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The understanding and exploitation of acoustic echo signals from nonlinear ultrasound scatterers is an active research area that
aims to improve the sensitivity and specificity of diagnostic imaging. Discriminating between acoustic echoes from linear scatterers,
such as tissue, and nonlinear scatterers, such as contrast microbubbles, based on their frequency content is also an important topic
in ultrasound contrast imaging. In order to achieve these objectives, a fundamental preliminary stage is to extract information
about the reflected signals in the frequency domain with high accuracy: this is essentially a feature extraction and estimation
problem. In this paper, a parametric Bayesian spectral estimation method is utilised for the analysis of the backscattered echo
signals from microbubbles. In contrast to existing nonparametric discrete-Fourier-transform- (DFT-) based spectral estimation
techniques used in the ultrasonic literature, this method is able to estimate the number of spectral components as well as their
amplitudes and frequencies. The Bayesian spectral analysis technique has improved frequency resolution compared with the DFT
for short multiple-component signals at low signal-to-noise ratios. The performance of the method is demonstrated with simulated

signals, as well as analysing experimentally measured echo signals from nonlinear microbubble scatterers.

1. Introduction

Ultrasound contrast agents (UCAs) used for enhancing
ultrasound images were first discovered accidentally by
cardiologist Charles Joiner in the 1960’s [1]. In particular,
microbubbles (MBs) have been widely used as UCAs in
biomedical research since the 1990’s [2]. Whereas imaging
techniques such as positron emission tomography (PET),
magnetic resonance imaging (MRI), and computed tomog-
raphy (CT), have disadvantages due to toxicity levels, leakage
from the vascular system, and a high cost of repetitive
imaging, ultrasound contrast imaging (UCI) provides a
nondestructive, noninvasive, and cost-effective paradigm. In
general, UCAs greatly improve resolution and sensitivity
of ultrasound imaging. Nevertheless, a major limitation
remains since imaging results are highly dependent on the
scanner operator and transmit (insonification) waveform
selection. Though some adaptive waveform technologies
have recently been introduced into commercial systems,
this imaging modality would benefit greatly from more

sophisticated adaptive waveform technologies such as those
used in radar imaging which, in turn, are being biologically
inspired by the waveform selection used in nature by, for
example, bats and dolphins.

In order to analyse the performance of ultrasound
contrast imaging systems and the ability to detect the
presence of MBs in blood and being able to distinguish them
from tissue, it is important to analyse the acoustic responses
of individual components, for example, a single MB scatterer
[3-5]. This paper analyses the characteristic backscattered
waveforms received from a single MB as a result of waveform
insonification. The analysis in this paper focuses on the
spectral content of these waveforms, while future work will
focus on the spectral-temporal content.

The Fourier transform is ubiquitous in the spectral
analysis of ultrasound contrast imaging and, though very
useful, has inherent limitations. In particular, as a direct
result of the time-frequency uncertainty principle, it is
known that traditional nonparametric methods suffer from
the trade-off between pulse duration and the width of



the spectral peak. Since Fourier-based theory makes very
weak assumptions regarding the structure of a particular
signal, the Fourier transform (FT) may provide false spectral
content and cannot provide time domain information:
both are important in MB detection. In addition to these
fundamental limitations, FT-based signal detection often
relies on, for example, ad hoc signal-dependent criteria such
as thresholds or other heuristics for peak detection. An
example of a situation where the FT alone cannot provide all
the required information is when determining the number
of dominant frequency components present in a signal; this
number has been shown to characterise the type of scatterer
[2, 6-8]. Thus, distinguishing tissue and MB responses in
UCI using spectral and temporal features based on FT
analysis is limited.

Fourier methods can be improved upon by explicitly
incorporating strong prior information about the structure
of the signals and systems involved. Bayesian spectral analysis
[9-11] leads to frequency estimators in which the achievable
spectral resolution is directly dependent on the signal-to-
noise ratio (SNR) and can be orders of magnitude better
than that of a conventional Fourier power spectrum or
periodogram [12, 13]. A key advantage of Bayesian spectral
estimators is its ability to produce a measure of uncertainty of
the estimated parameter, either through the full probability
density function (PDF) or via characteristic features such as
an estimate of variance of the frequencies.

The pulse-echo returns from discrete MB events can be
analysed by explicitly modelling the signal using paramet-
ric representations. Although the ultrasound environment
and the MB response exhibit nonlinearities, the returned
signal is still a finite-duration pulse typically with a well-
determined structure. In this paper, a Bayesian spectral-
temporal estimator is proposed in which the echo responses
are explicitly modelled as a linear combination of an
unknown number of sinusoids with unknown frequencies,
amplitudes, and phases. Using Bayesian inference, a posterior
PDE, p(k, ®x | y), for the pulse parameters, @, can be
derived, where y is the observed data and k is the number of
sinusoids in the signal pulse. Although this PDF encapsulates
all the information needed to characterise the ultrasound
echo signal, it is still necessary to find a point estimate for
the “optimal” parameter set. This could, for example, be
a marginal maximum a posteriori (MMAP) or minimum
mean-square error (MMSE) estimate which reduces to either
an optimisation or integration problem, respectively:

(E, &)k)MMAP =arg max p(k, @ |y),
k, @y
(1)
(k> CDk)MMSE = Epk, oy [k @i 1],

where Epx,)[x | y] denotes the conditional expectation
with respect to the PDF p(x | y). Unfortunately, both
optimisation and integration of the PDF in (1) are extremely
difficult numerical problems.

However, Markov chain Monte Carlo (MCMC) and
other numerical Bayesian methods are simulation-based
techniques that provide enormous scope for realistic statis-
tical modelling [14] and allow for parameter estimates to
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be obtained from analytically intractable PDFs. The number
of sinusoids (model order) and parameters which maximise
the posterior PDF is estimated using a reversible jump
MCMC (rjMCMC) algorithm. Such techniques have gained
popularity in a wide range of subject areas over the past few
years, from economics to biology, primarily due to the rapid
increase in computation power. The improvements provided
by the Bayesian approach compared with classical analysis
are significant. This algorithm is used to analyse the spectral
characteristics of pulse echo returns from nonlinearly scat-
tering MBs [3-5]. This technique is the starting point for
automatic data classification, thereby leading to the creation
of a framework for the generation of an active dynamically
adaptive pulsing scheme for ultrasound imaging.

The outline of this paper is as follows. Section 2
gives a background discussion on existing spectral analy-
sis methods used in ultrasound contrast imaging (UCI).
Section 3 proposes a physically inspired parametric model
for experimentally measured echo signals from ultrasound
MBs and describes the detailed procedure of Bayesian
spectral estimation, together with the jMCMC algorithm. A
comparison between parametric estimation and nonparamet-
ric estimation when applied to simulated signals is presented
in Section 4.1, while in Section 4.2 we apply Bayesian spectral
estimation to the analysis of ultrasound MB echoes and
displays estimation results. A discussion and conclusions are
also presented in Section 5.

2. Spectral Analysis in UCI

Ultrasound MBs are stable subcapillary sized microspheres
gas-filled and encapsulated in a thin shell, usually with
diameter below 7 ym, which can go through microcircula-
tions in the human body [2]. Encapsulation is necessary
to prevent rapid dissolution of the gas content into the
blood [15]. When exposed to ultrasound, a contrast MB
starts to oscillate under the pressure of the sound field. This
oscillatory behavior results in a high scattering strength of the
contrast MB [16]. Compared to other ultrasound scatterers,
including tissue, MBs are more compressible and expandable
when insonificated with ultrasound. This nonlinear behavior
results in the spectra of the echo signals containing a greater
number of harmonics than those originally present in the
transmit pulse wave [2, 7, 8]. Therefore, MBs are usually
referred to as nonlinear scatterers. Moreover, the nonlinear
acoustic signature of MBs forms the basis for discrimination
between themselves and other scatterers, for example, soft
tissue. Current pulse sequence design research attempts to
maximise the difference between responses from MBs and
tissue and attempts to increase the contrast-to-tissue ratio
(CTR) [17]. An important step prior to pulse-waveform
design is therefore an exploration of the spectral content of
responses from contrast MBs in the frequency domain from
a signal processing perspective; this is the focus of this paper.

Traditional spectral estimation techniques in ultrason-
ics are nonparametric, which are typically based on the
Fourier transform (FT). Using these techniques, the spec-
tra are usually derived directly from the observed data,
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which is either explicitly or implicitly windowed in time. It
is often assumed that the unknown data outside the window
is zero or that the entire signal is periodic. In many practical
applications, this is an unreasonably strong assumption
and the window effect will limit the frequency resolution
obtained by the estimator [18]. It would be better to make
much weaker assumptions on the nature of the unobserved
data. Moreover, for signals with a relatively short duration,
which are very common in ultrasound echo signals, the
peaks in their Fourier spectra are broad and sufficiently
closely spaced that their frequency components can become
indistinguishable. Therefore, it is not easy to determine the
exact positions of peaks if nonparametric methods are used.
For example, various optimisation methods, such as thresh-
olding, need to be considered to determine the accuracy to
which the peak frequency can be determined. Furthermore,
the number of frequency components is often assumed
fixed and known in nonparametric methods. However, this
is not practical in analysing echo signals from ultrasound
contrast MBs because determining the number of harmonics
in ultrasound nonlinear echoes is exactly the question that
needs to addressed.

In contrast to nonparametric spectral estimation meth-
ods, parametric estimation relies on specific signal models
which are assumed to generate all data samples, including
both observed data and unseen or hidden data. In this
case, no windowing occurs and the resolution limitations
may be overcome. After a signal model is chosen, Bayesian
inference [19] is used to estimate the model parameters. If
the parameters that need to be estimated are the frequency
components only, this parametric estimation can specifically
be called Bayesian spectral estimation [9, 12]. Gregory [12]
describes in detail how to apply Bayesian inference to spectral
estimation of astronomy signals.

Bayesian inference is one popular category of statistical
inference. It is able to produce various measures of the
estimated parameter by constructing the joint PDF of all
unobserved quantities on the basis of all those that are
known. Hence, for example, not only can the MMAP
estimate or MMSE estimate be found, but the variance
or other statistic on the parameter estimate can also be
derived. The literature on Bayesian inference is vast, and
introductions can be found in [13, 19]. If the posterior
PDF of the proposed signal model is multimodal and
generally has a complicated shape, it can be difficult to find
a closed-form expression for an estimator. However, if the
posterior PDF can be approximated by MCMC algorithms
[19, 20], it is possible to numerically evaluate the estimators.
Moreover, when the number of spectral components is
unknown, the joint posterior PDF of the model order and
the parameters themselves can be approximated using a
rjMCMC technique proposed by Green [14]. This approach
is based on reversible samplers that can jump between
parameters subspaces of differing dimensionality. Andrieu
and Doucet [10] first applied a rjfMCMC algorithm to
well-constructed sinusoidal signal models, and this work
has been extended by others [11, 21]. In parametric esti-
mation methods, the most important decision is find-
ing a proposed signal model that fits the observed data.

Otherwise, the estimation of model parameters has no
meaning at all.

In the ultrasound literature, nonparametric methods are
the most popular choices in ultrasound. In this paper, a
parametric Bayesian spectral estimation for the analysis of
ultrasound MB echoes is presented as an alternative. It has
seldom been applied in the ultrasound literature yet has been
widely used in other applications.

3. Parametric Bayesian Spectral Analysis

In Section 3.1, model structure and model order selection
for the acquired echo signals are discussed; detailsof Bayesian
spectral estimation technique for the proposed model is
given in Section 3.2; a comparison between Bayesian spec-
tral analysis and conventional DFT estimation techniques
addressed for simulated signals is given in Section 4.1.

3.1. Selection of an Appropriate Model. In statistical signal
modeling the process of signal model design and selection
usually consists of choosing a model structure, choosing
a model order, and then performing model parameter
estimation and model evaluation. The first step of model
structure selection depends on observing or understanding
the nature of the physical system that generates the signal.
The model order can be regarded as another model param-
eter and thus may be included in the parameter estimation
step. An analysis of the physical mechanism that generates
ultrasound echo signals indicates that a typical transmit
signal is composed of one single frequency component, and
the acoustic response is predicted by MB theory to have
several more harmonics compared with the transmit pulse.

Since the measured ultrasound incident or transmit
waveforms are composed of a six-cycle sinusoids, the corre-
sponding echoes from the scatterers are also likely to have
the same periodic structure. An analysis of the transmit and
receive waveforms suggests that a sum-of-sinusoids (SoSs)
signal model is appropriate, and therefore the following
model is proposed:

Yo : y(t) = n(t), (2a)
Yi: y(t) = s(t) + n(1), (2b)

where Y, and Yj represent a noise-only signal and a signal
embedded in Gaussian noise, respectively. The model for the
embedded sum-of-sinusoids signal, s(t) for t € {0,...,N —
1}, where N is the length of the signal, is given by

k
s(t) = zac,j cos(wjt) +as sin(a)jt), (3)
j=1

where k is the number of frequencies, or model order, and
a.,; and a; are amplitudes for each frequency k. The noise
sequence, 1(t), is zero-mean Gaussian noise, given by

n(t) ~ N(O, a,f), (4)



where 0} is the variance. The model can also be written in a
vector-matrix form:

y=s+n=D;a;+n, (5)

T
where ax = [a.) as1 acy asp ack dsk]  represents
an amplitude vector for each frequency component. The

matrix Dy contains the frequency information in a signal,
which can be defined as

B(wity) B(wity)
B(wty) B(wit)

S | ©
B(wity) -« -+ Blwkty)

where B(+) £ [cos(+), sin(+)] and it operates on an element
by element basis; for notational clarity, t, = n — 1. For a
fixed model order, k, the harmonic model in (3), is defined
by the model parameter set ®; = {wy,ax, 07}, where wy is
the vector of unknown frequencies wy £ {wy,...,wi}. The
complete set of unknown parameters in the case when the
model order is unknown is thus given by ¥ = {k, @i }.

3.2. Bayesian Spectral Estimation Using a riMCMC Algorithm.
Once a signal model is proposed, a parametric estimation
approach using Bayesian inference is applied, taking into
account all parameters of interest. According to Bayes
theorem [13, 19], the joint distribution of the parameters,
¥, conditional on the observed data sequence y, p(¥ | y), is
termed the joint posterior density and can be calculated as

_p(y1'¥)p(¥)

p(y) @

p(¥ly)

where p(¥) is termed as the joint prior density and p(y | ¥)
is the likelihood function. The parameter ¥ is then estimated
by, for example, finding the MMAP or MMSE as described in
(1). However, the resulting posterior density is often multi-
modal, and finding analytic expressions for the MMAP or
MMSE values becomes complicated. Therefore, the cor-
responding inference will be approximated using MCMC
algorithms, which draw samples from target distribution and
find statistical averages using the law of large numbers.

3.2.1. Likelihood Function for the Proposed Model, p(y | ¥).
As the noise is assumed to be independent and identically
distributed (i. i. d) Gaussian noise with variance a,f, the
likelihood function based on the chosen signal model for
measured ultrasound echo signals discussed in Section 3.1
is obtained as

~N/. -D :
ply I k, @) = (Zna,f) " exp{—”y 20]]% 2| }, (8)

where ||A|2 £ ATA, @, £ {wk,ax, 0f} contains model
parameters, and ¥ = {k, @}.
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3.2.2. Joint Prior Distribution for Model Parameters, p(W¥).
The joint prior distribution, p(¥), reflects the degree of belief
of the relevant values of the parameters of a model. It is
assumed that the prior distributions for the amplitudes, fre-
quencies, and model order are independent of one another,
such that the joint prior distribution simply becomes the
product of all priors.

Most of these priors are chosen as uninformative Jeffrey’s
priors or conjugate priors. The selection of uninformative
Jeffrey’s priors reduces the dependence of the results on
the exact choice of prior; the selection of conjugate priors
allows some unknown parameters to be integrated out
analytically and thus reduces the computational complexity.
Furthermore, they have been demonstrated to have good
performance in [10] when Bayesian inference is applied to
spectral estimation. Typical priors for scalar multipliers, such
as ag, is a Gaussian density; the inverse-Gamma PDF is used
for scalar amplitudes such as variances, of, and the Poisson
distribution is used for the discrete-model order, k. These
priors themselves then depend on hyperparameters which
are usually assumed known. The frequencies wy are assumed
to be uniform over the range [0, 7). If 0 < k < kmax, where
kmax 1s a fixed maximum number of frequency, the joint prior
can be expressed as

P(k> (I)k)
= p(k | M)p()pla | K)p(ax | 07,82) p(62) p(?)

k k
o {/;' exp[—A]} {Ael_l/zexp[—egA]} {(711) }

\

~

Gamma (hyperparam) uniforms

1 al % ay
X 12 €XP| — 252
[ 2705 D | Ok

¢

poisson

Y

Gaussian

el (208)] expl-psso?)
O_]f(V/ZJrI) : 82((X§+1) >

)

Y

inverse-Gammas (Variance and hyperparam)

(9a)

where €;, €, are the hyper-hyperparameters of A, which
itself is the hyperparameter for the model order k, and
as, Bs are the hyperparameters of 82, which itself is a
hyperparameter for the scaler multipliers a. Moreover, for
analytic tractability, £;! £ 62D/ Dy.

If there are no harmonic components present in the
signal, such that k = 0, the joint prior distribution simplifies
to

p(®x | k=0)
oC — Y . 1 . [—A(1+E )] . A61—1/2
exp 20, a]f(y/2+1) exp 2 .
(9b)

Note, the following results are adopted in this calculation:
alXy'ag £ 0and 276750 £ 1 [10, 11].
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3.2.3. Joint Posterior Distribution for Model Parameters, p(\V |
y). According to Bayes’ theorem, the corresponding posterior
distribution for the unknown parameters can be found, up to
anormalising constant, by multiplying (8) and (9a), and then
marginalising over the linear parameters a; and the variance
term a,f

—~(N+v)/2 Ak
k, we, A0 |y) o< (y+yT'P ‘

p(k, wy y) o< (y +y Pey) K@ + Dt

A€1—1/26—€2A 1 ﬂ(s
eh " s2asr)) TP T
(10)

where
P, = Iy — DyM;D},

(11)

M;! =D/D; + 2%,
In the case of k = 0, the corresponding posterior distribution
is presented as:

1 Ty +
p(k, @i, A, 8% | y,k = 0) o< N+2(W2+1).exp(—y Zyéz Y)
0'0 0

X AG7V2 exp[-A(1 + €)].
(12)

More details about choosing prior distributions for model
parameters and the derivation of joint posterior distributions
can be found in [6, 10, 11]. Although the resulting joint
posterior distribution has been simplified, it is still not in
an analytical form for finding either a MMAP or MMSE
estimate. Therefore, statistical sampling techniques are used
to construct an empirical approximation of the posterior
distributions, p(k | y) and p(wx | k,y), by sampling
the parameters of interest. Given these empirical approx-
imations, corresponding MMAP estimates of the desired
parameters, k and wy, in the model can then easily be found
from

k = arg max p(k | y),
k
A (13)
@) = arg max ﬁ(wk | k, y)»
w
where the marginal p(k | y) can be found by simply
histogramming the model order samples and ignoring the
frequency estimates. Similarly, MMSE can be found from

k=E[k |y,
(14)
o = Elwk | &, v],

where the ensemble expectation is approximated to the
sample average.

3.24. A rJ]MCMC Algorithm for Sampling from the Pos-
terior Distribution. Markov chain Monte Carlo (MCMCQC)

techniques are a set of algorithms that are able to sample
from any probability distribution. Reviews can be found in
[13, 19, 20]. Using these algorithms, instead of sampling
from a probability distribution directly, an ergodic Markov
chain is constructed. After a number of iterations, the
chain will become stable and its equilibrium distribution
can be regarded as the desired probability distribution.
Having obtained samples from the desired distributions, an
empirical PDF can be constructed using simple histograms
and a MMAP criterion adopted to obtain the mode of the
estimated posterior distribution p(k | y) and p(wx | E,y).

Since the model order k is unknown, a reversible jump
MCMC technique proposed in [14] must be incorporated in
order to search the joint (variable) dimensional state-space.
The rjMCMC method combines model order selection and
parameter estimation and regards the model order as one of
the unknown model parameters. This technique allows the
proposals to jump between subspaces of different dimensions
and visit all relevant model orders. With a certain ratio that
ensures the reversibility condition, and hence the invariance
of a Markov chain, samples from the proposal distribution
are accepted [19]. Due to this calculated acceptance ratio, the
most likely model orders are visited most often and the least
likely ones are visited with lower probability. In this way, the
computational complexity can be reduced.

In general, there are three simple and commonly used
candidate moves for frequency estimation: birth, death,
and update moves. Birth and death moves are widely used
complementary moves. In a birth move, the algorithm
proposes a candidate of higher dimension whereas in a
death move, the algorithm proposes a candidate in the
model of lower dimension. If neither move is chosen, an
update move will be carried out. Let by, dk, and u; denote
the probabilities of each move for frequency estimation,
satisfying the relationship of by +dx +ux = 1 for all k. In each
iteration step, the three moves can be calculated as follow:

cmin{l,p(k+l)}, 0 <k < kmax

by = p(k)
0, k= kmax
(15)
0, k=0
dy = _
¢ cmin{l,p(:(k)l)}, 1 <k < kyax

where p(k) represents the prior distribution of the model
parameter k [10, 11]. The constant ¢ is a tuning factor which
determines the ratio of the update move to the jump moves;
¢ = 0.5 is chosen so that the probability of a jump move
is between 0.5 and 1 at every iteration. This choice also
ensures b p(k) = dy1 p(k+1), which could guarantee certain
acceptance in the corresponding Metropolis-Hastings (MH)
sampler [14]. The procedure of approximation of Bayesian
spectral estimation is summarized in Algorithm 1.

In this algorithm, the acceptance probabilities of birth
move, death move, and update move, denoted as ap, ap, and
ay, respectively, can be obtained following the MH sampling
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(1) Initialization: set ({k, @} (0))
(2) Iteration:
(3) for i =1 to numlteration do

(15) end for

(4) Update each frequency component:

(5) — Sample hyperparameters A and 6.

(6) — Sample u from Uyq,yy. (uniform distribution)

(7) if u < byi then

(8) perform birth move: Propose a new frequency randomly on [0, 7) and accept it with a

probability of ag

9) elseif (u < by + dyi )then

(10) perform death move: Remove an existing frequency randomly from w; and accept it
with a probability of ap

(11)  else

(12) perform update move: Update for all k frequencies according to a proposal
distribution and accept it with a probability ay

(13)  endif

(14)  — Sample nuisance parameters a; and o}

ArcoriTHM 1: A j]MCMC algorithm for frequency estimation.

procedure, which is described in detail in [19]. The general
form is as follows:

a £ min{1, (posterior distribution ratio)
(16)
X (proposal distribution ratio)},

where the posterior distribution ratio is the same for three
different moves and can be derived from (10).

The proposal distribution ratio is different according
to different moves. For the update move, the selection of
proposal distribution follows that described in [10]. In
summary, there are two proposal distributions for estimating
the frequencies present in the signal, namely:

(1) 1 for a global distribution which occurs with
probability A,

(2) g for a local distribution which occurs with proba-
bility 1 — A.

Together, these proposals form a hybrid mixture kernel in
the MH algorithm [19, 20]. When proposing new frequency
estimates, the DFT spectrum of the observed signal is used to
define the global proposal distribution up to a normalising
constant, and a random walk perturbation with a variance of
oy is taken as the local proposal distribution. The factor A,
which determines the ratio of how often ¢q; or g, is sampled
from, is determined in a heuristic way and set to A = 0.2 [10].

However, if there are a large number of frequency com-
ponents in a very short period in the time domain, using the
DFT to define the proposal distribution tends to overestimate
the number of frequencies. Therefore, rather than choosing
DFT spectrum, the multitaper power spectrum is adopted.
This reduces the variance without losing the frequency
resolution and thus provides a clearer spectrum [22].

With respect to the proposal distribution for birth
move and death move, they are related to the probabil-
ities of birth move, by, and death move, dy, respectively.

When a birth move is performed, the probability of proposing
a new frequency component on [0,7) is 1/m. When a
death move is performed, the probability of choosing one
frequency component from the existing frequencies is 1/(k +
1). Therefore, the proposal distributions for a birth move
starting from k frequencies can be expressed as by/m, while
a death move starting from k + 1 frequencies is di+1/(k + 1),
respectively.

4, Results

In order to increase the penetration depth in conventional
pulsed ultrasound contrast imaging systems, ultrasound
excitation pulses usually have short-time duration and large
bandwidth in the frequency domain. The performance of
nonparametric spectral estimation methods depends on the
length of a signal in the time domain since, as stated by the
time-frequency uncertainty principle, there is a fundamental
trade-off between temporal and spectral localisation. The
DFT spectra of the short-duration broadband excitation
pulses exhibit low-frequency resolutions and thus DFT-
based methods are not adequate for analysis of ultrasound
MB echoes where high-frequency resolution is required. In
contrast, the frequency resolution using Bayesian spectral
estimation in a parametric framework mainly depends on the
SNR of a signal, in addition to the signal duration in samples
[12]. Section 4.1 compares the Bayesian spectral estimation
method of Section 3.2 with the DFT estimate. In Section 4.2
we apply Bayesian spectral estimation to backscattered MB
echo signals.

4.1. Comparison to Nonparametric Spectral Estimation

Methods. In order to compare traditional nonparametric
spectral estimation and parametric Bayesian spectral estima-
tion with respect to frequency resolution, an example signal
with two closely spaced frequency components is provided.
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Simulated signal with two different frequencies (10 cycles)
20 T T

Amplitude
(==

=20 . . . . . .
0 5 10 15 20 25 30 35
Time

Simulated signal with two different frequencies (35 cycles)

Amplitude
(=]

_20 . . . . . .
0 20 40 60 80 100 120

Time

(a)

140

7
%0 Simulated signal in the frequency domain (10 cycles)
=
2
5 102
&
g
L
k!
b=
&b
‘2" 0 1 2 3 4 5 6
Radial frequency
el . Simulated signal in the frequency domain (35 cycles)
= 10 T T T T T T
3
=
S
2
=102
L
<
b=
=
&b
<
=

Radial frequency
(®)

F1Gures 1: Two simulated signals with different lengths in the time and frequency domain. (a) Two simulated signals with different lengths in
the time domain. (b) Two simulated signals with different lengths in the frequency domain.

TaBLE 1: Parameter settings for the simulated signal with two closely
spaced frequencies.

Component Amplitude Phase Frequency
k Ex£al +a’,  —tan"'(ag/ack) Wk

1 20 0 0.6

2 20 /4 0.62m

This signal is simulated according to (2b) and (3), with the
parameter setting displayed in Table 1.

With these parameters, Figure 1(a) displays two signals
with different lengths, which can also be modelled by
sinusoidal cycles. The first one in the upper panel consists of
32 data points, which corresponds to 10 cycles of a sinusoidal
signal. It is also a typical example of broadband ultrasound
echo signals. The second one in the lower panel has 128
data points, for example, 35 cycles, which is much longer
than most pulses in ultrasound echo signals. The SNRs of
two simulated signals are both 5 dB. Figure 1(b) also shows
their corresponding frequency spectra using DFT estimation.
As discussed in any standard text on spectral analysis, for
example [22], the frequency resolution using DFT can be
approximated by Aw ~ 2m/(N — 1), in which N represents
the number of data points in a signal. Therefore, in order to
differentiate two frequency components in this example, the
signal length must satisfy N — 1 > 2n/(Aw) = 27/(0.62m —
0.67r) = 100. This indicates that only if the number of data
points in a signal is larger than 101, can the DFT discriminate
two frequencies with frequency difference of 0.027. This
result is demonstrated in Figure 1(b). It can be clearly seen
that the upper panel displays only one obvious peak in the
spectrum of the signal with 10 cycles, whereas the lower panel

TaBLE 2: Parameters of the algorithm.

Parameters v € € a5 Po A
Values 0 0 0.01 0.01 2 10 0.2

ORW
1/(5N)

exhibits two obscure peaks in the spectrum of the signal with
35 cycles.

The same examples of the simulated signals are now
analysed using the proposed Bayesian spectral estimation.
The parameter setup for the MCMC algorithm, as presented
in (10), is displayed in Table 2. Note that » and y, which are
the hyperparameters of the noise variance o, are both set to
zero in order to ensure that an uninformative Jeffrey’s prior
is selected, that is, p(a,f) = l/a,f. Moreover, A and 82 are
hyperparameters of the number of frequency k; €, and €,
are hyperparameters of A; s and S5 are hyperparameters of
82%. Therefore, €1, €2, a5, and Bs are hyper-hyperparameters
of the signal model. It has been demonstrated in [10]
that the estimation procedure is very insensitive to the
specification of the hyper-hyperparameters when it is applied
to frequency estimation. Their values are assigned according
to the discussion in [10]. Other parameters, such as A and
orw, are chosen in a rather heuristic way: A = 0.2 and
orw = 1/(5N), where N is the signal length, are used in
[10], and achieve good estimated results. Therefore, they
are also adopted in this example. In this way, the number
of frequency components in the simulated signal can be
estimated by p(k | y).

In order to compare the performance of nonparametric
DFT estimation and parametric Bayesian spectral estimation
when applied to a signal with short-time duration, for
example, a sinusoidal signal with fewer than 15 cycles,



TasLE 3: Estimated frequency values for the measured MB response.

Estimates (Freq.) Means (MHz) SD values (MHz)

Ist 1.8081 0.0951
2nd 2.1639 0.2550
3rd 2.4560 0.2388
4th 2.7567 0.2198
5th 2.9575 0.1949
6th 3.2091 0.1573
7th 3.4039 0.1629
8th 3.5924 0.1447

the probabilities of correct detection of the number of
frequencies present can be calculated. This is equivalent
to evaluating their ability of discriminating two closely
spaced frequencies. Figure 2 depicts the probabilities of
correct detection of the number of frequencies with an
increase of the number of sinusoidal cycles using Bayesian
spectral estimation and DFT estimation. In this figure,
there are three different SNRs, 5dB, 10dB, and 20dB. It
is seen that the DFT estimation is independent of SNR,
whereas Bayesian spectral estimation highly depends on
SNR. Moreover, for a sinusoidal signal with a length shorter
than 15 cycles, the DFT estimation cannot correctly estimate
its frequency numbers, no matter what the SNR is. However,
Bayesian spectral estimation outperforms DFT estimation
when the sinusoidal signal has a length shorter than 15 cycles.
Furthermore, for a sinusoidal signal with a SNR higher than
20dB, only 10 cycles are required to estimate frequency
numbers correctly with a 100% percentage. Ultrasound echo
signals from MBs usually have fewer sinusoidal cycles and
relatively high SNRs. Therefore, with respect to the spectral
analysis of ultrasound MB echoes, the parametric Bayesian
spectral estimation is more appropriate than the traditional
nonparametric DFT estimation.

4.2. Analysis of Backscattered MB Signals. The experimentally
measured echo signals from ultrasound MBs used in this
paper are all acquired by a modified ultrasound transducer
(Sonos5500 Philips Medical Systems, Andover, MA, USA),
which is performed in an in vitro environment. This
transducer transmits an ultrasound wave and receives its
reflection from scatterers. The single MBs used in this paper
are Definity (Bristol-Myers Squibb Inc, MA, USA), which
were lipid coated and the gas was perfluorocarbon. The mean
diameter of the MBs ranges from 1.1 um to 3.3 ym. They
are released from a micropipette with a diameter of 100 ym,
which is put at the bottom of a water tank, as described in
[4, 5]. The tank is filled with anechoic water, which does not
produce echoes. The raw echo signals measured from these
MBs are preamplified, collected, and digitally stored and are
the subject of spectral analysis in this section.

As mentioned in Section 1, ultrasound transmit signals
usually have a single fundamental frequency whereas their
echo signals from MBs usually have more harmonics.
Figure 3(a) displays a typical example of measured ultra-
sound MB echoes. It has a length of 80 data points, which is
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TABLE 4: Spread of MAP estimates of number of frequency for the
measured MB response.

K 0~6 7 8 9 > 10
MAP 0 6 80 14 0

Comparison between Bayesian and DFT
spectral estimation against SNR

Probability of correct detection of frequency numbers

) 10 15 20 25 30 35
Number of cycles

—@— Bayesian (20dB)
—e— FFT (20dB)

-®- Bayesian (10dB)

-8~ FFT (10dB)
—v— Bayesian (5dB)
- O FFT (5dB)

Ficure 2: Comparison of probability of correct detection of
frequency numbers using Bayesian inference and DFT estimation.

relatively short duration in the time domain. Moreover,
its corresponding DFT spectrum estimation is shown in
Figure 3(b). The peaks in this figure are obscured and need to
be explored further to determine whether there is a frequency
component present or not.

When applying Bayesian spectral estimation to this
typical MB echo signal, results are obtained by the analysis
of 100 replications of Bayesian inference on the same MB
echo signal; each run of the simulation, which involves a
finite number of samples in the jMCMC algorithm, will be
subject to statistical variations due to the stochastic sampling
strategy. The spread of MMAP values of the number of
frequency for the pulse is shown in Table 4. The results
indicate that for 80% out of 100 replications of the estimation
algorithm, the estimated number of frequency component
is 8 for the measured MB response, which perhaps is
not immediately obvious from the DFT in Figure 3(b).
Moreover, the correspondingly estimated frequency values
are presented in Table 3. These estimates are given with both
means and standard deviation (SD) values.

5. Discussion and Conclusions

This paper introduces Bayesian spectral estimation for the
analysis of echo signals from ultrasound contrast MBs. It
assumes a parametric model and estimates model parameters
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Multiple pulse echo signal from MB

Pressure (Pascal)

57 58 59 6 6.1
1072

Time (seconds)
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(a)

Magnitude response in log scale

Frequency spectrum of the 4th
s pulse in the echo signal from MB
10 -
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10
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FIGURE 3: Display the MB echo with transmit frequency at 1.83 MHz in the time and the frequency domains. (a) Enlarged version of the 4th
pulse in the MB echo. (b) Frequency spectrum of the 4th pulse in the MB echo.

within a Bayesian framework. As the posterior density func-
tion cannot be solved in a closed form and the dimension of
the parameters changes, a reversible jump MCMC algorithm
is adopted to approximate Bayesian inference. This Bayesian
spectral estimation is also compared to traditional nonpara-
metric DFT estimation. With respect to measured ultrasound
MB echo signals, which usually have short-time duration
and high SNRs, Bayesian spectral estimation is able to
differentiate two closely spaced frequency components and
thus correctly estimate frequency numbers and their values.
Furthermore, these attributes detected using a parametric
method can lead to an extension to discriminating echo
signals from MBs and soft tissue, which is not within the
scope of this paper but is a prosperous field for MB behavior
analysis.

Despite the advantages of this newly introduced Bayesian
spectral estimation in a parametric framework, its limitation
lies in that the proposed signal model should fit the measured
ultrasound MB responses well. In this paper, rather than
being justified in a strict sense, the proposed model is only
demonstrated from the perspective of physical understand-
ing of MB characteristics. Therefore, more investigations of
model validation are needed in the future work. Moreover,
the computational complexity is increased when Bayesian
spectral estimation is used. As a result, Bayesian spectral
estimation applied to ultrasound contrast MB responses
reveals more characteristics in the frequency domain, which
may broaden the research field in ultrasound contrast agents.
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