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Hyperspectral imaging is a new emerging technology in remote sensing which generates hundreds of images, at different
wavelength channels, for the same area on the surface of the Earth. Over the last years, many algorithms have been developed with
the purpose of finding endmembers, assumed to be pure spectral signatures in remotely sensed hyperspectral data sets. One of
the most popular techniques has been the pixel purity index (PPI). This algorithm is very time-consuming. The reconfigurability,
compact size, and high computational power of Field programmable gate arrays (FPGAs) make them particularly attractive for
exploitation in remote sensing applications with (near) real-time requirements. In this paper, we present an FPGA design for
implementation of the PPI algorithm. Our systolic array design includes a DMA and implements a prefetching technique to
reduce the penalties due to the I/O communications. We have also included a hardware module for random number generation.
The proposed method has been tested using real hyperspectral data collected by NASA’s Airborne Visible Infrared Imaging
Spectrometer over the Cuprite mining district in Nevada. Experimental results reveal that the proposed hardware system is easily
scalable and able to provide accurate results with compact size in (near) real-time, which make our reconfigurable system appealing
for on-board hyperspectral data processing.

1. Introduction

Hyperspectral imaging is concerned with the measurement,
analysis, and interpretation of spectra acquired from a given
scene (or specific object) at a short, medium, or long
distance by an airborne or satellite sensor [1]. The concept
of hyperspectral imaging originated at NASA’s Jet Propulsion
Laboratory in California, which developed instruments such
as the Airborne Imaging Spectrometer (AIS), then called
AVIRIS, for Airborne Visible Infrared Imaging Spectrometer
[2]. This system is now able to cover the wavelength region
from 0.4 to 2.5 μm using more than two hundred spectral
channels, at nominal spectral resolution of 10 nm. As a
result, each pixel (considered as a vector) collected by a
hyperspectral instrument can be seen as a spectral signature
or fingerprint of the underlying materials within the pixel
(see Figure 1).

Several analytical tools have been developed for hyper-
spectral data processing in recent years, covering topics like
dimensionality reduction, classification, data compression,
or spectral mixture analysis [3]. The underlying assumption
governing clustering and classification techniques is that each
pixel vector comprises the response of a single underlying
material. However, if the spatial resolution of the sensor
is not high enough to separate different materials, these
can jointly occupy a single pixel and the resulting spectral
measurement will be a mixed pixel, that is, a composite of the
individual pure spectra. For instance, in Figure 1 it is likely
that the pixel labeled as “vegetation” is actually a mixture
of vegetation and soil, or of different types of vegetation
canopies.

To deal with this problem, linear spectral mixture analysis
techniques [4] first identify a collection of spectrally pure
constituent spectra, called endmembers in hyperspectral
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Figure 1: The concept of hyperspectral imaging.

analysis terminology [5] and then express the measured
spectrum of each mixed pixel as a linear combination
of endmembers weighted by fractions or abundances that
indicate the proportion of each endmember present in the
pixel. In fact, spectral mixture analysis has been an alluring
exploitation goal since the earliest days of hyperspectral
imaging [4]. No matter the spatial resolution, in natural
environments the spectral signature for a nominal pixel
is invariably a mixture of the signatures of the various
materials found within the spatial extent of the ground
instantaneous field view of the sensor. In hyperspectral
imagery, the number of spectral bands usually exceeds the
number of pure spectral components and the unmixing
problem is cast in terms of an overdetermined system
of equations in which given the correct set of end-
members allows determination of the actual endmember
abundance fractions through a numerical inversion pro-
cess.

Let us assume that a remotely sensed hyperspectral
scene with N bands is denoted by F, in which a pixel at

discrete spatial coordinates is represented by a vector f =
[ f1, f2, . . . , fN ], where fk denotes the spectral response at the
kth wavelength, with k = 1, . . . ,N . Under the linear mixture
model assumption, each pixel vector in the original scene can
be modeled using the following expression:

f =
E∑

i=1

ai · ei + n, (1)

where ei designates the ith pure spectral component (end-
member) residing in the pixel, ai is a scalar value designating
the fractional abundance of the endmember ei at the pixel
f , E is the total number of endmembers, and n is a noise
vector. The solution of the linear spectral mixture problem
described in (1) relies on the correct determination of a set
{ei}Ei=1 of endmembers. It is such derivation and validation
of the correct suite of endmembers that has remained a
challenging goal for the past years (not only in terms of
adequate spectral signature extraction, but also in terms of
computational complexity [6]).
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Figure 2: Toy example illustrating the performance of the PPI
endmember extraction algorithm in a 2-dimensional space.

The pixel purity index (PPI) algorithm [7] has been
widely used in hyperspectral image analysis for endmem-
ber extraction due to its publicity and availability in
ITTVIS (http://www.ittvis.com/) Environment for Visualiz-
ing Images (ENVIs) software originally developed by Ana-
lytical Imaging and Geophysics (AIGs) [8]. The algorithm
searches for a set of vertices of a convex hull in a given
dataset, which are supposed to be pure signatures present in
the data. Due to its propriety and limited published results,
its detailed implementation has never been made publicly
available. Therefore, most of the people who use the PPI for
endmember extraction either appeal for ENVI software or
implement their own versions of the PPI based on whatever
available in the literature. The general procedure of the PPI
algorithm can be summarized as follows [9].

(1) First, a pixel purity score is calculated for each pixel
vector f in the input hyperspectral image cube F by
generating K random, N-dimensional vectors, called
skewers.

(2) Then, each pixel vector f in the input data is projected
onto the entire set of skewers {skewer j}Kj=1, and
the pixels falling at the extremes of each skewer are
tallied (see Figure 2). After many repeated projections
to different random skewers, those pixels which are
repeatedly selected during the process are identified
and placed on a list of endmember candidates.

(3) The potential endmember spectra are then loaded
into an interactive tool (such as ENVI’s N-
dimensional visualizer, available as a built-in com-
panion piece in ENVI software) and rotated until a
desired number of endmembers are visually identi-
fied as extreme pixels in the data cloud.

The PPI algorithm suffers from several limitations [10].
First and foremost, the algorithm is sensitive to parameter
K , that is, the number of skewers. Since the skewers are
randomly generated, a large number of skewer projections
are generally required in order to arrive to satisfactory

endmember sets in terms of signature purity. The authors
recommend using as many random skewers as possible in
order to obtain optimal results [7]. As a result, the PPI can
only guarantee to produce optimal results asymptotically and
its computational complexity is very high, thus requiring
efficient implementations. Another shortcoming of the PPI is
the fact that an interactive tool is needed to perform the final
endmember selection. An alternative is to retain the pixels
that have been selected above a predefined threshold and
then automatically remove spectrally redundant endmem-
bers [10]. This is generally treated as a postprocessing stage
external to the algorithm.

An exciting new development in the field of specialized
commodity computing for accelerating computationally
intensive algorithms is the emergence of hardware devices
such as field programmable gate arrays (FPGAs) [11–13],
which can bridge the gap towards on-board and real-
time analysis of remote sensing data [14, 15]. FPGAs are
now fully reconfigurable [16, 17], a technological feature
that, in our application context, allows a control station
on Earth to adaptively select a data processing algorithm
(out of a pool of available algorithms implemented on
the FPGA) to be applied on board the sensor. The ever-
growing computational demands of hyperspectral imaging
applications can fully benefit from compact, reconfigurable
hardware components and take advantage of the small size
and relatively low cost of these units.

In this paper, we develop an FPGA-based hardware
version of the PPI algorithm. The proposed implementa-
tion is aimed at enhancing code reusability and efficient
implementation in FPGA devices through the utilization of
systolic array design. One of the main advantages of systolic
array-based implementations is that they are able to provide
a systematic procedure for system design that allows for
the derivation of a well-defined processing element-based
structure and an interconnection pattern which can then be
easily ported to real hardware configurations. The remainder
of the paper is organized as follows. Section 2 discusses
the role of reconfigurable hardware in remote sensing
missions. Section 3 describes our implementation of the PPI
algorithm. Section 4 describes its parallel implementation on
a Xilinx Virtex-II PRO xc2vp30 FPGA. Section 5 provides
an experimental assessment of both endmember extraction
accuracy and parallel processing performance of the pro-
posed FPGA-based algorithm, using a well-known hyper-
spectral data set (with quality ground-truth) collected by the
NASA Jet Propulsion Laboratory’s Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) [2] over the Cuprite mining
district in Nevada. Finally, Section 6 concludes with some
remarks and hints at plausible future research lines.

2. The Role of Reconfigurable Hardware in
Remote SensingMissions

The trend in remote sensing missions has always been
towards using hardware devices with smaller size, lower
cost, more flexibility, and higher computational power [18,
19]. On-board processing, as a solution, allows for a good
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reutilization of expensive hardware resources. Instead of
storing and forwarding all captured images, remote sensing
data interpretation can be performed on orbit prior to
downlink, resulting in a significant reduction of communi-
cation bandwidth as well as simpler and faster subsequent
computations to be performed at ground stations. In this
regard, FPGAs combine the flexibility of traditional micro-
processors with the power and performance of application-
specific integrated circuits (ASICs). Therefore, FPGAs are
a promising candidate for on-board remote sensing data
processing.

Figure 3 illustrates some potential advantages of using
reconfigurable hardware in remote sensing data processing.
The transmission of high-dimensional information collected
by a satellite-based instrument to a control station on Earth
for subsequent processing may turn into a very slow task,
mainly due to the reduced bandwidth available and to the
fact that the connection may be restricted to a short period
of time. The ability to interpret remote sensing data on-
board can significantly reduce the amount of bandwidth and
storage space needed in the generation of science products.
Subsequently, on-board processing has the potential to
reduce the cost and the complexity of ground control
systems. Furthermore, it allows autonomous decisions (to be
taken on board) that can potentially reduce the delay between
image capture, analysis, and action.

Recently, FPGAs have become a viable target technol-
ogy for implementation of remotely sensed hyperspectral
imaging algorithms [20]. These computing systems combine
the flexibility of general purpose processors with the speed
of application-specific processors. Reconfigurable hardware
offers the necessary flexibility and performance with reduced
energy consumption compared to other high performance
processors. By mapping functionality to FPGAs, the com-
puter designer can optimize the hardware for a specific
application resulting in acceleration rates of several orders
of magnitude over general-purpose computers. In addition,
these devices are characterized by lower form/wrap factors
compared to parallel platforms and by higher flexibility
than ASIC solutions. Reconfigurable computing technology
further allows new hardware circuits to be uploaded via a
radio link for physical upgrade or repair [21].

Moreover, satellite-based remote sensing instruments
can only include chips that had been certified for space
conditions. This is because space-based systems must operate
in an environment in which radiation effects have an adverse
impact on integrated circuit operation [22]. Ionizing radia-
tion can cause soft-errors in the static cells used to hold the
configuration data. This will affect the circuit functionality
and can cause system failure. So it requires special FPGAs
that provide on-chip reconfiguration error-detection and/or
correction circuitry. High-speed, radiation-hardened FPGA
chips with million gate densities have recently emerged
that can support the high throughput requirements for
the remote sensing applications. Radiation-hardened FPGAs
are in great demand for military and space applications.
For instance, industrial partners such as Actel Corporation
(http://www.actel.com/) or Xilinx (http://www.xilinx.com/)
have been producing radiation-tolerant antifuse FPGAs for

several years for high-reliability space-flight systems. Actel
FPGAs have been on board more than 100 launches and
Xilinx FPGAs have been used in more than 50 missions [22].
In this work, we use a Xilinx Virtex-II PRO xc2vp30 FPGA
as a baseline architecture because it is similar to other FPGAs
[23] that have been certified by several international agencies
for remote sensing applications. They are based on the same
architecture so we could immediately implement our design
on them.

3. The Pixel Purity Index (PPI) Algorithm

Since the details of the specific steps to implement ENVI’s
PPI are not available in the literature, the PPI algorithm
described below is only based on the limited published
results and our own interpretation [10]. Nevertheless, except
a final manual supervision step (included in ENVI’s PPI)
which is replaced by step 4, both our approximation and
the PPI in ENVI 4.0 produce very similar results. The inputs
to the algorithm are a hyperspectral data cube F with N
dimensions; the number of random skewers to be generated
during the process, K; and a cut-off threshold value, tv, used
to select as final endmembers only those pixels that have been
selected as extreme pixels at least tv times throughout the PPI
process.

The algorithm is given by the following steps.

(1) Skewer generation. Produce a set of K randomly
generated unit vectors {skewer j}Kj=1.

(2) Extreme projections. For each skewer j , j = {1, . . . ,K},
all pixel vectors fi in the original data set F are pro-
jected onto skewer j via dot products of |fi · skewer j|
to find sample vectors at its extreme (maximum and
minimum) projections, thus forming an extrema set
for skewer j which is denoted by Sextrema(skewer j).
Despite the fact that different skewers generate dif-
ferent extrema sets, it is very likely that some sample
vectors may appear in more than one extrema set. To
account for this, we define an indicator function of a
set F, denoted by IS(x), to denote membership of an
element x to that particular set as follows:

IS(x) =
{

1 if x ∈ S

0 if x /∈ S

}
, (2)

(3) Calculation of PPI scores. Using the indicator function
above, we calculate the PPI score associated to each
pixel vector fi (i.e., the number of times that a given
pixel has been selected as extreme in step 2) using the
following equation:

NPPI(fi) =
k∑

j=1

ISextrema(skewer j )(fi), (3)

(4) Endmember selection. Find the pixel vectors with
scores of NPPI(fi) which are above tv and label them
as spectral endmembers. An optional postprocessing
(not implemented in this work) based on removing
potentially redundant endmembers may be also
applied.
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Figure 3: Potential advantages of using reconfigurable hardware in
remote sensing data processing.

The most time-consuming stage of the PPI algorithm
is stage 2 (extreme projections). For example, running this
stage on a hyperspectral image with 614 × 512 pixels (the
standard number of pixels produced by NASA’s AVIRIS
instrument in a single frame, each with 224 spectral bands)
using K = 400 skewers requires the calculation of more than
2 × 1011 multiplication/accumulation (MAC) operations,
that is, a few hours of nonstop computation on a 500 MHz
microprocessor with 256 Mbytes SDRAM [24, 25]. In [20],
another example is reported in which the PPI algorithm
available in ENVI 4.0 version took more than 50 minutes
of computation to project every data sample vector of a
hyperspectral image with the same size reported above onto
104 skewers in a PC with AMD Athlon 2.6 GHz processor and
512 MB of RAM.

Fortunately, the PPI algorithm is well suited for parallel
implementation. The computation of skewer projections is
independent and can be performed simultaneously, leading
to many ways of parallelization. In [24, 25], two parallel
architectures for implementation of the PPI are proposed.
Both are based on a 2D processor array tightly connected to
a few memory banks. A speedup of 80 is obtained through
an FPGA implementation on the Wildforce board (4 Xilinx
XC4036EX plus 4 memory banks of 512 Kbytes) [26]. As
a matter of fact, this design is tailored to the Wildforce
board and it cannot be reused for another board without
huge modifications. In [10], a fast iterative PPI (FPPI) is
introduced. The Matlab-based software implementation of
the FPPI algorithm was more than 24 times faster than the
ENVI’s PPI algorithm in the same computing environment,
while the FPGA-based implementation showed a significant
increase in performance with regards to the two considered
software versions due to the low-level hardware implementa-
tion. Although these works have demonstrated the efficiency
of a hardware implementation on a reconfigurable board,
these solutions are not scalable.

The FPGA implementation that we present in the follow-
ing section aims at overcoming these drawbacks. First, our
architecture specification can be easily adapted to different

platforms. Second, our proposed architecture is scalable
depending on the amount of available resources because the
required resources grow proportionally with the number of
skewers and the clock cycle remains constant.

4. FPGA Implementation

4.1. Parallel Design Strategies for the PPI Algorithm. The
most time-consuming stage (extreme projections) of the PPI
computes a very large number of dot products, all of which
can be performed simultaneously. If we consider a simple
dot-product unit such as the one displayed in Figure 4(a) as
the baseline for parallel computations, then we can perform
the parallel computations by pixels (see Figure 4(b)), by
skewers (see Figure 4(c)), or by pixels and skewers (see
Figure 4(d)). If we parallelize the computations by pixels,
additional hardware is necessary to compare all the maxima
and minima between them. As we increase the number of
parallel computations, a greater area would be required for
maxima/minima computations and the critical path would
be longer, hence, the clock cycle would be higher. Another
possible way to parallelize the extreme projections stage is
to compute K dot products at the same time for the same
pixel, where K is the number of skewers (see Figure 4(c)). If
we increase the number of skewers in this case, the required
area would grow proportionally with the number of dot-
product units and the clock cycle would remain constant.
Finally, the parallelization strategy in Figure 4(d) is a mixed
solution which provides no further advantage with respect to
the parallelization by skewers and has the same problems that
parallelization by pixels has.

Taking in mind the above rationale, in this work we have
selected the parallelization strategy based on skewers. Apart
from the aforementioned advantages with regard to other
possible strategies, another reason for this selection is that
the parallelization strategy based on skewers fits very well
how the image data reaches the system. In our case, our goal
is to make an on-line processing of the hyperspectral images
bearing in mind that hyperspectral sensors capture the image
data in a pixel by pixel fashion. Therefore, parallelization by
skewers is the one that best fits the data entry mechanism
since each pixel can be processed immediately as collected.
Specifically, our hardware system should be able to compute
K dot products at the same time against the same pixel fi,
where K is the number of skewers. In such a system, the
extreme projections step of the PPI (the most time-consuming
one in the PPI process) can be simply written as described in
Algorithm 1.

The par loop in Algorithm 1 expresses that K dot
products are first performed in parallel, then K Min and
Max operations are also computed in parallel. Now, if we
suppose that we cannot simultaneously compute K dot
products but only a fractionK/P, whereK/P is the number of
available processing units in the underlying parallel platform,
then the extreme projections step can be split into P passes,
each performing T × K/P dot products, as indicated in
Algorithm 2. From an architectural point of view, each
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for ( f = 0; f < F; f ++){ //F denotes the number of pixels
par (k = 0; k < K ; k++){ //K denotes the number of skewers

dp[k]=dot product(pixels[ f ],skewers[k]);
if (dp[k] < Min[k]) {Min[k]=dp[k]; Reg Min[k]= f ;}
if (dp[k] > Max[k]) {Max[k]=dp[k]; Reg Max[k]= f ;}

}end par
}end for

Algorithm 1: Parallel implementation of extreme projections step.

processor receives successively the T pixels, computes T dot-
products, and keeps in memory the Min and the Max dot
products. In this scheme, each processor holds a different
skewer which must be input before each new pass.

To conclude this section, we would like to emphasize
the advantages of the considered parallelization strategy
over other possible alternatives. For this purpose, Figure 5
compares the three parallelization strategies in Figure 4:
parallelization by pixels (see Figure 4(b)), parallelization by
skewers (see Figure 4(c)), and parallelization by skewers and
pixels (see Figure 4(d)). The different parallel design strate-
gies for the PPI algorithm have been described using VHDL
language and we have used the Xilinx ISE environment to
implement them and obtain the necessary resources (see
Figure 5(a)) and the clock cycle (see Figure 5(b)) in each of
the three parallelization strategies for the same number of
dot-processing units. Once all the designs were implemented
we measured their performance with clock-cycle accuracy.

As shown in Figure 5, parallelization by skewers offers
significant advantages with regards to the other considered
implementation strategies.

4.2. Hardware Implementation. Figure 6 shows the architec-
ture of the hardware used to implement the PPI algorithm,
along with the I/O communications. For data input, we use a
DDR2 SDRAM and a DMA (controlled by a PowerPC) with a
Write FIFO to store pixel data. A Read FIFO and a transmitter
are used to send the endmembers via an RS232 port. Finally,
a systolic array and a random generation module are used to
implement our version of the PPI algorithm.

Figure 7 describes the architecture of the dot-product
processors used in our systolic array design. Basically, a
systolic cycle consists of computing a single dot product
between a pixel and a skewer to memorize the index of the
pixel if the dot product is higher or smaller than a previously
computed Max/Min value. Remember that a pixel is a vector
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for (p = 0; p < P; p++){ //P is the number of algorithm iterations
x = p × (K/P); //K denotes the number of skewers
for ( f = 0; f < F; f ++){ //N denotes the number of pixels

par(k = 0; k < K/P; k++){
dp[x + k]=dot product(pixels[ f ],skewers[x + k]);

if (dp[x + k] < Min[x + k]) {Min[x + k]=dp[x + k]; Reg Min[x + k]= f ;}
if (dp[x + k] > Max[x + k]) {Max[x + k]=dp[x + k]; Reg Max[x + k]= f ;}

}end par
}end for

}end for

Algorithm 2: Parallel implementation of extreme projections step (rewritten to be split into P algorithm iterations).
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of N spectral values, just like a skewer. A dot-product
calculation between a pixel fi and a skewer j can be simply

obtained by using the expression
∑N

k=1 f
(k)
i × skewer(k)

j .
Therefore, a full vector dot-product calculation requires N
multiplications and N − 1 additions, where N is the number
of spectral bands. As it was shown in previous work [25], the
skewer values can be limited to a very small set of integers
when N is large, as in the case of hyperspectral images.
A particular and interesting set is {1,−1} since it avoids
the multiplication. The dot product is, thus, reduced to an
accumulation of positive and negative values. With the above
assumptions in mind, each dot-product processor only needs
to accumulate the positive or negative values of the pixel
input according to the skewer input. These units are, thus,
only composed of a single addition/subtraction operator
and a register. The Min/Max unit receives the result of the
dot product and compares it with the previous minimum
and maximum values. If the result is a new minimum or
maximum, it will be stored for future comparisons together
with its corresponding index. For simplicity, the part related
to the management of indexes has been omitted in Figure 7.

Taking into account that the latency of an addition or
a subtraction is just one clock cycle, then the calculation
of a dot product requires N + 1 clock cycles. In each cycle,
the processor sequentially receives the data of a pixel and
accumulates the result, adding or subtracting, depending on
the skewer component. The additional clock cycle is required
for the comparison with a max and a min value and the pixel
updating. We have evaluated different options to remove
the last clock cycle, but finally we have decided to keep
it. One option was to update the min and max indexes in
parallel with the computation of the next dot product, but
it requires a more complex hardware mechanism (at least
two more registers) and makes this solution worse globally
because we can synthesize less systolic processors on the
FPGA. We can also update the pixel during the last clock
cycle of each systolic cycle, but it increases the critical path
and increases the clock frequency. Hence, when N is a large
number (as in the case of hyperspectral images), we obtain
higher computation times.

One of the main features of our system is the incor-
poration of a hardware-based random generation module
that significantly reduces the I/O communications that,

End pixel
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image
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XOR nth component
of each skewer

<<

Figure 8: Hardware architecture of the random number generation
module.
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in previous implementations of the PPI, were the main
bottleneck [20, 24, 25]. Previous works presented in [25, 27,
28] use the concept of the so-called block of skewers (BOSs)
to generate the skewers. The idea of the BOS method is first to
randomly generate B unit vectors, called independent skewer
(Iskewers) {Iskewerb}Bb=1 and then use them as a building
blocks to generate the remaining skewers, called dependent
skewers (Dskewers). The Dskewers are linear combination of
the B Iskewers. The goal of this approach is to reduce the
number of dot products needed. The difference between the
BOS method and the PPI is that the former uses the Dskewers
to implement the PPI, while the skewers used in the latter are
independently generated randomly. The work presented in
[27] also analyses possible ways to further reduce the number
of dot products and proposes to use FPGAs for the dot-
products computations. In this work, we have implemented
a random generator module similar to the one presented in
[29]. This module provides pseudo-random and uniformly-
distributed sequences using registers and XOR gates. Figure 8
shows the structure of the random generation module. It
has two registers to store the new seeds. These seeds are
initialized by the system each time that the PPI algorithm
computes the image. At the beginning of every systolic cycle,
we also store these two seeds in the other two registers. This
generator reduces the number of resources needed because
we do not need to store the N bits of K skewers, but only K
bits of two seeds. It requires an affordable amount of space
(288 slices for 100 skewers) and it is able to generate the
next component of every skewer in only one clock cycle and
operates at a high clock frequency (664 MHz).

Our architecture can be seen as the pipeline shown
in Figure 9. We can distinguish three stages which are
communicated using FIFOs: The first stage provides the
necessary data (seeds and image data) for the system,
the second stage calculates the projections, and finally the
endmembers are sent via a RS232 port by the third stage.
Therefore, all stages are working in parallel.
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To conclude this section, we provide a step-by-step
description of how the proposed architecture performs the
extraction of a set of endmembers from a hyperspectral
image.

(i) Firstly, to initialize the random generation module,
the PowerPC generates two seeds of K bits (where
K is the number of skewers) and writes them to the
Write FIFO.

(ii) Afterwards, the control unit reads these seeds and
sends them to the random generation module where
they are stored. Hence, the random generation
module can provide the systolic array with one bit for
each skewer every clock cycle as we have described in
this section.

(iii) After the PowerPC has written the two seeds, it sends
an order to the DMA to start copying a piece of the
image from the DDR2 SDRAM to the Write FIFO. As
mentioned before, the main bottleneck in this kind of
system is frequently the data input which is addressed
in our implementation by the incorporation of a
DMA that eliminates most I/O overheads. Moreover,
the PowerPC monitors the input FIFO and sends a
new order to the DMA every time that it detects that
the Write FIFO is half empty. This time, the DMA
will bring a piece of the image that occupies half of
the Write FIFO total capacity.

(iv) When the data of the first pixel have been written in
the Write FIFO, the systolic array and the random
generation module start working. Every clock cycle,
a new pixel is read by the control unit and sent to the
systolic array. In parallel, the kth component of each
skewer also is sent to the systolic array by the random
generation module.

(v) DuringN clock cycles, data of a pixel are accumulated
positively or negatively depending of the skewer
component. In the next clock cycle, the Min/Max
unit updates the pixel and the random generation
module restores the original two seeds, concluding
the systolic cycle. In order to process the hyperspec-
tral image, we need as many systolic cycles as pixels
in the image. When the entire image is processed,
the control unit writes the endmembers to the Read
FIFO.

(vi) Finally, the Transmitter extracts the endmembers
from the Read FIFO and sends them via an RS232
port.

(vii) These steps are repeated several times depending on
the number of skewers we can parallelize and the
number of skewers we want to evaluate.

5. Experimental Results

5.1. FPGA Architecture. The hardware architecture described
in Section 4 has been implemented using VHDL language
for the specification of the systolic array. Further, we have

used the Xilinx ISE environment and the Embedded Devel-
opment Kit (EDK) environment (http://www.xilinx.com/ise/
embedded/edk pstudio.html) to specify the complete sys-
tem. The full system has been implemented on an XUPV2P
board, a low-cost reconfigurable board with a single Virtex-
II PRO xc2vp30 FPGA component, a DDR SDRAM DIMM
slot which holds up to 2 GBytes, an RS232 port, and some
additional components not used by our implementation.

5.2. Hyperspectral Data. The hyperspectral dataset used
in these experiments is the well-known AVIRIS Cuprite
scene (see Figure 10(a)), available online in reflectance units
(http://aviris.jpl.nasa.gov/html/aviris.freedata.html). This
scene has been widely used to validate the performance of
endmember extraction algorithms. The scene comprises
a relatively large area (350 lines by 350 samples and
20-m pixels) and 224 spectral bands between 0.4 and
2.5 μm, with nominal spectral resolution of 10 nm. Bands
1–3, 105–115, and 150–170 were removed prior to the
analysis due to water absorption and low SNR in those
bands. The site is well understood mineralogically and
has several exposed minerals of interest including alunite,
buddingtonite, calcite, kaolinite, and muscovite. Reference
ground signatures of the above minerals (see Figure 10(b)),
available in the form of a US Geological Survey library
(USGS) (http://speclab.cr.usgs.gov/spectral-lib.html), will
be used to assess endmember signature purity in this work.

5.3. Endmember Extraction Accuracy Evaluation. Before ana-
lyzing the parallel properties of the proposed implemen-
tation, we first conducted an experiment-based cross-
examination of endmember extraction accuracy to assess the
spectral similarity between the USGS library spectra and
the corresponding endmembers extracted by the considered
implementation of the PPI algorithm. Table 1 shows the
spectral angle distance (SAD) [3] between the most similar
endmembers detected by the original ENVI implementation
(using the supervised N-dimensional visualization tool to
derive the final set of endmembers), the PPI approximation
described in Section 3 (implemented in the C++ program-
ming language), and our FPGA-based implementation. In
all cases, we used K = 104 skewers which provided the best
compromise (after testing a wide range of values) and thus
set the threshold value tv to the mean of NPPI scores obtained
after K = 104 iterations. It should be noted that the SAD
between a pixel vector fi selected by the PPI and a reference
spectral signature s j is given by

SAD
(
fi, s j

)
= cos−1 fi · s j∥∥fi

∥∥ · ∥∥s j
∥∥ . (4)

In order to display the results in a more effective manner,
we only report the SAD score associated to the most similar
spectral endmember with regards to its corresponding USGS
signature. It is important to emphasize that smaller SAD val-
ues indicate higher spectral similarity. As shown by Table 1,
the two considered implementations did not produce exactly
the same results as those obtained by the original PPI
algorithm implemented in Research Systems ENVI 4.0. This
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Figure 10: (a) False color composition of the AVIRIS hyperspectral over the Cuprite mining district in Nevada. (b) US Geological Survey
mineral spectral signatures used for validation purposes.

Table 1: Spectral angle-based similarity scores between the end-
members extracted by different implementations of PPI and the
selected USGS reference signatures.

USGS ENVI PPI Our FPGA-based
mineral software approximation PPI

Alunite 0.084 0.084 0.084

Buddingtonite 0.071 0.068 0.068

Calcite 0.089 0.089 0.089

Kaolinite 0.136 0.132 0.132

Muscovite 0.092 0.081 0.081

is because ENVI’s PPI implementation includes a manual
supervision procedure to select the final endmembers and,
hence, it is user dependent. In our experiments with the N-
dimensional visualization tool available in ENVI, we made
sure to perform many interactive rotations in order to select
the best possible endmembers. In any event, both our PPI
approximation in Section 3 and the FPGA implementation
in Section 4 produced very similar results to those found by
ENVI’s PPI, but in a fully automatic fashion.

5.4. Parallel Performance Evaluation. Table 2 shows the
resources used for our hardware implementation of the
proposed PPI algorithm design for different numbers of
skewers (ranging from K = 20 to K = 100), tested on
the Virtex-II PRO xc2vp30 FPGA of the XUPV2P board.
This FPGA has a total of 13696 slices, 27392 slice flip
flops, and 27392 four-input LUTs available. In addition, the
FPGA includes some heterogeneous resources, such as two
PowerPCs and distributed Block RAMs. In our implemen-
tation, we took advantage of these resources to optimize the
design. One PowerPC monitors the communications and the
Block RAMs are used to implement the FIFOs, so the vast
majority of the slices are used for the implementation of

the PPI algorithm. As shown by Table 2, we can scale our
design up to 100 skewers (therefore, P = 100 algorithm
passes are needed in order to process K = 104 skewers).
An interesting feature of our systolic array design is that
we can scale it without increasing the delay of the critical
path. Hence, the clock cycle remains constant at 187 MHz.
Compared with the FPGA implementation of the FPPI
algorithm presented in [20], our systolic array uses half of
the slices and its clock frequency is 10 times higher. It should
be noted that, in the current implementation, the complete
AVIRIS hyperspectral image is stored in an external DDR2
SDRAM. Table 3 shows its characteristics. However, with an
appropriate controller, other options could be supported,
such as using flash memory to store the hyperspectral data.

Frequently communications are the main bottleneck of
a parallel system. Hence, we have paid special attention
to this problem. In previous designs [10, 20], the random
generation module was situated in an external processor.
Hence, frequent communications were demanded. One of
the improvements of our system is that we have developed
a hardware random generation module based on the design
proposed in [29]. This approach significantly reduces the
I/O communications. Moreover, to further reduce the I/O
overheads we have included DMA and we have applied a
prefetching approach in order to hide the communication
latency. Basically, while the systolic array is processing a set of
data, the DMA is fetching the following set and storing it in
the Write FIFO. Having in mind the proposed optimization
concerning the use of available resources, it is important
to find a balance between the number of DMA operations
and the capacity of the destination FIFO. In other words,
we need to fit enough information in the Write FIFO so
that the systolic array never needs to stop. In addition, the
greater the Write FIFO capacity, the fewer DMA operations
will be required. We have evaluated several Write FIFO sizes
and identified that, for 1024 positions or more, there are no
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Table 2: Summary of resource utilization for the FPGA-based implementation of the PPI algorithm.

Component Number of
skewers

Number of slice
flip flops

Number of 4 input
LUTs

Number of
slices

Percentage of
total

Maximum operation
frequency (MHz)

Systolic Array

20 2240 3865 2085 15.22 187

40 4480 7728 4170 30.44 187

60 6720 11591 6254 45.66 187

80 8960 15454 8339 60.88 187

100 11200 19317 10423 76.1 187

Random Generation Module

20 40 120 58 0 664

40 80 240 115 0.42 664

60 120 360 173 0.84 664

80 160 480 230 1.68 664

100 200 600 288 2.1 664

RS232 Transmitter — 69 128 71 0.52 208

DMA Controller — 170 531 367 2.68 102

Table 3: Characteristics of the SDRAM memory module used to store the hyperspectral data.

Memory Module Memory Organization Number of Ranks Registered or Unbuffered CAS Latency

KVR266X64C25/512 512 MB 64 M × 64 Dual Unbuffered 2.5

Table 4: Comparison of different implementations of the PPI algorithm.

Algorithm PPI Approximation FPGA implementation in [20] Proposed FPGA implementation

Processing time (seconds) 3068 62 31

penalties due to reading of the input data. To demonstrate
the advantages of using a DMA, we have developed another
version in which the image data are read from memory and
written to the Write FIFO by the PowerPC instead of the
DMA. In this version, the processing time was increased
more than an order of magnitude (340 seconds) so we can
conclude that the resources used for the DMA (621 slices)
are well spent.

For illustrative purposes, we have performed a compari-
son of our proposed FPGA design with previous implemen-
tations in terms of computation time. As mentioned above,
our FPGA-based implementation of the PPI algorithm
can handle up to 100 skewers in parallel. Since K =
104, the complete image has been processed P = 100
times. Table 4 shows the computing time for three different
implementations: our PPI approximation in Section 3, an
FPGA-based implementation presented in [20], and the
FPGA-based implementation proposed in Section 4 of this
paper. The PPI approximation was implemented in an
AMD Athlon 2.6 GHz processor with 512 MB of RAM. The
FPGA-based implementation in [20] was implemented in
a Xilinx Virtex-II XC2V6000-6 FPGA with 33792 slices
available. Finally, our proposed FPGA implementation was
implemented on a Xilinx Virtex-II PRO xc2vp30 FPGA with
13696 slices available. As shown by Table 4, the FPGA-based
implementation in [20] was more than 49 times faster than
the PPI approximation for the AVIRIS Cuprite image, while

our FPGA implementation of the PPI shows a significant
increase in performance with regards to the FPGA-based
implementation in [20], with a speedup of 2 with regard
to that implementation. We must consider that the FPGA
used in [20] has 2.5 times more slices than the one used
in our implementation of the PPI algorithm. Furthermore,
it is worth noting that we used a clock of 100 MHz (the
maximum frequency available in EDK 9.1 for the Processor
Local Bus [30]) for the calculation of the dot products.
Therefore, we believe that there is still room for further
improvements of the achieved computation time in future
developments.

To conclude this section, we would like to show the
execution time evolution as we increase the number of
parallel dp units to calculate a fixed number of projections
(104). Figure 11 shows this evolution. We must consider that
this behavior depends on the number of times we have
to process the full image and therefore we are not always
calculating 104 projections. For example, if we have 90 dp
units in parallel, we need almost 112 algorithm passes to
calculate 104 projections or more, so we are really calculating
122× 90 = 10080 projections.

6. Conclusions and Future Research Lines

On-board data processing of hyperspectral imagery has been
a long-awaited goal by the remote sensing community. The
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Figure 11: Execution time in seconds by number of parallel dp
units to calculate 104 projections.

number of applications requiring a response in real-time has
been growing exponentially in recent years. Current sensor
design practices could greatly benefit from the inclusion
of specialized processing modules, such as FPGAs, which
can be easily mounted or embedded in the sensor due
to its compact size. In this paper, we have described
an FPGA implementation of an advanced algorithm for
information extraction from remotely sensed hyperspectral
scenes. The algorithm selected for demonstration has been
the Pixel Purity Index (PPI), one of the most well-known
approaches for hyperspectral data analysis in the remote
sensing community. Our experimental results, conducted on
a Xilinx Virtex-II PRO xc2vp30 FPGA (a platform with the
same architecture and similar area than radiation-hardened
FPGAs that have been certified by international remote
sensing agencies and are commonly used in airborne and
spaceborne Earth Observation platforms), demonstrate that
our hardware implementation makes appropriate use of
computing resources in the considered architecture. Further,
our proposed hardware version of the PPI algorithm can
significantly outperform (in terms of computation time) the
original (semisupervised) version of the algorithm, available
in commercial software, a (fully automatic) approxima-
tion of the algorithm, and a recently developed FPGA
implementation developed for a Xilinx Virtex-II XC2V6000-
6 FPGA. Another interesting feature of our implemen-
tation is that it can be easily scaled to fit on larger
FPGAs.

The reconfigurability of FPGA systems opens many
innovative perspectives from the remote sensing application
point of view, ranging from the appealing possibility of being
able to adaptively select the data processing algorithm to
be applied on board, out of a pool of available algorithms,
from a control station on Earth immediately after the data
is collected by the sensor, to the possibility of providing
a real-time response in remote sensing applications with
real-time requirements. As future work, we are investigating
FPGA implementations of other endmember extraction
algorithms based on different concepts and evaluating other
specialized hardware platforms for on-board hyperspectral
data exploitation, such as commodity graphics processing
units (GPUs).
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