let Gi ~ CNrxr(OrxT,
Iz, I7), G ~ CNpxi(Orxr, Ig, P) with the matrix
P having L positive eigenvalues in descendent order
(p1>...>pr), then the joint PDF of the nonzero

eigenvalues of W = G (GG + bI)'G, is [41]

min(R, T) )
A = KIOX)[IEx)| [ x ™®Deba, "
i=1 11

(00 > x> * 2 Xmin(R, T) = 0),

where A = (Al, mm(R T)) X = (Xl,...,

Xmin(R, T))> and

( 1)R(R—l)/Z
= l—Imm(R T)(T l)'l_[ 1 (R— 1)'n1<1<]<L( pj)




{@x)};

1

Ligmr(R-j+1, L
pl ] > . bJ
p
li=1,...,L; j=L—R+1,...,L-min(R, T),
T+1, bxj+b/p,-)
T+1
(x,»+1/p,-)
li=1,....,L; j=L-min(R, T)+1,...,L,

B0, ;

r(
P{J—R—leb(xjﬂ/p,‘)

>
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with T'(-, -) being the upper incomplete Gamma
function [50, Equation (8.350.2)].

Again, the joint PDF has the same form as (1). More
results can be found in [39].

In summary, the random matrices discussed in Section 1
share a common structure on the joint distributions of their
eigenvalues. Based on this common structure, we derive
in the following section a general result for the marginal
distribution of each ordered eigenvalue.

3. Marginal Distributions of
Ordered Eigenvalues

3.1. General Expression for the Marginal Distribution

e Do min(R, T) Theorem 1. If the joint PDF of the ordered eigenvalues
i BT b o (Als. .. Am) is given by (1), the marginal CDF of the kth largest
(12) eigenvalue Ay can be expressedas (a <z <b, 1 <k <m)
k-1
I+m—k
Fy(2) = KZ(—U’( " )
1=0
b
J ¢z(}’)£](}’)v()’)d)’a i= 1) > 15 _] = ﬁl)-“ >ﬂkflfl- (13)
a
x> z . . s
Br< B J (& )v(y)dy, i=1...m j=Pcip....Pm
Br-1<- <P a
éi j» i=1,...,m j=m+1,...,n
where () = n/m{/(n — m), B = (Bi,....08w) is a separate expressions to represent the eigenvalue distributions
permutation of (1,...,m) that satisfies fi < - -+ < Br-i-1  of Wishart (i.e., n = m) and pseudo-Wishart (i.e., n > m)
and Px-1 < -+ < Bu. The second summation is over all matrices. In contrast, Theorem 1 unifies the two cases (n = m

permutations, that is, (1, ) in total.

Proof. See Appendix B. O

Given the marginal CDF, the corresponding marginal
PDF is easy to obtain, given the well-known result on the
derivative of a determinant [52, Equation (6.1.19)],

dAG)| _ <
o :;\Aqu)

> (14)

where A(x) is an n X n matrix with each element being a
function of x, and A4(x) is identical to A(x), except that all
elements in the gth column are replaced by their derivatives
with respect to x.

In the literature, exact expressions on the marginal
distributions of the ordered eigenvalues were reported in
[20, 45, 46]. (The expression obtained in [45,46] was
given in the form of a sum of x%*e#* terms. That form
allows closed-form evaluation of moments and characteristic
functions of the eigenvalues.) These results, however, needed

and n > m) with only a single expression. It is also worth
noting that, although another unified expression could be
found in [21], the result there was given in terms of the
determinant of rank-3 tensor M. (Letting A be a rank-3
tensor, that is, {A}; j x = a;j« fori, j, k = 1,..., N,
the “determinant” of A, denoted by 7 (A), is given by

[7] T(A) £ 3, sgn(a) 28 sgn(ﬂ)]_[fj:laak,ﬂk, k> where « and
P are permutations of the integers (1,...,N), the summation
is over all possible permutations, and sgn(-) is the sign
of the permutation.) which was computationally complex,
especially comparing to our new result in a conventional (2-
dimensional) determinant form. Perhaps the most related
work in the literature is [41]. To see the difference between
[41] and Theorem 1 above, we rewrite [41, Lemma 1] in
the following proposition. After comparing the two results,
one can clearly see that our expression is much more
efficient in computational complexity, since the functions

fzh dy in (15) are replaced by constant numbers ff dy in
(13).
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Proposition 2. The marginal CDF of Ay can be alteratively

expressed as

b
L(bi(y)fj(y)v(y)dy, i=1,...
[[ng00

k-1
FL(z)=K> >

=0 Br<---<Pr-i-1
Pr-1<++<Pm
(/>i, J»
Proof. By the definition of marginal CDFE, we have

F(z) = Pr(z = Ak)

k-1
=>Prh = 21222 Gy =2 Ay)

1=0
(16)

k-1
-3 | Ao dx (17)

1=0 D1

where D; = {b > x; = «++ > X1 = 2 = Xy =

- = xp = a}. Substituting (1) into (17) and invoking the
generalized Cauchy-Binet formula [41, Lemma 1] the multi-
nested integration can be carried out analytically. As such, we
get the desired result. O

It is also worth noting that the work of this paper can be
viewed as an interesting proof for the equivalence between
(13) and (15), because both Theorem 1 and Proposition 2
represent the same eigenvalue distribution.

3.2. Specific Eigenvalue Distributions. As a simple application
of the general result, we particularize into the eigenvalue
distribution of the double-scattering channel matrix.

Corollary 1. Given that the ordered eigenvalues A of W (=
Gg’ Gﬂq G1Gy/N;) are jointly distributed as (5), the marginal
CDF of the kth largest eigenvalue Ay can be expressed
as

l

k-1 I+M—-k
F),(2) =KZ<1>Z( )
1=0

x 2
Pr<---<Pr-1-1

Br-1<---<Pu

IY(z, I, B)|, (1<k<M;z>0),

(18)

where K is given in (7), the second summation is over all
combinations of (f1 < -+ + < Br-1-1) and (Bxk-1 < -+ - < Bum)
with B = (Bi,...,Bum) being a permutation of (1,...,M),

5
> 15 j:ﬁls-"aﬁk—l—l'
. 15
dy, i=1,....m5 j=Br-br-- > Pm (15)
i=1,...,n j=m+1,...,n
and
{Y(z 1, ﬁ)}z]
( . 1 .
h(oo, T_Nt+l_2’ﬁs’ N—S+]—1>,
i= 1,...,8; ] :ﬁla---:ﬁk—l—l-
. 1 .
:*h(z, T—Nt+z—2,ﬁs, N—S+]—1>,
i=1,...,8 j =ﬂk_1,...,,3M.
(~)SH(T-M~-N+i+j—2)IN; M N0
i=1,...,8 j=M+1,..,S
(19)
with
h(z, a, b, c)
= c![(a+c+1)!b“*”2
¢ (a+c+2-n)/2
_sz Z(a+c+2+n)/2Ka+c+2—n (2\/?):|
n! b
n=0
h(oo, a, b, ¢) = cl(a+c+ 1)Ip* 2,
(20)

Proof. Define

h(Z, a, b, C) — 2b(a+1)/2J’ XC+(a+1)/2Ka+1 (2\/§>dx,

(aeZ,74+1€N).

The integral above can be written in a closed form by
invoking [50, Equations (8.352.1) and (8.432.6)]. The results
are given in (20). Substituting (5) into (13) and using (21)
completes the proof. O

The marginal CDF of the largest eigenvalue (i.e., A;) of
the double-scattering channel matrix was reported earlier in
[14]. The expression above extends this result to marginal
distributions of all ordered eigenvalues. We also note that
marginal CDFs of the ordered eigenvalues were also investi-
gated in the authors’ previous work [47]. However, the result
there were derived based on Proposition 2 above.
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FiGure 1: Marginal CDFs of ordered eigenvalues of W =
GHGEG,G\/N, when N, = 3, N, = 3,and N, = 3.

In Figure 1, we plot the eigenvalue CDFs of the matrix
W (= GI'GY'G,G1/N;), when N, = 3, N; = 3, and N; = 3.
The analytical results are computed by (18), and the Monte
Carlo results are based on 10° channel realizations. A perfect
agreement is observed between the analytical and Monte
Carlo curves.

4. Performance Analysis of MIMO SVD Systems

In this section, we consider performance analysis of MIMO
SVD systems. Uncorrelated double-scattering fading chan-
nels are assumed, where the MIMO channel matrix H is
modeled as [14] (the double-scattering channel considered
here was also termed the Rayleigh-product channel [14])

1

NiA

where G ~ CMy,xn. (0N, x> In,» In,), G2 ~
CNMy.xN, (On.xno> In,> In,)> Ni, Ny, and Ny are the numbers
of transmit antennas, receive antennas, and the scatterers,
respectively. The matrix G, represents the fading channel
between the transmitter and the scatterers, while G,
represents the channel between the scatterers and the
receiver. The introduction of the double-scattering model
is due to the fact that [53] MIMO channels exhibits a rank
deficient behavior when there is not enough scattering
around the transmitter and receiver (a typical example
is the keyhole/pinhole channel [54], where the MIMO
channel matrix has rank one regardless of the number of
transmit and receive antennas, since only one scatterer exists
in the environment). In this model, the MIMO channel
matrix is characterized by the product (concatenation)
of two Gaussian matrices, representing the channel from
the transmitter to the scatterers, and the channel from the
scatterers to the receiver, respectively. Varying the number of
the scatterers, the double-scattering model describes a broad
family of practical channels, ranging from conventional

H =

GGy, (22)
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Rayleigh channel (infinite scatterers) to degenerate keyhole
channel (only one scatterer). In the rest of this section, we
use notations S, T, M, and N as they were defined in (6).

4.1. System Model. Consider a MIMO channel with N;
transmit and N; receive antennas. The received vector r can
be expressed as

r=Hs+n, (23)

where H € NN is the channel matrix, s € CN*! js
the vector of signals transmitted, and n € CM*! is the
complex additive white Gaussian noise (AWGN) vector with
zero mean and identity covariance matrix. In MIMO SVD,
assuming perfect channel state information (CSI) at the
transmitter, the transmit vector s is formed by mapping L (<
M) modulated symbols d (2 (dy,...,d;)T) onto N, transmit
antennas via a linear precoding:

s = Pd, (24)

where P € CN¥L is the spatial pre-coding matrix. Here,
the columns of P are the right singular vectors of H
corresponding to the L largest singular values. Under the
assumption of perfect CSI at the receiver, the decision
statistics of MIMO SVD, denoted by d (2 (c?l,...,ch)T),
is obtained by weighting the receive signal r with a spatial
equalizing matrix Q € CN-<F

d=Q'r, (25)

where the columns of Q are the left singular vectors of H
corresponding to the L largest singular values. After such pre-
coding and equalization, the MIMO channel is decomposed
into a set of equivalent single-input single-output (SISO)

channels, whose input-output relation is (k = 1,...,L)
di = \/ﬂ di + ng, (26)

where Ay is the kth largest eigenvalue of HYH, and ny is the
complex AWGN with zero mean and unit variance (i.e., 0.5
variance per complex dimension). Hereafter, we term these
SISO channels as the sub-channels of MIMO SVD. Letting
pr denote the power allocated to the kth subchannel, the
instantaneous SNR of the kth subchannel can be expressed
as(k=1,...,L)

Yk = prAk. (27)

Clearly, the performance of MIMO SVD depends directly on
the eigenvalues Ags.

It is worth noting that, although the capacity-achievable
power allocation for MIMO SVD is water-filling [6], exact
analysis of such allocation strategy is very difficult (in
water-filling, each allocated power pi is a function of all
eigenvalues A, leading to an intractable SER expression
of each subchannel [18], Ft. 1). For this reason, earlier
researches on MIMO SVD generally considered fixed (but
not necessarily uniform) power allocation [18, 20]. (Indeed,
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given a sufficiently high SNR, the water-filling power strategy
tends to a uniform power allocation, that is, a special case
of the fixed allocation [20].) Following this direction, we
consider here fixed power allocation, but it worth noting
hat the results obtained can serve as a starting point for the
analysis of channel-dependent power allocations [19], as well
as the analysis of diversity-multiplexing tradeoff [55].

4.2. Performance Analysis. First of all, we consider the outage
performance of MIMO SVD. The outage probability, as
an important measure of service quality, is defined by the
probability that the received SNR drops below an acceptable
threshold yu. For convenience sake, we assume equal power
allocation is employed, thatis, p; = - - - = py = p/L with p
denoting the total transmit power (normalized by the noise
variance). As such, the SNRs of the subchannels are ordered
asy; > --- > yr, and the outage probability of the overall
system is dominated by the worst subchannel (corresponding
to Ar). The exact expression on outage probability is then
obtained by substituting the CDF (18) into the equation
below

Pout(p) = Pr(yL < ym) (28)
-F, (V‘hL> (29)
p

Next, we consider the SER of MIMO SVD. Given the
average SER of many general modulation formats (BPSK,
BFSK, M-PAM, etc.) [56] ((30) also provides good approx-
imations to the SERs of other modulation formats, such as
M-PSK [56, Equation (5-2-61)])

SER = E,[aQ(28y) ], (30)

where y is the instantaneous SNR, Q(-) is the Gaussian Q-
function, « and 3 are modulation-specific constants (e.g.,
a = 1, B = 1 for BPSK), the average SER of the kth
subchannel of the MIMO SVD system can be expressed as
(after some algebraic manipulations)

“\/E Ry X

= —1/2 ,—px = =

SERk ZﬁJ’o x~/7e P*F), o dx, (k=1,...,L).
(31)

Substituting (18) into (31) yields the analytical expression for
the average SER. Although deriving a closed-form result for
(31) seems difficult, the expression above can be evaluated
numerically, which is more efficient than running Monte
Carlo simulations. Since independent signals are sent over
different subchannels, the global SER (i.e., the average SER
of the overall system) can be obtained by averaging the SERs
of the active subchannels [18, 19]

L

SERglobal = Z
k=1

SER
— 32

; (32)
4.3. Numerical Examples. In this subsection, numerical
simulations are used to verify the theoretical results above.

7
100 g
-1
& 10
:E Ny =3,Ny =4,
_‘é‘ Ns = 5, 10, 20, oo
a 1072 R
$
s
3
1073
10—4 N
0 5 10 15 20 25
SNR (dB)

—6— Monte Carlo
—— Analytical
""" Rayleigh

FiGUure 2: Comparisons on outage probabilities of MIMO SVD in
different channels: (3, 5, 4), (3, 10, 4), (3, 20, 4),and (3, o, 4).

For notational convenience, we denote the double-scattering
channel with N; transmit antennas, N, receive antennas, and
N; scatterers by a three-tuple (N,, N, N¢). We also assume
that all subchannels are active (i.e., L = M), upon which
equal power allocation is employed (i.e., px = p/M for all
k).

In Figure 2, we fix the SNR threshold at ys, = —5dB to
evaluate the impact of scatterer insufficiency on the outage
probability of MIMO SVD. Three channel configurations
are considered: (3, 5, 4), (3, 10, 4), and (3, 20, 4). Results
from standard Rayleigh channel (i.e., (3, o, 4)) is also
provided for the purpose of comparison. The analytical
results are computed with (29), and each Monte Carlo
result is based on 10° channel realizations. From the figure,
we observe an exact agreement between the analytical and
Monte Carlo curves. Also, we observe that the lack of
scattering certainly degrade the performance of the system,
which is consistent with our intuition.

In Figure 3, we plot the SERs of the MIMO SVD
subchannels in a (4, 4, 3) double-scattering channel, using
uncoded BPSK modulation. It is shown that all analytical
results agree with the Monte-Carlo curves perfectly. It is
also observed that the first and second strongest subchannels
outperform the third subchannel significantly. This indicates
that further improvements (in SER) is possible if only a
subset of subchannels is used. In-depth analysis along this
direction can be found in [57] on the linear transceiver
design with adaptive number of sub-streams, and also in
[55] on the fundamental tradeoff between diversity and
multiplexing of MIMO SVD (note that both papers assumed
conventional Rayleigh/Rican fading).

5. Conclusion

The eigenvalue distribution of random matrices has long
been known as a powerful tool for analyzing and designing



8
100 ; :
) 3 3r sub-channel
107! ‘ )
e 2nd sub—channe
102} b
o~ g
= 1st sub-channel ~
1073}
1074 %
1075 L
-5 -3 -1 1 3 5 7 9 11
SNR (dB)

—*— Analytical
—6— Monte Carlo

FiGURE 3: Subchannel SER of MIMO SVD in a (4, 4, 3) double-
scattering channel when uncoded BPSK is used.

communication systems. In this paper, we derived a new
expression for the marginal distributions of the ordered
eigenvalues of certain important random matrices. The
new expression was compacter in representation and more
efficient in computational complexity, when comparing to
existing results in the literature. As an illustrative application,
we then used the general result to analyze the performance
of MIMO SVD systems, under the assumption of double-
scattering fading channels. Joint and marginal eigenvalue
distributions of the channel matrix were presented, which
further yielded analytical expressions on the average SER
and outage probability of the system. Finally, the theoretical
results were verified with numerical simulations.

Appendices

A. Proof for the Joint Eigenvalue Distribution

Recall that W = GY GG Go/Ns, A = (Ay,..., ) are the
nonzero descendingly ordered eigenvalues of W, with S, T,
M, and N being given by (6). We also define the following
new notations Y = GHGy/N; with n = (M,...,4s) being
its nonzero descendingly ordered eigenvalues. Then, we take
three steps to get the joint PDF of A. First of all, we get
the joint PDF of #, that is, f;(y). Next, we obtain the joint
PDF of A conditioned on #, that is, fy,(x | y). Finally, we
average the conditional joint PDF f},(x | y) over # to get
the unconditional joint PDF fj(x). Details on this condition-
and-average procedure are given below.

(i) Get the joint PDF of the nonzero ordered eigenvalues
1 of Y (= G Gy/N;). Based on the result of [6], we
have

S
fuy) = KiNST[V(y) ] [pF-Se ™o,
i=1 (A.1)
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where
1

{V(Y)}i,j = )’zjil,

(ii) Get the joint PDF of A, conditioned on #. To this
end, we note that if Y is ranli deﬁclent, (i.e., N, <
N;), A are the eigenvalues of Gg’ DyG,, where Dy is
a diagonal matrix with # as its diagonal elements,

K

i j=1,...,S.

and G, € C¥<S is a complex Gaussian matrix with
statistically independent, zero-mean, unit-variance
elements. Knowing this, we get the conditional joint
PDF of A by invoking [47, Lemma 2]:

K = ud N-S§
Sun(x1y) = ———5—x [E(x ) [|IE®I] [«
101 = TG T 7 Ll
(x1=2x=>---2>2x)2=0),
(A.3)
where
(1) MSHM-1)72
K> =
W - )
IR
e, = (-1) i

e*xj/}’z’
{E(x, Y)}i,j: ( 1

S—j
—> , i=1,...,8 j=M+1,...,S
Vi

Ely=x hj=1..M
(A4)

By invoking the identity [14, Equation (74)]

o) | = v T D™ (A.5)

we rewrite (A.3) as follows:

M

K —
[V(y) |H§;y3w—s |E(x, y)| IE(x)IEva S,
(A.6)

flln(x | Y) =

(iii) Get the unconditional joint PDF of A1 by averaging
conditional PDF over

Al = JD fum(x 1Y) fy (y)dy

= K,K,NST
<[ 1B )11V A7)
D

s M
T-Ni—=1 _Ney: 101 = _
X 1_[% e ]‘]Sy’dylc.(x)ll_[x,N S,
i=1

i=1
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where D = {(y1, y2r..h¥s) i =y = o- - = ys >
0}, and dy = dydy, - - - dys. The integration above
can be evaluated in a closed form with the generalized
Cauchy-Binet formula (see, e.g., [7, Corollary 2]). We
finally arrive at the expression below

M
Ax) = KIGNST |0x) B[] [V,
i=1

(A.8)

with
)
J yT—N[JrI—Zefx]/y—Nsydy,
0

i=1,...,8 j=1,...,M.
{‘D(X)}i,j = (A9)

Joo(_1)S—ij—M—N+i+j—2e—Nsydy’
0

li=1,...,8 j=M+1,...,S.

The proof is completed by the use of [50, Equation
(8.432.6)]

J xae—x/b—c/xdx _ z(bc)(ﬂ+1)/2KaH <2\/§)’
0

acR, b>0,c>0.

(A.10)

B. Proof of Theorem 1

LetA = (Xl, 1. .. ,Xm) denote the unordered Versioniof A.
Then, by the symmetry of (1), we get the joint PDF of A

G0 = 210150 ),
' i=1 (B.1)
(bzsza, j=1,...,m>.

Note that the coefficient 1/m! is due to the change in function
domains when comparing with (1). This joint PDF can be
simplified as follows:

60 = 2106w, (82)
where W(x) is an # X n matrix defined by
vi(xi), 4, j=1,...,m
(YX), ;=1L i=j=m+1,...,N. (B.3)
0, otherwise.

With y;(x;) = &;(x;)v(x;). The usefulness of this form will
become apparent immediately.

Next, we rewrite the joint PDF of A by using the fact that
|A[|B| = |ABJ, with A and B being two square matrices of
the same size (a similar method was used in [58, 59] to derive
the distributions of eigenvalue subsets of Wishart matrices):

fix)

_K Z(/),-(x“)l//j(xa), i=1L...,m j=1,...,m

T oml | | e=t

(/51',]', i=1,...,1’l;j=l’l’l+1,...,l’l.

(B.4)

Using the multilinear property of the determinant, we
further simplify the joint PDF as

i)

:£|Z {gbi(x,xj)wj(xaj), izl,...,n;jzl,...,m.}"
ml <

éi j» i=1,...,n j=m+l,...,n
(B.5)

where @ = (a1,...,a,) is a permutation of (1,...,m), and
the summation is over all permutations. The usefulness of
the joint PDF in this form will become apparent immediately.

According to [60, Equation (3.4.3)], the marginal CDF
of the kth largest variable A can be expressed as (note
that [60, Equation (3.4.3)] deals with random variables in
ascendent order. However, the result there can be easily
rewritten to cover the descending-order cases by appropriate
change of variables)

k-1
Fy(z) = Z(_l)l<l+ n; - k) (l-‘r m”—’:l _ k)F(I,k(Z)’
o (B.6)
with
(l, k é maX<Xl) X23 e aXl+m+l—k))

and F; () being the CDF of {j x. Obviously, the desired
marginal CDF F), (z) depends directly on an intermediate
CDF Fg, . (+). As we show below, this intermediate CDF can
be obtained by the use of the joint PDF in (B.5)

(B.7)

Fy . (2) = Pr{max(il,...jprmﬂ,k) < z} (B.8)

= J dxl T J dxl+m+1—k
(B.9)

b b
% | et | A0
Substituting (B.5) into (B.9) and simplifying yields
Fy . (2)

[ 9100 ) (3)

i= 1,...,7’1; j:ﬁla---aﬁl+m+l—k-

b
Lgb,- (x"‘f)%' (x"‘1> dxa, ’

i=1,...

~

» 15 ] = ﬁl+m+2—k>---:ﬁm-

¢i, J>

,n j=m+1,...,n

i=1,... J
(B.10)

where ag, = t for t = 1,...,m, that is, (B1,...,Bn) are
the indices of (1,...,m) in the permutations. Noticing that
all integrals above are independent of the order of & (j =
Bise- s Premei—k and j = Brmir—ks...>Pm> rESP.), We can
further simplify the summation as
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(I+m+1-k)!(k-1-1)!
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F(l,k(z) =K ol
z
L(bi(y)wj(y)dy, i=1...,m j=Pu... Brme1-k (B.11)
b
X ) )
ﬁ1<---<zﬁ1+m+1,k L¢i(y)1//j(y)dy, i=1,...,0 j=Prmir—is-»Pm
N éi, j> i=1,...,m j=m+1,...,n
Here, we abuse the notation f = (fi,...,x) to denote a
permutation of (1,...,m) that satisfies §; < - -+ < Br_i—
and fx_; < - - - < Bn. Then, the CDF above is equivalent to
— N (k—1=1)
F(H((Z):K(l+m+1 k! (k-1-1)!
' m!
b
L(bi(y)l//j(y)dy» i=1...m j=Pi.. i (B.12)
X z . . )
R | e T SOy A
1 -1-1 a
e <fin bi j» i=1l,...,m j=m+1,...,n

with the summation over all permutations of B, that is,
(x/-1) in total. Substituting (B.12) into (B.6) yields the
desired result.
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