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Average Motion Energy (AME) image is a good way to describe human motions. However, it has to face the computation efficiency
problem with the increasing number of database templates. In this paper, we propose a histogram-based approach to improve the
computation efficiency. We convert the human action/gait recognition problem to a histogram matching problem. In order to
speed up the recognition process, we adopt a multiresolution structure on the Motion Energy Histogram (MEH). To utilize the
multiresolution structure more efficiently, we propose an automated uneven partitioning method which is achieved by utilizing the
quadtree decomposition results of MEH. In that case, the computation time is only relevant to the number of partitioned histogram
bins, which is much less than the AME method. Two applications, action recognition and gait classification, are conducted in the
experiments to demonstrate the feasibility and validity of the proposed approach.

1. Introduction

Analyzing human’s behavior or identity is a very interesting
research topic because human is usually the most concerned
object in many applications such as surveillance system
or video understanding. Recently, this problem is usually
solved by two kinds of approaches: video-based approaches
or sensor-based approaches [1, 2]. The advantage of video-
based approach is that the individuals do not have to put on
additional devices and the hardware cost is also cheaper. For
video-based approaches, there exists abundant considerable
works made by previous researchers such as employing tem-
plate matching [3, 4], Intensity-based features [5, 6], shape
matching [7], and spatial-temporal features [8–13]. For
spatial-temporal features, motion energy images (MEIs) are a
very useful feature which incorporates temporal information
into spatial images. The idea of MEI was firstly introduced
by Bobick and Davis in [14]. The authors obtained the MEI
by collecting a group of frames and extract scale invariant
features for recognition. This idea was extended to the
so called average motion energy (AME) by aligning and

normalizing the foreground silhouettes [15]. By doing so,
the AME can depict human’s motion in a two-dimensional
space (the spatial domain) while preserving the temporal
motion information. Unlike other approaches in [10], the
process of generating AME is computationally inexpensive
and can be employed in real-time applications. Besides, it
had been proven that AME can provide reliable accuracy
for action recognition by other researchers [16]. Recently,
some researchers focus on more challenging problems such
as gender classification [17, 18] and gait classification [19–
24]. The AME idea was also employed in [22], in which they
named AME as gait energy images (GEIs).

In [15], the authors directly employed the sum of
absolute difference (SAD) for action recognition purpose
and obtain adequate recognition results. However, the com-
putation of SAD is inefficient when the size of image is large
because the computational time is relevant to the image size.
This problem is not severe when the amount of database
images is small but can be expected with the increasing
size of image database. To remedy this problem, we propose
a histogram-based approach which can efficiently compute
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the similarity among patterns. Firstly, the AME image is
converted to the motion energy histogram (MEH). Then,
we adopt a multiresolution structure to construct the
multiresolution motion energy histogram (MRMEH). Last,
we propose an uneven partitioning method to address the
important part of MEH automatically and apply an efficient
histogram matching algorithm by utilizing the characteristic
of multiresolution histogram.

2. Histogram-BasedMethod

In this section, we will introduce the proposed histogram-
based method for human action recognition. Section 2.1
describes the overview of the proposed framework. How
to generate the AME and MEH is addressed in Sections
2.2 and 2.3, respectively. Then we will briefly describe the
characteristic of MEH in Section 2.4. The construction and
utilization of MRMEH are elaborated in Sections 2.5 and
2.6, followed by the time complexity analysis of the proposed
method in Section 2.7.

2.1. System Overview. Figure 1 shows the overview of the
system. Firstly, we extract the motion period from the
input video. We can obtain the Average Motion Energy
image based on the extracted motion period and convert
it to the Motion Energy Histogram (MEH). Then we
perform quadtree decomposition on the MEH to construct
the Multiresolution Motion Energy Histogram (MRMEH).
Finally we apply an efficient histogram matching algorithm
on MRMEH to obtain the recognition result.

2.2. Average Motion Energy (AME). Before elaborating on
the proposed histogram-based method, the average motion
energy (AME) image proposed by Wang and Suter [15] is
first introduced. Given a set of aligned human silhouettes
S(x, y, t), the AME can be defined as follows:

AME
(
x, y

) = 1
T

T∑

t=1

S
(
x, y, t

)
, (1)

where T is the number of frames. In their work, T is set
as the motion period of the input action. There have been
plenty of studies for periodicity detection of motions. For
example, in [20], the authors adopted a simple strategy
to extract the motion cycle. They observed the number of
foreground pixels in the silhouette in each frame over time,
Nf (t). Afterwards the motion period can be extracted by
seeking the local maximums of Nf (t). This strategy works
fair in the walking motion. However, for some other periodic
motions such as waving hands or jumping, the size of the
foreground silhouette does not change much. Figure 2 is
an example which shows the variation of Nf (t) of two
motions, where Figure 2(a) represents the Nf (t) of motion
“walking” and Figure 2(b) represents the Nf (t) of motion
“waving one hand”, respectively. We can see that there are
obvious local maximums and local minimums in Nf (t) in
the walking motion but not in the waving motion. Therefore,
we adopt another robust method which measures object’s

self-similarity over time [25]. Obviously, if the periodic
motion exists in the video sequence, we can find similar poses
in different frames. In other words, high correlation value
can be obtained when comparing the foreground blobs in
different frames within a period of time. Thus we can get the
motion period by subtracting the indices of these frames.

2.3. Motion Energy Histogram (MEH). From (1) we can see
that the pixel value in AME(x, y) represents the intensity
at position (x, y). From a histogram point of view, we can
regard AME as a two-dimensional histogram whose bin
value represents the frequency on position (x, y) during time
interval t. Thus, we can reform the AME to the motion
energy histogram (MEH) by using the following equation:

MEH = AME
(
x, y

)

∑
x,y∈AME AME

(
x, y

) . (2)

After transforming AME to MEH, the process of recog-
nizing two different MEHs becomes a histogram matching
process. Hence, various properties of histogram can be
employed to improve the recognition performance. Through
the observation, we find that the corresponding MEHs of
two entirely different actions can be distinguished at very
low-resolution. For example, Figure 3 illustrates the MEHs
of two actions: walking and waving both hands. The left
column is the original MEHs of these two actions and the
right column is their corresponding MEH at low resolution.
We can see that even under such a low resolution, these
two actions can still be distinguished perceptually. In other
words, if we can classify these actions at lower resolution
level rather than directly compare them at the highest
resolution level, the whole recognition process will become
more efficient because the procedure will compare less
histogram bins. However, the recognition rate may decrease
under low resolution levels. In order to maintain the same
recognition rate as the method proposed in [15], we adopt
a multiresolution structure on the histogram to achieve this
goal. Details will be introduced in the next subsection.

2.4. Characteristic of Mutliresolution Histogram. The basic
idea of multiresolution was firstly introduced in [26] and
was further extended to a general form by Yu et al. [27].
A specified partitioning method on histogram bins is used
to downscale the resolution of a histogram. By performing
this operation recursively we can obtain a pyramid structure
of multiresolution histogram. For a given histogram X
with b bins, the nonuniform partitioning process for the
multiresolution structure is stated as follows. We firstly
divide these b bins into m disjointed subsets, B′, B′ =
{B′1,B′2, . . . ,B′m}. A histogram X ′ with m bins is defined as
the lower-resolution version of X and the bin values of X ′ are
described as follows:

X ′k =
∑

∀i,i∈B′k
Xi, k = 1, . . . ,m. (3)

As Yu et al. show in [27], X and X ′ satisfy the inequality

d(X ,Y) ≥ d(X ′,Y ′), (4)
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Figure 1: System Overview.
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Figure 2: The size of foreground silhouette for two motions over time: (a) walking, and (b) waving one hand.

(a) (b)

Figure 3: MEHs of two periodic motions (a) and their corresponding low-resolution image (b).
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Figure 4: Quadtree decomposition results of a walking motion.

where d represents the similarity measurement function L1-
norm and χ2-distance. By using the nonuniform partitioning
method iteratively, we can form several multiresolution
histograms and the inequality chain in (3) can be rewritten
as

d(X ,Y) ≡ dL(XbL ,YbL) ≥ dL−1(XbL−1 ,YbL−1 )

≥ · · · ≥ d0(Xb0 ,Yb0 ), bL > bL−1 > · · · > b0,
(5)

where bi denotes the bin size of the current resolution level,
i = 0, . . . ,L and 1 ≤ for all bi ≤ |B|, where |B| denotes the
element number of the universal bin set B. We will introduce
how to construct a multiresolution motion energy histogram
in the next subsection.

2.5. Construct the Multiresolution Motion Energy Histogram
(MRMEH). As we mentioned in Section 2.4, the multires-
olution histogram can be constructed by summing certain
bins at higher-resolution level. However, in order to make
this multiresolution structure more effective, the selection
of the disjointed subsets B′ is a very important task. As
addressed in [26], the uniform partitioning method is a
simple and straightforward way. However, Yu et al. [27]
proved that the nonuniform partitioning method has better
performance than the uniform one. Hence, we decide to
create B′ via the nonuniform partitioning method. Here, we
adopt a straightforward strategy to generate B′ automatically.
Since different actions have different characteristics, it is
reasonable that for different types of actions, the partitioning
method should also be different. In terms of image, the
result of a quadtree represents a partition of space in two
dimensions by decomposing the image into four equal quad-
rants, subquadrants, recursively. Each node in the quadtree
either has exactly four children or no children (a leaf
node). Each leaf node contains the data corresponding to a
specific subregion of the image. Because of the characteristic
of quadtree, we can address the importance of a given
image automatically with a proper setting of decomposition
criterion. Thus, we can realize that quadtree is a very efficient
structure which can represent the characteristic of two-
dimensional data. In our work, we set the decomposition rule
as “nonzero value”. That is, if the current quadrant contains
non-zero pixel values, it will be decomposed into four
subquadrants. Since the quadtree decomposition method
will divide the image into four subregions each time, the
width and height of the image must be the power of 2.

Therefore, we set the bins of MEH in each dimension as 256.
Figure 4 is the decomposition result on an MEH of motion
“walking” with minimum region size of 64.

In this paper, we propose a method to construct the
multiresolution motion energy histogram (MRMEH) by
using the results of quadtree decomposition on MEH. The
construction of MRMEH can be easily understood through
Figure 5. The maximum resolution level is the depth of the
tree. Nodes in different colors represent the histogram bin
of certain resolution level(s) and the value of each node
is the summation of all pixel values in the corresponding
subregion. It is reasonable that level i should have 4i bins
at most if every node at level i − 1 is decomposed into four
children. However, each resolution level will have less than 4i

bins in real world applications because not every node will be
decomposed according to the decomposition criterion. More
specifically, the bin set does not cover the universal bin set
B at some resolution levels because not every node will be
decomposed to that level. To solve this problem, if we found
that a bin at level i is indecomposable, we will copy it to the
higher resolution level to retain the information inside. By
doing so, we can ensure that the histogram bin set at each
resolution level is always equal to B. As shown in Figure 5, the
number of histogram bins at level 2 and 3 will be 10 and 22,
respectively. Figure 6 is the MRMEH of the action “running”.
Note that the two-dimensional histograms are reformed to
one-dimensional for better understanding. Figure 6(a) is the
MEH and Figure 6(b) is the quadtree decomposition result.
Figures 6(c) to 6(g) are the corresponding MRMEHs at
resolution levels 1 to 5, respectively. In the next subsection,
we will introduce how to utilize the MRMEH to recognize
human actions.

2.6. Efficient Action/Gait Recognition Using MRMEH. As we
mentioned in Section 2.4, for two histograms using the
same partitioning method, the similarity between these
two histograms at different resolution levels will obey the
inequality described in (4). From this equation we can realize
that further comparison is unnecessary at higher-resolution
level if the similarity at lower-resolution level is above the
threshold. Thus we can speed up the recognition process by
comparing less histogram bins. It is noticeable that we must
use same partition method for all compared histograms to let
the similarity between different actions be comparable. Thus,
we adopt a dynamic partition method. More specifically,
we obtain the partition method from the query MEH and
employ it to all MEHs in the database. Assume that there are
k-defined actions in the database. The matching algorithm is
described in Algorithm 1.

2.7. Time Complexity Analysis. In this section, we will
analyze the time complexity between the MRMEH method
and the AME-SAD method [15]. Here we evaluate the
number of operations among different methods. Assume
that the MEH is an n-by-n two-dimensional histogram.
According to the Algorithm 1, the proposed method has
to apply the quadtree decomposition before starting the
matching procedure. Thus, we have to consider the time
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Figure 5: The idea of constructing an MRMEH.
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Figure 6: A five-level MRMEH for the motion “running”. (a) Original MEH. (b) Quadtree decomposition result. (c)–(g) Corresponding
histogram from levels 1 to 5, respectively.

cost of quadtree decomposition. The number of operations
of quadtree decomposition is bounded between n2 and
n2log2n. Since the number of bins at each resolution level
is dynamically determined, it is very difficult to estimate
how many bins in total will be compared for each query.

Here, we assume that this branch-and-bound algorithm has
to compare m bins to decide whether eliminating a candidate
MEH or not. Then, for each Hq, the number of operations
will be kn2 to kn2log2n for constructing the corresponding
MRMEH and km for matching. This is even worse than the
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Figure 7: An example of matching two histograms effectively. (a) Tree of the query histogram. (e) The preconstructed tree in the database.
(b)–(d) Compared bins at different level. (f)–(h) Corresponding bin values in the database.

AME-SAD method, which takes kn2 operations. However,
this matching process can be reduced to km by storing
the decomposition information in advance. Hence, the total
number of operations will be bounded from n2 + km to
n2log2n + km and the recognition time will be relevant to
m, not n with the increasing k. In our experiments, m will
be much smaller than n2 and several quantitative results are
made to verify this approach.

First of all, we divide the recognition process into two
parts: the offline and online procedures. In the offline
processing, we will construct a complete quadtree for each

action. More specifically, all leaf nodes will be in the deepest
level of the tree. The value in each nonleaf node is the
summation of its four children’s value. In the online process,
after obtaining the quadtree decomposition result of Hq, we
can directly find out the value in the corresponding node
from the preconstructed tree. By doing so the computation
cost will only be related to the number of bins we compared
with HMR

q , which is m supposedly. For simplicity, here we
take a binary tree, for example, to illustrate this idea. As
shown in Figure 7, the right column is the preconstructed
tree in the database. Given a quadtree structure in the left
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Figure 8: Subjects used in the action recognition experiment.

column of Figure 7, the corresponding histogram at levels 1
to level 3 is shown from the second row to the fourth row
in the right column, respectively. Thus it is very easy to find
out the corresponding node to construct the histogram at a
specific resolution level.

3. Experiments

In this section, some experiments were conducted to demon-
strate the feasibility, robustness, compatibility, and validity of
the proposed approach on two applications: human action
recognition and gait classification. All statistics are evaluated

using Matlab 2007b and the Intel Core 2 quad CPU 2.4 G
with 2.0 G RAM.

3.1. Action Recognition. To evaluate the performance of the
proposed method, we adopt the Weizmann database used in
[10]. Because nonperiodic motions are hard to extract the
motion period, we only use the periodic motions in their
database, which includes 7 periodic actions from 9 different
subjects and each subject performs 7 periodic motions. For
simplicity, we numbered these 7 actions from A1 to A7,
which are walking (A1), running (A2), jumping-forward
(A3), jumping jack (A4), waving one hand (A5), waving
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(a) (b) (c) (d)

(e) (f) (g)

Figure 9: MEH of 7 actions. (a) Walking, (b) Running. (c) Jumping. (d) Jumping Jack. (e) Waving one hand. (f) Waving two hands. (g)
galloping-sideways.
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two hands (A6), and galloping-sideways (A7). The resolution
of the videos is 180-by-144 and 25 fps. Moreover, we add
additional 10 subjects with our own videos in a different
environment to enlarge the database. Hence the number
of testing subjects is 19 in the whole experiments. The
resolution of the additional videos is 360-by-240 and 30 fps.
Sample images of all subjects are shown in Figure 8.

For those videos taken by ourselves, we employ a
robust background subtraction approach [28] to extract the
silhouette. For the database used in [10], we directly use the

masks provided by the authors. All silhouettes were aligned
by the center of the mass. Since the width and height of input
image must be the power of 2 for quadtree decomposition,
we adopted a 256-by-256 image in our experiments. Same
subject may have different heights due to different distances
to the camera in these videos; we normalize the silhouette
according to the scale of height to provide fair comparisons.
In our experiments, we normalize the silhouette to 150 pixels
high. Figure 9 shows the generated MEH of all 7 actions from
all subjects.

3.2. Recognition Accuracy Analysis. In the recognition pro-
cess, we adopt the leave-one-out cross-validation rule to
obtain fair recognition rate. The histogram similarity func-
tion used in this paper is L1-norm. Although the χ2-distance
is also compatible of the multiresolution structure, we find
that L1-norm similarity measurement already provides high
recognition rate in the experiments. Table 1 tabulates the
recognition rate at different levels. Numbers in bold repre-
sent the recognition rate for each action at each resolution
level. Figure 10 is the comparison between the AME-SAD
method employed in [15] and the proposed MRMEH-L1

method. The AME-SAD method always compares the whole
images to the database images so that the recognition rate is
fixed. We can find that the recognition rate is equal to the
AME-SAD method at resolution level 5. Therefore, we only
have to construct the quadtree to level 5 (whose minimum
block size is 8-by-8) and save more computation time. Tables
2, 3, 4, 5, and 6 show the confusion matrix at each resolution
level.

3.3. Recognition Efficiency Analysis. In the second experi-
ment, several quantitative results are conducted to evaluate
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Input: Hq:MEH of the query action with size n-by- n
Output: The best matched MEHBest

(1) Initialize min lv = 1; max lv = log2(n); th = Inf;
(2) Construct the MRMEH HMR

q from min lv to max lv base on the quadtree decomposition result
of Hq. Memorize the partitioning method Mp.

(3) for all MEH( j) in the database
(4) Hj ←− MEH( j)
(5) for i = min lv : max lv
(6) find histogram HMR,i

j at resolution level i according to Mp

(7) Dist ←− di(HMR,i
q , HMR,i

j );
(8) if Dist <th and i! = max lv
(9) then i = i + 1;
(10) else discard Hj ;
(11) end
(12) if Dist <th and i == max lv
(13) then MEHBest ←− Hj ; th = Dist;
(14) end
(15) end

Algorithm 1: Algorithm for action recognition.

Table 1: The recognition rate of 7 motions at 5 resolution levels.

Lv 5 4 3 2 1

A1
19/19 19/19 18/19 18/19 10/19

100.00% 100.00% 94.73% 94.73% 52.63%

A2
19/19 19/19 18/19 17/19 15/19

100.00% 100.00% 94.73% 89.47% 78.95%

A3
18/19 18/19 17/19 14/19 13/19

94.73% 94.73% 89.47% 73.68% 68.42%

A4
18/19 18/19 15/19 14/19 6/19

94.73% 94.73% 78.95% 73.68% 31.58%

A5
19/19 19/19 18/19 9/19 10/19

100.00% 100.00% 94.73% 60.00% 52.63%

A6
19/19 18/19 13/19 14/19 8/19

100.00% 94.73% 68.42% 73.68% 50.00%

A7
19/19 19/19 19/19 17/19 8/19

100.00% 100.00% 100.00% 89.47% 50.00%

Table 2: Confusion matrix at resolution level 5.

A1 A2 A3 A4 A5 A6 A7

A1 1.00 0 0 0 0 0 0

A2 0 1.00 0 0 0 0 0

A3 0 0 0.95 0 0.05 0 0

A4 0 0 0 0.95 0 0.05 0

A5 0 0 0 0 1.00 0 0

A6 0 0 0 0 0 1.00 0

A7 0 0 0 0 0 0 1.00

the computational efficiency. Table 7 tabulates the average
number of bins for different actions at different resolution
levels. We can find that at resolution level 5, the average
number of bins falls from 168.2 to 268.4, which are much less

Table 3: Confusion matrix at resolution level 4.

A1 A2 A3 A4 A5 A6 A7

A1 1.00 0 0 0 0 0 0

A2 0 1.00 0 0 0 0 0

A3 0 0 0.95 0 0.05 0 0

A4 0 0 0 0.95 0 0.05

A5 0 0 0 0 1.00 0 0

A6 0 0 0 0.05 0 0.95 0

A7 0 0 0 0 0 0 1.00

Table 4: Confusion matrix at resolution level 3.

A1 A2 A3 A4 A5 A6 A7

A1 0.95 0 0 0 0 0 0.05

A2 0 0.95 0.05 0 0 0 0

A3 0 0 0.90 0 0.05 0 0.05

A4 0 0 0 0.73 0 0.27 0

A5 0 0 0 0 1.00 0 0

A6 0 0 0.11 0.16 0.05 0.68 0

A7 0 0 0 0 0 0 1.00

Table 5: Confusion matrix at resolution level 2.

A1 A2 A3 A4 A5 A6 A7

A1 0.95 0.05 0 0 0 0 0

A2 0 0.89 0.11 0 0 0 0

A3 0 0.11 0.74 0.05 0.05 0 0.05

A4 0 0 0 0.73 0.05 0.11 0.11

A5 0 0 0 0.16 0.57 0.27 0

A6 0 0 0.11 0.16 0.05 0.68 0

A7 0 0 0 0 0 0 1.00
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Table 6: Confusion matrix at resolution level 1.

A1 A2 A3 A4 A5 A6 A7

A1 0.53 0.05 0.05 0 0.05 0 0.32

A2 0 0.79 0.21 0 0 0 0

A3 0.11 0.11 0.68 0.05 0.05 0 0

A4 0.26 0 0 0.27 0.05 0.11 0.37

A5 0.05 0 0 0.11 0.52 0.16 0.16

A6 0.16 0 0 0 0.05 0.42 0.37

A7 0.16 0 0.05 0.05 0.11 0.21 0.42

Table 7: Average number of bins at each resolution level.

Lv A1 A2 A3 A4 A5 A6 A7

1 4 4 4 4 4 4 4

2 16 16 16 16 16 16 16

3 40 40 39.8 40 40 39.9 39.9

4 84.7 86.5 76.8 97.9 81.6 87 88.6

5 204.4 219.5 168.2 268.3 184.7 207.1 213

Table 8: Comparisons between AME-SAD and two kinds of
partitioning methods in action recognition application.

Number of operations AME-SAD Quadtree-L1 Uniform- L1

MRMEH construction
(no. of pixels retrieved)

— 191451.43 327680

Action recognition (no.
of bins compared)

458752 1438.71 5114.69

than AME-SAD method which use the whole image (256-
by-256) for comparison. Furthermore, if we can eliminate
as many dissimilar MEH as possible at lower-resolution
level, the computation efficiency can be further improved.
In our experiments, the average processed resolution level
is 2.83 when the maximum resolution level is 5. Table 8
depicts the average number of pixels (bins) need to be
processed during the recognition process for each query.
In order to construct the MRMEH, we have to retrieve
each pixel in the AME several times. The average number
of pixels needed to be retrieved and compared for all
actions is shown in the second and third rows of Table 8,
respectively. It is noticeable that the recognition rate of
the proposed MRMEH-L1 (no matter using quadtree-based
or uniform partitioning method) and AME-SAD will be
the same (see Algorithm 1). Hence the only difference
among these methods is the computation time. Although
the proposed algorithm has to spend additional time on
organizing the MRMEH using quadtree decomposition or
uniform partitioning method, the multiresolution structure
approach still has better efficiency than the AME-SAD
method. With the increasing of the database templates, the
proposed method will be much more effective than using the
AME-SAD approach.

3.4. Real-Time Action Recognition. Here we demonstrate a
system which is able to quickly classify different periodic
motions in a single video sequence. As described in [25], we

also adopt the self-similarity matrix Ss in this application. If
the motion cycle is successfully extracted at frame t, then
we empty the matrix Ss, obtain the corresponding MEH,
and perform the action recognition. If we cannot extract
the motion period at frame t, we keep computing the self-
similarity information at frame t and added it into the matrix
S. Since it takes several frames to accomplish a motion cycle,
in our work the system tries to extract the motion period
in Ss every 15 frames. Because it is meaningless to compute
the periodicity between two dissimilar actions, we choose
to empty the matrix S when a motion cycle is detected in
order to avoid computing the self-similarity between two
dissimilar actions. Figure 11 shows the recognition results
on a subject who is performing several motions sequentially.
These motions are waving one hand, side walking, waving
two hands, and running. Since the recognition time of the
proposed method is very short, our method can response
human’s motions immediately and correctly.

3.5. Gait Classification. In this experiment, we will demon-
strate the advantage of our method on another application:
the human gait classification. Unlike the action recognition
problem, the human gait classification problem involves
many subjects (usually more than 100) with similar actions
so that the classification task becomes more challenging. In
order to quickly identify each individual in a large database,
an efficient matching algorithm is required. We adopt the
CASIA Gait Database (Dataset B) [19] which consists of
124 subjects’ gaits from 11 view angles (see Figure 12). Each
subject performs the walking motion 10 times which include
six natural walks, two walking sequences with a bag, and two
sequences with a coat. For simplicity, we only consider the
side-view and natural walk sequences in our experiment. We
select 120 subjects whose silhouette images are acceptable for
gait analysis. Figure 13 shows some examples of the AME
images used in our experiments.

We adopt the leave-one-out cross-validation rule and the
cumulative match score (CMS) to evaluate the performance
of our method. The resolution level of MRMEH is from 1
to 7. In our experiment, the classification rate is 96.39%
using the AME-SAD and 1-NN rule. Figure 14 shows the
CMS among the top 10 matches at different resolution levels
where the y-axis is the recognition rate. In our work, the
recognition rate of MRMEH at resolution level 7 reaches
the same accuracy as that of AME-SAD. Note that for the
action recognition problem described in Section 3.2, the
recognition rate of MRMEH at resolution level 5 already
reaches the same accuracy as that of AME-SAD. Because
the gait classification problem is more sophisticated than the
action recognition problem, we have to use a finer resolution
level in order to identify different people. Table 9 tabulates
comparison of the average number of bins at different
resolution levels between the nonuniform (quadtree-based)
partitioning method and the uniform partition method. We
can find that the bin number of quadtree-based method is
only 9.63% of the uniform partitioning method at resolution
level 7. Since both methods have the same recognition
rate, obviously the quadtree-based partitioning method is
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Figure 11: Action recognition in a single video sequence.

Figure 12: Human gaits captured from 11 different view angles.

the better choice in order to obtain better computation
efficiency. Table 10 tabulates the average number of com-
parisons for each query between the AME-SAD and the
MRMEH method. We can find that the MRMEH approach
(either quadtree-based or uniform partitioning method)
performs better than the AME-SAD method. Moreover, the
quadtree-based partitioning method has the least number of
operations (only 2% of the AME-SAD method) among the
three methods.

4. Conclusion

In this paper, we propose a histogram-based approach on
human action recognition. We transform the average motion
energy (AME) image to the two-dimensional motion energy
histogram (MEH). By doing so, various characteristics of
histogram can be adopted to improve the performance
on similarity measurement. We discover that the MEH
generated within a motion period provides rich information
to distinguish different type of motions. To improve the

Table 9: Number of bins at different resolution levels using the
quadtree-based and uniform partitioning method.

Resolution level
Quadtree-based

partitioning
Uniform partitioning

1 4 4

2 16 16

3 39.94 64

4 86.98 256

5 216.67 1024

6 581.73 4096

7 1578.30 16384

Table 10: Comparisons between AME-SAD and two kinds of
partitioning methods in gait classification application.

Number of operations AME-SAD Quadtree-L1 Uniform- L1

MRMEH construction
(no. of pixels retrieved)

— 205753.33 65536

Action recognition
(no. of bins compared)

7864320 142225.45 1693850.2

recognition efficiency, we adopt a multiresolution structure
on the MEH. The multiresolution motion energy histogram
(MRMEH) is a very useful structure which is able to
remarkably speed up the recognition process. In order to
construct an adequate MRMEH for different actions or peo-
ple, we proposed an automated partitioning method using
the characteristic of quadtree decomposition. The important
part in each MEH can be automatically addressed through
the decomposition process. Experiments show that the
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Figure 13: The extracted AME images in our experiments.

C
u

m
u

la
ti

ve
m

at
ch

in
g

sc
or

e

10

20

30

40

50

60

70

80

90

100

Rank

0 1 2 3 4 5 6 7 8 9 10 11

Resolution level 1
Resolution level 2

Resolution level 3
Resolution level 4

(a)

C
u

m
u

la
ti

ve
m

at
ch

in
g

sc
or

e

95
95.5

96
96.5

97
97.5

98

98.5
99

99.5
100

Rank

0 1 2 3 4 5 6 7 8 9 10 11

Resolution level 5
Resolution level 6

Resolution level 7

(b)

Figure 14: The CMS at different resolution levels.

number of operations is highly reduced using the proposed
nonuniform partitioning method so that the computation
efficiency is greatly improved. Moreover, the recognition
accuracy remains the same as the AME-SAD method via the
multiresolution histogram matching algorithm. Because of
the computationally inexpensive approach, real-time system
is practical by using the MRMEH with high recognition
accuracy. Through bunch of quantitative experiments we
verified our thoughts as well as demonstrated the powerful
capabilities of MRMEH in action recognition and gait
classification applications.
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