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The digital X-ray detectors often generate stripe artifact in the sinogram which in turn creates ring artifact in the reconstructed
micro-Computed Tomography (4-CT), C-Arm CT, and most recent dental CT images. Such ring artifacts not only obscure image
details in the regions of interest but also mask the whole image with some artifacts. In this paper, novel techniques are proposed
for the detection and suppression of ring artifacts in the sinogram domain. As ring artifacts are manifested as edge creating stripes,
single or contiguous, in the sinogram, they are detected based on a set of specific conditions derived from the second derivative of
the sinogram and a new self-adaptive threshold computed from its first derivative. A new method for the detection of wide band
contiguous stripes using the mean curve and multilevel polyphase decomposition of the given sinogram is also proposed here. For
the correction of ring artifacts, novel variable window moving average (VWMA) and weighted moving average (WMA) filters are
proposed in this work. To evaluate and compare the performance of the proposed algorithm, various types of synthetic and real
u-CT images are used. Experimental results show that the proposed method can detect ring artifacts with high accuracy and thus

remove them more effectively without imparting noticeable distortion in the image as compared to other reported techniques.

1. Introduction

Computed tomography (CT) is an imaging technique capa-
ble of generating high-resolution three-dimensional (3D)
images of an object from two-dimensional (2D) X-ray
projection data or 2D slices from 1D projection data [1, 2].
Currently, CT devices are widely used to evaluate bone
specimens [3], for analysis of coronary artery walls and
cancer research [4]. It is also used to screen genetically
engineered small animals to investigate new drugs or therapy
[5]. Nonmedical researchers have applied this technology
to nondestructive testing. Modern high resolution CT
machines are nowadays equipped with digital X-ray detectors
(e.g., CMOS flat-panel detectors (CMOS-FPDs), or CCDs)
which often create ring artifacts in the reconstructed CT
images because of defective and/or miscalibrated detector
elements, and dusty or damaged scintillator screens. These

artifacts appear in y-CT, C-Arm CT, and modern dental
CT images in the form of a circle, centered at the center of
rotation of the system. They severely impair visualization and
quantification of anatomic and pathological features in the
regions of interest. Therefore, removal or at least significant
reduction of these artifacts is essential.

Severity of the ring artifact problem can be somewhat
reduced by using X-ray image intensifiers (XRII) instead
of FPDs. However, low signal-to-noise ratio (SNR) and
nonhomogeneous image quality across the output image
due to the convex input screen of XRIIs limit their use.
Therefore, C-Arm and u-CTs are still commonly equipped
with FPDs because of their several advantages over the XRIIs.
Despite their high sensitivity, these detectors, however, suffer
from pixel nonuniformity. Since the nonuniformity is often
fluctuating depending on the operating conditions (e.g.,
tube voltage and tube current), it has been very difficult



to remove ring artifacts from the CT images taken with
the FPDs. Though detector calibration schemes and built-
in white and dark image correction algorithms can reduce
the detector pixel problem to some extent, the ring artifact
problem cannot be avoided in the 2D radiographic projec-
tion data. Even a small imperfection produces ring artifact
in the reconstructed image. Ring correction algorithm as
a postprocessor is, therefore, indispensable while using the
digital X-ray detectors.

Several methods have been reported so far to suppress
the ring artifacts in CT images [6-16]. Ring artifact reduc-
tion without impairing image quality is still a challenging
problem for the researchers. Directly processing the ring
artifact corrupted image as reported in [6-8] is one way
which may be referred to as the postprocessing approaches.
While it may be tempting to detect and remove the artifact
in the image domain rather than the sinogram domain,
the extra artifacts inherently generated along with the ring
artifacts due to the filtered back projection reconstruction
procedure cannot be easily detected and removed by a signal
processing technique in the image domain. Since it is the
2D radiographic projection data, generally known as the
sinogram [1], which are actually corrupted, some reported
methods dealt with the raw sinogram, referred to as the
preprocessing approaches [10-16]. At early stages, flat-field
method was proposed in the literature [10]. This involved
multitime scanning through air prior to main scanning of
the object. Though the destruction of useful information was
checked in this method, expected amount of ring reduction
was not achieved [6]. Later on, a sinogram correction
technique using the original corrupted mean curve and its
smoothed version has been proposed in [11]. The moving
average (MA) filter is used to smooth the mean curve as it
is simple and efficient. However, the selection of the window
size is very crucial while using this method. A large window
may result in the blurring effect while a small window
results in weak filtering. Moreover, the correction technique
in [11, 12] is not effective for the compensation of varying
intensity sharp rings. As the median is better than the mean
at preserving the sharp details due to image feature, the
median filtering (MedF) method has been also used by the
researchers [12—14]. The median filter is particularly good
in removing sharp noise such as, shot noise or “salt and
pepper” noise, while preserving the edges. Thus the MedF
may be suitable for the reduction of isolated rings but not for
the clustered rings. The 2D wavelet-based method presented
in [13] has been designed to eliminate ring artifacts from
a cone beam CT image. As this technique is particularly
applicable to cone beam geometry, it requires modification
to implement and investigate its performance for fan or
parallel beam geometry. In [15], a frequency domain filtering
technique has been reported for the removal of ring artifacts.
The basic concept was to use a low-pass filter to suppress
the high frequency components resulted from the ring
artifacts. The filter cut-off frequency and order have to be
selected appropriately depending on the type and number of
defects in the raw projection data. Very recently a wavelet-
Fourier filter has been reported in [16] for the correction
of stripes in the sinogram. The performance of this method,
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however, significantly degrades when an image is particularly
corrupted by a sharp ring of varying intensity.

In this paper, we propose novel self-adaptive approaches
for the detection and correction of stripes in the sinogram
with a view to suppress ring artifacts in CT imaging. As it
is crucially important to detect stripes (both isolated and
contiguous) for the distortionless processing of the sinogram
data, we propose here a highly accurate method for the
detection of stripe artifacts in the sinogram responsible for
ring artifacts in the reconstructed image. Only the detected
stripes are then corrected using the new adaptive moving
average filters proposed in this work. The stripes causing
edges in the sinogram are detected based on derivative
property of the windowed sinogram, self-adaptive threshold,
mean-curve, and multilevel-polyphase decomposition con-
cept. To overcome the limitations of the conventional moving
average- (MA-) based schemes, the new variable window
moving average (VWMA) and weighted moving average
(WMA) filters proposed in this work are used appropriately
to correct both the isolated and contiguous stripes. The
elegance of the proposed iterative method is that it rarely
distorts any good pixel and the correction is only made where
the detection algorithm finds a fault.

The paper is organized as follows. Section 2 describes
the proposed new methods for the detection and correction
of stripes in the sinogram. The experimental results are
presented in Section 3. Finally, the paper concludes with
some remarks in Section 4.

2. Ring Suppression Method

In this work, we view the ring artifact removal problem
as equivalent to stripe error correction of the sinogram
data. Unlike the conventional approaches where the ring
generating artifact is removed from the sinogram using
a normalization technique [12], we propose here a new
stripe detection and correction scheme that detects the
stripe generating detector elements first and then corrects
their responses for all angle of view dynamically based on
the degree of corruption. The proposed method therefore,
consists of two parts: stripe detection and stripe correction.

2.1. Stripe Detection. The isolated ring artifact in the recon-
structed image is due to a stripe artifact in 5(9, n) for all
views 0. These stripes create discontinuity in the projection
image. The first derivative of the data characterizes these
positions by showing relatively larger values as compared
to their neighborhood. Therefore, the sum of the first
derivatives, for all 8, will show two consecutive larger spikes
of opposite polarity in a row around a detector if it creates
a stripe. To identify such transition points, the derivative
of this sum of the first derivative will be more useful since
it will give a much larger value than its neighborhood at
these points. To make a decision if a detector creates a
stripe, a measure of this second derivative is compared with
a threshold calculated from the responses of the neighboring
detector elements.

A frame-based novel technique will be developed here to
determine if a particular detector is creating a stripe. This
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is because a threshold determined from the whole sinogram
is not effective in identifying only stripes from the rest of
the detector responses. As depicted in Figure 1, a global
threshold will either fail to detect all stripes or will include
false positive due to large spikes from the image details.
The sinogram P(8,n) is, therefore, divided into overlapping
frames 5k(9, n) of size (n, X ng ), where n, is the total number

of views, n£ is the frame width (<ny, the total number of
detectors), and the subscript k refers to the kth frame with

nk being the center of the frame. We choose ng = 9 and
the displacement between the two successive frames as one
pixel width across the detectors. To make the frame image
independent, we normalize each frame to bring the data in
the range [0,1]. Now, the first and second derivatives of the

normalized frame ﬁk(e, n) can be calculated as
z ~
Di(6,n) = > (~1)'auPe(6,n - ), (1)
1=0

where z denotes the order of the derivative and

1, ifl=0,z
az = . (2)
z,  otherwise.

The sum of the derivative, for z = 1,2, of the kth frame
of the corrupted sinogram and an appropriately determined
threshold from D} (6, n) will be utilized to identify the stripe
creating positions. The sum is given by

Di(n) = > Di(0,m), z=12n=12..n). (3
0

Now, to ascertain if the nith position of the frame contains a
stripe, we check the following three conditions if

(1) [D;(nx + D)| > Dy (n),
(2) Dy (e +1)| > Dy (i +2)1,
(3) Dy (e + 1)| = T,

where Ty is the threshold determined from the responses
of the detector elements of the kth frame. If the above
conditions are jointly satisfied, then the nth position of
the kth frame contains a ring generating stripe. Shifting the
frame by one detector position in each step, all the isolated
stripes can be detected.

The question now is how we can determine a self-
adaptive threshold (Ty) that can adapt itself with the
variation of the sinogram contents. It may be necessary that
the sum of the second derivative be compared with a very
small threshold to isolate the spike related to a stripe in the
sinogram for a particular detector. In another occasion, to
identify a stripe a larger threshold value may be required
because of the change in image information. In Figure 1,
such 4 places are shown where the spikes are located. We
see that, among the ring generating spikes, one of them (3rd
ellipse from the left) is relatively smaller than the spike due
to the image details (2nd ellipse from the left). To isolate
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FIGURE 1: A cropped view of the sum of the second derivative of the
whole sinogram (P(8, n)) versus detector position—explaining the
necessity of a local threshold instead of a global one.

the third one, any global threshold will detect some of the
good detectors as faulty detectors. Therefore, the concept
of a global threshold is not suitable for the underlying
problem of discriminating a faulty detector from a good
one. Instead, we can take the neighborhood’s difference
information (D} (6, n)) of a certain detector to formulate a
local and frame-based threshold.

If the center detector of the kth frame, ny, causes a
stripe, then in the first derivative (D,l(@, n)) of the detector
responses, nx and ng + 1 positions will contain error.
Therefore, to determine a threshold we construct a subframe
excluding the erroneous lines from D,l(@, n). We also exclude
ng — 1 line for symmetry consideration. The modified frame
or the subframe is then given by

D} (6,1) = DL(6,n)

tCn (4)

n#nk,nfnktl’

Ideally, when a subframe is very homogeneous, one can
define a threshold using the mean of IDIiS(G, t)|. But from
practical considerations, we propose to use the mean of the
absolute value of the dominant polarity group of Dj,(6,t)
instead. Two quantities o, (j) and aj,(j) representing the
positive and negative values in the first derivative, Dj,(6, 1),
respectively, can be calculated as

af(j) = Di(6,t) >0, jcCl0,(n, x1)]. (5)

ar.(j) = Di(6,6) <0, jc[0,(n, x1)]. (6)
For the regions from where the image information just starts
(e.g., the first and last few detectors) in the sinogram and
where a faulty detector is present in the neighborhood region
(Figure 2(c)), the absolute mean as well as the population of
the dominant polarity group in D} (6,t) will be positively
biased and thus has the possibility to overestimate the
threshold defined in (9) using the dominant one between
the two. In order to reduce the bias in our threshold
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F1GURrE 2: Examples of stripe detection using sinogram frames. a(i)—f(i) show some typical frames of a CT sinogram and (a)(ii)—(f)(ii) show

Iﬁi(n)l and the corresponding threshold Ty (dotted line). Dynamic nature of Ty is evident. (a) Moderate stripe at the center. (b) No stripe
at the center but one just before it. (c) Moderate stripe at the center but a very strong stripe in the neighborhood. (e) Very weak stripe at

the center. (e) No stripe in the frame. Iﬁi(n)l may be misleading but the dynamic threshold confirms no stripe here. (f) Three consecutive
stripes (887-889) where Ty is unexpectedly low and Iﬁi(n)l are misleading. e shows the point of interest in each figure.

computation, the following statements are used to modify

the two quantities in (5) and (6):

o (7)

o (/)

o ()
L] oG if @, > std(ag () ),
=1 0 .
o, (7) ot (j)<Oxstd(a, ()’ otherwise.

if w, > [std (i) |

o (7) otherwise,

loges () 1<8% Istd(age, ()1

(7)
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where @, and @, are the mean of |a(j)| and of(j),
respectively, and § is a constant. The ratio of the number of
elements in the dominant class of polarity in D} (6, t) to that
in the subframe is denoted by fx and is given by

max| L (e, () ), L (5 () |
L(os () + L))

where L(-) is the length of the argument. What portion of

the subframe is occupied by the dominant class of polarity

is indicated by fk. In this work, the dynamic threshold is
calculated as

(8)

k=

/-
Tk =y X Kpes

X B X 1y, 9)
where @7~ indicates the mean of either of (j) or |ag,(j)l
and is denoted by either @, or @. The multiplication of
Bi by the total number of views n, gives on average the
population of the dominant class of polarity in a detector
position for all 6. The constant y = 2 is chosen, because
a parameter computed from the first derivative is used to
define this threshold but it is compared with the sum of the
second derivative which has essentially the double magnitude
in an edge. The threshold as defined above is expected to
vary according to the neighborhood information content
and hence it will, in general, be different for every frame.
The insight of the stripe detection algorithm developed
here and the performance of the self-adaptive threshold
can be better understood from the examples presented in
Figure 2. This figure explicitly shows the value of the dynamic
threshold obtained for different characteristic sinogram

frames along with Iﬁi(n)l. Therefore, all the three stripe
determining criteria can be checked from this figure. The
arbitrarily selected frames contain strong, moderate, weak,
and very weak stripes at the center along with stripes at
the neighborhood. Frames containing no stripes are also
considered. In all the cases of Figures 2(a)-2(e) except for
Figure 2(f), the proposed algorithm successfully detects if
there is any ring generating stripe at the center of the frame.
It is to be noted that the stripe detecting threshold is varying
widely even in these few selections. This justifies that a thumb
rule-based threshold or a global threshold cannot be even a
reasonable choice.

The new stripe detection algorithm presented above
is derived based on an assumption that when the center
position, ny, of the kth frame contains a stripe, there exits
no stripe adjacent to it. If this is violated, for example,
Figure 2(f), then all the stripes in successive frames may not
be detected by the algorithm. To enable detection of the
contiguous stripes, we propose here a combined technique
using the mean curve and polyphase decomposition of the
original corrupted sinogram.

The mean curve P(n) of P(6, n) can be obtained as

Bln) = %Zﬁ(@,n). (10)
0

The mean curve P(n) is normalized to make its magnitude
range image independent and also to make the threshold

determining constraint global. It is to be noted that the con-
tiguous stripes in the mean curve create wide peak/trough.
By smoothing this mean curve, that is, removing the high
frequency components, we can use it to locate them. We use
the moving average method to smooth the mean curve as

1
285+1

N
> P(n—m), (11)

m=-S§

ii(ﬂ) =

where ﬁs(n) is the smoothed version of }N’(n)Nand S is the
span factor. The difference between P(n) and Ps(n) is called
difference curve and is denoted as Py(n). Larger span factor
oversmoothes the mean curve and creates some false band
in the difference curve, where smaller span factor treats
wide peak/trough as an image detail and therefore cannot
differentiate the bands. To minimize both effects, we choose
S = 2 as a span factor. Then by choosing a threshold #, we
can detect the wide peaks/troughs from the difference curve.
The set of the detector elements which satisfies the condition,
Py(n) > 1, is treated as the band ring creating elements
and is denoted by B,,. Here,  is an image-dependent
threshold and is observed to vary in the range of 0.005~
0.006. From Figure 3(a), we observe that, the best possible
width represented by the smooth mean curve is not the
actual width of the trough. Moreover, there are three possible
bands (peaks/troughs) in the difference curve as shown in
Figure 3(b). Therefore, some false positive may be included
in By, depending on the threshold chosen. Thus B, is not
fully reliable for bandwidth determination and truly ring
creating band identification.

To resolve the ambiguities in B,,, we propose here a new
idea using the polyphase decomposition of the sinogram:

Prg(6,n) = P(8,nM +q — 1),
(12)
O<sn=<ng—1, 1=<q=<M,

where ﬁMq(O, n) is the qth polyphase component of the

M level decomposition of 13(9, n). Since all the contiguous
stripes can be considered to be isolated stripes in these
polyphase components, the previous isolated stripe detection
algorithm can be used for these subsequences. A sinogram
may contain contiguous stripes of different bandwidths.
Lower level decomposition is effective for smaller bands
and higher level decomposition is effective for wider bands.
Therefore, we take the advantage of multilevel polyphase
decomposition. Finally, a string named B, of unique stripe
generating detector positions is formed from the outcomes
of the single stripe detection algorithm applied to }N)Mq(G, n),
M = 2,...,Mmna, 1 = q < M. But edges between the
background and object of the original sinogram may create
stronger edges in the polyphase components. They create
large values in second derivative and hence may also be
detected. Therefore, B, represents a group of stripes of which
all may not be truly corrupted contiguous stripes. But in B,
the ranges of the truly corrupted contiguous stripes represent
the actual widths.

Now, combining B,, and B;, we can accurately identify
the actual band positions and their widths. B = B,, N B
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FIGURE 3: Detection of contiguous stripes using the mean curve. (a) A cropped mean curve and its smoothed version. (b) Difference curve.

represents the common set of detectors of B, and B; and
we consider them as truly band ring generating detectors.
Then for every value of the set B, the corresponding range
of the contiguous stripes is determined from B;. Finally, the
unique stripe positions for both the single (as determined for
M = 1 in the previous stage) and contiguous stripes are the
total corrupted locations in the sinogram.

2.2. Stripe Correction. The error-free response of stripe
generating detector elements can be estimated using its
neighborhood information. In this work, we propose new
1D dynamic moving average filters for the estimation of
the defective pixel response. The filter corrects the defective
pixels for each view one by one iteratively. The responses of
the good detectors are not changed and thus the process is
called distortionless. New variable window moving average
(VWMA) and weighted moving average (WMA) filters are
formulated here to make a correction. The VWMA and
WMA have relative advantages and we exploit the merits
of both to remove artifacts. For each view n, every faulty
detector element is corrected iteratively according to the
value of an index called “central difference”. The windowed
central difference of P(0,, n), where P(60,,n) is the 1D slice of
the sinogram along the view #,, is calculated as

AP(6,,7)

- fLZ |[2P(6), 1) = POy, — k) = PO+ B) ]|

n=n
k=1

(13)

where | - | denotes the absolute value. Here, the central
difference is calculated at the corrupted locations (#) only.
The window span factor (L,) indicates how many adjacent
detectors in a particular view are to be taken. To correct

a defective pixel instead of taking just two adjacent pixels,
we consider more pixels depending on the degree of error
or the extent of deviation for making a better correction.
A weak fault can be corrected using the adjacent 2—4 pixels
but a strong fault needs more neighborhood information.
Therefore, the concept of variable window MA is expected to
be useful. However, too large a window size according to the
degree of deviation is not a good choice for correction since
too further pixels information will be involved then. Instead,
we keep the window size small even for the strongly deviated
pixels but attach some weights to the moving average, that is,
give a faulty location the least weight (we use zero weight,
that is, no information will be taken from the defective
pixel) and the neighborhood pixels in a particular view
relatively larger weights. Such a scheme will eliminate the
blurring effect as observed in the conventional MA filters. A
factor deciding about the extent of smoothing can be chosen
to be proportional to the windowed central difference. A
parameter Ay is calculated as

i = K x AP(6,,7), (14)

where K is a proportionality constant and our experiments
suggest that it may be chosen to be K = 220. This parameter
is selected so as to give a larger value of A;, where significant
deviations are found. A weighting function is to be defined
to meet the requirement stated above. Here, an exponential
weight function is chosen for that purpose:

W) i g,
w(n) = (15)
0, otherwise.

This weight function has the advantage that it gives the
highest weight to the closest pixel within the window by
virtue of A3 > 1. For such a value of A;;, we use the fixed
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window WMA filter as defined by (17). But in places where
the degree of deviation is not so high, the VWMA is used.
Thus for A < 1, we use the VWMA as described by (17) and
set Ay = 1 to attach uniform weight to the VWMA. The span
factor Ly for making the correction is chosen according to the
central difference because the magnitude of AP(n,,n)l,_;
indicates the degree of corruption:

Lf lfllﬁ > 1,
Ly = ~ (16)
round[] x AP(GV,%)] iy <1,

where Ly is the fixed window span factor and in our work it is
set to 3 for isolated rings and Ly = ceil(band ring width/2) +
1 for band rings, and J is a constant and was determined
experimentally to be J] = 660. For every faulty detector
position in a particular view, the correction is made as

sz;f,” Ph=1(6,, n)w(n)

= it Az > 1
L n b
N Soriln, win)
PH(6,,7) = o
— P1(6,,n) ifdz <1
h— Z vy n >
2L+ L
(17)

where the iteration number is indicated by h, and AL
and L' are weighting factor and span factor, respectively,
obtained from P"~!(6,,n) at the detector position j = 7.
Here, for the first iteration P°(8,, j) = P(6,,n) and L% can be
chosen any integer value from 3 to 9. The corrected sinogram
after the end of iterations, , is denoted as P(6, n). Multistage
implementation of the ring suppression (detection and
correction) algorithm is possible by treating this corrected
sinogram (P(6,n)) as corrupted sinogram (P(6,n)) and
repeating the whole process again. The advantage of the
multistage algorithm is to identify and remove any correction
algorithm generated secondary edges in the sinogram.

3. Experimental Results

The schematic of a y-CT system for acquisition of the
projection or sinogram data of a desired object is shown in
Figure 4. The test images were acquired with a home made
micro-CT which consists of a flat-panel detector (C7943CA-
02, Hamamatsu, Japan) and a microfocus X-ray tube (L8121-
01, Hamamatsu, Japan). The microfocus X-ray source is a
sealed tube with a fixed tungsten anode having an angle
of 25° against the electron beam and with a 200 ym-thick
beryllium exit window. The emitted X-ray beam span angle
is about 43°. The source has a variable focal spot size from
5um to 50 ym depending on the applied tube power (Watt
or kVp x mA). The maximum tube voltage and tube current
are 150 kVp and 0.5 mA, respectively. The microfocus X-ray
source has been operated in a continuous mode with an
Al filter with a thickness of 1 mm. The flat-panel detector
consists of a 1216 x 1216 effective matrix of transistors
and photodiodes with a pixel pitch of 100 ym and a CsI:T1
scintillator. The Cs'Tl has a columnar structure with a

Rotation

Rotation

Micro-focus
X-ray source

X-ray tube
controller

~  Flat-panel
Object detector

Processing
computer

FIGURE 4: A schematic of a y-CT system for acquisition of sinogram
data.

typical diameter of about 10 gum and a thickness of 200 ym.
A computer-controlled rotating system was adopted in the
object holder to achieve a cone-beam mode scan in the
micro-CT. The precision of the rotational motion is 0.083°
which allows the number of views to be larger than 4000.
The data are contribution from Department of Biomedical
Engineering of Kyung Hee University, Korea.

The performance of our algorithm is first tested using
synthetic images and ring patterns. This facilitates the
use of an objective index-, for example, peak signal-to-
noise ratio (PSNR), based evaluation of an algorithm. To
demonstrate quantitative performance, computer-generated
various random ring patterns of different strengths (Ring-1—
Ring-6) were added to the test images Image-1 and Image-
2 sinograms so as to obtain the corrupted sinograms. The
index PSNR is defined as

2
PSNR = 1010g<NfSE>dB, (18)

where I is the peak intensity of the clean image and it is
1 for an image normalized in the range [0,1]. The mean-
squared error (MSE) between the images I(m, n) and I.(m, n)
is calculated as

Nl Nz
_ 1 . 2
MSE = NX N, mzzmgl[l(m,n) I.(m,n)]", (19)

where N; and N, are the number of rows and columns in the
input images, respectively. For the wavelet-Fourier method
wname = db42, L = 4, and ¢ = 3 were chosen to correct
these synthetic images. The performances of the proposed
and wavelet-Fourier [16] methods are shown in Table 1. As
can be seen, the PSNRs of the wavelet-Fourier method are
significantly lower than those of the proposed method. This
implies that our method can remove rings more efficiently
with lesser distortion imparted to the corrected images.
Experimental test is now performed on various real
images (e.g., small animals, cow bone, trabecular bone, elec-
trolytic capacitors, and phantoms) containing both isolated
and band rings. These rings are created by both miscalibrated
and defective detector elements as shown in Figure 5. The
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FIGURE 5: Various types of sinogram data investigated by the proposed algorithm. Cropped view of the sinogram showing (a) strong and
light defective detector elements along with a miscalibrated one, (b) isolated miscalibrated detector element, (c) band of detector elements

where both defective and miscalibrated detectors are present; (d), (e),

performance of the algorithm is also tested when the stated
types of detector elements are present in a contiguous
fashion. The maximum width of the band ring considered
is 15 pixels (in case of cow bone, Figure 7(h)).

Since the corrected image quality much depends on the
accuracy of the detection process, there should be some
evaluation parameters by which we can measure the strength
of a detection algorithm. We choose the parameters like
sensitivity (Sn), specificity (Sp), and accuracy (Ac) for this
purpose. The definitions of these parameters are given by

S Detected true negative
n = -
Actual true negative

X 100%,

_ Detected true positive
Actual true positive

X 100%,

and (f): plot of corresponding detector element responses.

Ac = Detected true negative + Detected true positive
Actual true negative + Actual true positive

X 100%,
(20)

where the actual true negative means the number of actual
faulty detectors and the detected true negative is the number
of detected faulty detectors. In the same way, the actual
true positive and the detected true positive refer to the
actual number of good detectors and the detected number
of good detectors, respectively. The actual true positives are
determined by visual inspection of the projection data.

The reconstructed image quality depends much on
sensitivity as well as specificity. To ensure a ring artifact
free image, the sensitivity should be 100% and to ensure
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(a) (®)

() (d)

(®) (h)

FIGURE 6: Reconstructed original images corrupted by ring artifact ((a): Water phantom, (c): Contrast phantom, (e): Electrolytic capacitor-1,
(g): Electrolyte capacitor-2) and the corresponding ring corrected images using the proposed method ((b), (d), (f), (h), resp.).
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(®)

(h)

FIGURE 7: Reconstructed original images corrupted by ring artifact ((a): Rat chest, (c): Rat abdomen-2, (e): Trabecular bone, (g): Cow bone)
and the corresponding ring corrected images using the proposed method ((b), (d), (f), (h), resp.).
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(e)

FIGURE 8: Reconstructed images of Rabbit Bone with an Implant from the corrected sinogram using different methods. (a): Original image,
(b): Wavelet-Fourier method, (c): MA method, (d): Median method, and (e): Proposed method.

a distortionless image it requires 100% specificity. The
accuracy will be 100% if both the sensitivity and specificity
are 100%. Table 2 shows these parameters computed for
various images. It is clear from Table 2 that except for two
images our proposed algorithm achieves 100% sensitivity,
where the specificities and accuracies for most of the images
are close to 100%. Overall, the proposed method can be
regarded as a highly accurate scheme for the identification
of ring generating detector elements.

Next, we present results of the proposed correction
algorithm and compare its performance with other reported
techniques. Since for real images (having no reference image)
it is hard to find a suitable objective index, we prefer
the visual inspection method for quality evaluation. The
original phantom and capacitor images with ring artifact
and their corresponding corrected images using the proposed
method are shown in Figure 6. And the original small
animal (live rat) and cow bone images corrupted by ring
artifact and their corresponding corrected images by the
proposed method are presented in Figure7. It is to be
noted that the original images are corrupted by both single
and band rings. As can be seen from Figures 6 and 7,
all the reconstructed images after sinogram correction are
clearly ring-free and there is no visible additional distortion
imparted by the proposed algorithm. Figures 8 and 9 show
the original ring corrupted (Figures 8(a) and 9(a)) and the

enhanced images by the wavelet-Fourier (Figures 8(b) and
9(b)), MA (Figures 8(c) and 9(c)), Median filter (MedF)
(Figures 8(d) and 9(d)), and the proposed (Figures 8(e)
and 9(e)) methods. The results presented in these figures
show that except the proposed method none of the other
algorithms can remove rings effectively from the original
images. In the wavelet-Fourier-based algorithm [16], the
performance is significantly degraded when an image is
corrupted by defective stripes (dead cell detector). This
algorithm performs all the filtering processes on the vertical
coefficients of 2D wavelet. Due to the presence of strong
defective stripe in an image, the coefficients of horizontal
and diagonal detail bands of 2D wavelet analysis contain
stripe information and no filtering procedure is suggested to
remove this stripe information from these two detail bands.
This method also fails in designing an appropriate Fourier
domain filter to eliminate the defective stripes from the
coefficient of vertical detail band. Another weak point of this
method is that as it processes the sinogram image in the
wavelet and Fourier domain, therefore, the inversion process
after the correction in wavelet and Fourier domain affects
the whole image pixels, both corrupted and uncorrupted
ones. Therefore, it is not an optimum method for the
removal of ring artifacts from the FPD-based CT images.
Moreover, this algorithm contains three tuning parameters
and the best result of an image can be found by an optimum
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(d)
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FIGURE 9: Reconstructed images of Rat Abdomen-3 from the corrected sinogram using different methods. (a): Original image, (b): Wavelet-
Fourier method, (¢): MA method, (d): Median method, and (e): Proposed method.

selection of these parameters. On the contrary, in case of
our algorithm the threshold is adaptive with the variation
of the information content in a frame. In the MA method
[11], the span factor may be varied (in Figures 8(c) and 9(c),
the span factors are 4, 5, resp.) to produce the best possible
result. In MedF method, the window length is fixed (e.g.,
15 was used for both in case of the results presented here),
whereas in the VWMA and WMA methods the window
size and weighting factor are self-adaptive according to the
degree of error introduced. Moreover, in strict sense, there
is no detection algorithm in the MA and MedF methods
and the correction is done using the normalization approach
[12] with the normalizing factor obtained from the original
and corrected mean curves. Therefore, the MA and MedF
methods cannot eliminate rings with varying intensity as
evident from Figures 8 and 9. The beautiful results of the
proposed technique is due to the accurate detection process
and the smart correction procedure that ensures different
level of correction at different views even at a single detector.

4. Conclusion

This paper has dealt with a novel ring artifact suppression
method from the images of digital X-ray detector-based CT
system. As the ring artifacts in the reconstructed CT image
are manifested as vertical stripe artifacts in the sinogram,

TaBLE 1: Performance comparison of the two methods in terms of
PSNR.

. . PSNR in dB
Test image and ring
Input Wavelet-Fourier ~ Proposed
PSNR method method
Image-1 and Ring-1 09.5703 16.1429 36.6614
Image-1 and Ring-2 12.4786 19.1367 34.4324
Image-1 and Ring-3 14.0023 12.5946 36.5501
Image-2 and Ring-4 15.8423 15.3245 36.5782
Image-2 and Ring-5  14.3748 19.3332 37.7361
Image-2 and Ring-6 11.8517 22.2354 35.7955

the proposed method has dealt with the sinogram data for
the detection and correction of the ring artifacts. A highly
accurate scheme for the detection of ring causing stripes has
been developed in the paper based on the derivative property
of the corrupted sinogram data, self-adaptive threshold,
mean-curve, and multilevel polyphase decomposition of
the corrupted sinogram. The correction of the so detected
faulty positions has been carried out using the new variable
window moving average (VWMA) and weighted moving
average (WMA) filters proposed in this work. Unlike the



EURASIP Journal on Advances in Signal Processing

TABLE 2: Accuracy of the proposed detection algorithm.

Performance Parameters for Ring Detection

Test Image
Sen(soi/';i)vity Spe(coi/(i:l)city Accuracy (%)

Capacitor-1 100.00 99.57 99.59
Contrast Phantom 100.00 99.92 99.92
Trabecular Bone 100.00 100.00 100.00
Cow Bone 97.17 98.65 99.60
Water Phantom 100.00 99.75 99.75
?;211’;;?0“ with 100.00 98.82 98.85
Resolution Phantom 100.00 99.75 99.92
Rat Chest 100.00 100.00 100.00
Rat Abdomen-1 100.00 100.00 100.00
Rat Abdomen-2 100.00 100.00 100.00
Rat Abdomen-3 100.00 99.92 99.92
Capacitor-2 91.67 99.59 99.84
All synthetic images 100.00 99.52 99.53

conventional moving average (MA) filter-based approaches,
the window size for the VWMA or the weight for the WMA
is determined dynamically in proportion to the degree of
error in the response of a detector element. Therefore, the
blurring effect is not observed using these filters. As the
intensity of the artifact may vary in a detector, the correction
filter has been operated on every faulty detector position
to correct every pixel adaptively, unlike the conventional
mean curve-based normalization technique. The elegance
of the proposed method is that it does not handle any
detector position that is not detected in the detection process.
Therefore, no distortion is introduced by the operator in the
good detector positions. The performance of the proposed
algorithm has been tested and compared with other reported
algorithms using both the synthetic and real CT images. The
synthetic image were used to measure the detection accuracy
of the proposed algorithm and to observe comparative
performance using an objective index. The experimental
results on ring generating stripe detection accuracy and
ring removal efficacy on various types of synthetic and real
CT images with different ring patterns have demonstrated
that the performance of the proposed method is highly
satisfactory. The comparative results have also revealed that
the quality of the corrected reconstructed images by our
method is significantly better than the comparing methods
in this paper. The proposed ring suppression technique is
particularly strong for the correction of fully and partially
defective detector responses and is relatively weak for the cor-
rection of miscalibrated detector responses. Classifying ring
artifacts and developing class adaptive correction schemes
are the topics for future research.
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