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Sparse representations of sequences facilitate signal processing tasks in many radar, sonar, communications, and information
hiding applications. Previously, conditions for the construction of a compactly supported finite Zak transform of the linear FM
chirp were investigated. It was shown that the discrete Fourier transform of a chirp is, essentially, a chirp, with support similar
to the support of the time-domain signal. In contrast, the Zak space analysis produces a highly compactified chirp, with support
restricted to an algebraic line. Further investigation leads to relaxation of the original restriction to chirps, permitting construction
of a wide range of polyphase sequence families with ideal correlation properties. This paper contains an elementary introduction
to the Zak transform methods, a survey of recent results in Zak space sequence design and analysis, and a discussion of the main

open problems in this area.

1. Introduction

In this paper, we are concerned with the design and analysis
of perfect polyphase sequences. A complex-valued sequence
is polyphase when it has constant magnitude. A sequence
is perfect when it has ideal correlation properties; that is,
when it has zero out-of-phase autocorrelation and minimum
cross-correlation sidelobes. A complex-valued sequence is a
perfect polyphase sequence (PPS) when it is both polyphase
and perfect. The design of PPSs has a long history, with
deep connections to several branches of mathematics and
engineering. While it is not possible to give a full account
of this history here, we will remark on a few landmark
developments. For a more extensive treatment of this subject
the reader is referred to [1-3].

Some of the fundamental mathematical ideas underlying
sequence design can be traced back to the work of Gauss on
the quadratic reciprocity law [4] and to the works of Sidon
[5], Erdos [6], and Littlewood [7] on certain polynomials
with integer coefficients. One common theme in these
otherwise rather diverse works is the focus on sequences that

contain, in a certain sense, the least amount of redundancy
[8, 9]. However, these works have not been noted for their
relevance to engineering applications until much later, when
sequence design became a well-established subdiscipline
of both radar and communications. This process started
some fifty years ago, after the publication in 1953 of
Woodward’s book Probability and Information Theory with
Applications to Radar [10], which for the first time brought
attention to sequence design as an engineering problem.
Subsequently, many important results have been obtained. In
1960, Klauder et al. published the seminal paper “The theory
and design of chirp radar” [11]. In the next several decades,
the utility of a family of PPSs in communication systems
was recognized and many new families were proposed: see,
for example, [5, 8, 12-19]. With the recent advances in
digital electronic systems, these families could be realized in
hardware and used in advanced signal processing tasks, such
as the design of multibeam radar waveform sets for complex
scene interrogation [20], multiple-user interference rejection
[21], low probability of detection schemes [22], and spread
spectrum multiple access communications, watermarking,



and cryptographic systems [1, 23]. These efforts resulted,
among others, in improved SNR, better clutter rejection,
more efficient bandwidth allocation, and the design of new
schemes for hiding information. The work in these areas
continues, and many new discoveries are being made in both
theoretical and applied domains. However, it is a testimony
to the difficulty of this field that despite great many efforts
undertaken over the last fifty years, the basic question of
how to design a PPS remains substantially unanswered
[24].

In this paper, we attempt to address the sequence design
problem in Zak space. This choice requires an elucidation.
One of the key properties of a PPS is that its discrete
Fourier transform (DFT) is also polyphase [2, 25]. This
means that both a PPS and its DFT are nonzero everywhere.
This property is sometimes referred to as biunimodularity
[12]. While biunimodularity can be desirable, since it facil-
itates, among others, the design of a low-power and large-
bandwidth radar [26], it makes the analysis of signals difficult
[27]. To address this problem, it is useful to consider PPSs on
a time-frequency plane. By back-projecting the intrinsically
high-dimensional PPS onto an analysis space of a matching
dimension, such as a time-frequency space, one can obtain
a sequence representation that is highly localized in that
space. This localization facilitates many sequence analysis
tasks, including parameter estimation, noise and interference
rejection, and detection. As an additional benefit, transfer-
ring the analysis to a higher dimensional space avails a host
of geometric techniques that are often more effective and/or
efficient than one-dimensional algebraic computations.

The general idea of casting sequence design in a time-
frequency setting is not new. The analysis of the canonical
PPS—the LFM chirp—in the intermediate spaces was first
suggested over forty years ago in the context of radar by
Lerner [28]. Since then, many time-frequency settings for
chirp signal processing have been proposed [29]. The best
known examples include frameworks based on the Wigner
distribution [30], the spectrogram [31], wavelets [32], and
the fractional Fourier transform [33, 34]. Here, we describe
an alternative approach based on the finite Zak transform
(FZT). The finite Zak space approach is advantageous for
several reasons. First, the Zak transform is closely related
to the Fourier transform, and, therefore, Zak space analysis
is a natural extension of Fourier space analysis. Second,
since the Zak transform is linear, there are no cross-terms
that occur in the quadratic time-frequency representations,
such as the Wigner distribution. Third, the Zak transform
does not require the use of a “window” signal, which often
increases complexity and sometimes impacts the stability of
the computation [35].

In prior work, we explored the utility of the Zak
transform for PPS design focusing initially on the finite
LFEM chirp. It was shown that the DFT of a finite chirp
is, essentially, a finite chirp, with support identical to the
support of the time-domain sequence [36]. In contrast,
the Zak transform produces a compact chirp image, with
support restricted to an algebraic line [27]. Further research
led to the relaxation of the original restriction to chirps,
permitting the design of more general polyphase signals with
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ideal correlation properties [25]. The main results of the
investigation, closely associated with these findings, include:

(1) closed-form expressions for the DFT and the FZT
of the linear FM chirp, parameterized by chirp rate,
carrier frequency and signal length,

(2) construction of Zak space sparsity conditions for
the linear FM chirp and rules for chirp parameter
estimation and chirp waveform recovery,

(3) design of large collections of new waveform sets
with good auto and cross-correlation properties that
include finite chirps, Zadoff-Chu sequences, and
generalized Frank sequences as special cases,

(4) a new time-frequency space framework for the
construction of PPS sets,

(5) a new time-frequency space framework for the
analysis of chirps and chirp-like radar waveforms.

The last three results rely, in part, on the discovery that the
Zak space representation of a PPS can be expressed as a com-
position of modulation and permutation operators acting on
the canonical chirp sequence. This is an important result.
Apart from aiding the design of “ordinary” PPSs, decoupling
modulation and permutation can also be used for other
purposes, such as the design of almost perfect sequences and
perfect sequences with additional special properties.

Part of this work has been described in the Springer book
[37] and in IEEE journals [25, 27, 36]. These presentations
were written at a relatively advanced level in that they used
concepts from both number theory and group theory to
derive certain key results. The discussion in this paper is
both broader in scope and more elementary. Following a
brief introduction to the Zak transform calculus, we discuss
the special relationship of the FZT with the DFT, the
geometric character of the Zak space correlation, the Zak
space implementation of the matched filter, the construction
of the canonical PPS family, the perfect chirp set (PCS), and
the generalizations of the PCS model. We conclude with a
review of the main open problems in Zak space PPS design.

An unusual feature of this presentation is the joint
focus on radar and communication applications. We will
show that time-frequency analysis of a single classical
radar waveform—the LFM chirp—leads to more general
results that are relevant to all polyphase sequences. While
many of these sequences are traditionally associated with
communications applications, they can also be used in
radar. Similarly, the sparse and highly structured support
of PPS waveforms in the time-frequency space can be
used advantageously in both radar and communications
applications. These findings demonstrate that even though
historically sequence/waveform design in the two fields pro-
gressed largely independently, the theoretical underpinnings
are essentially the same, and hence a great deal of insight can
be gained from juxtaposing ideas and results.
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2. The Finite Zak Transform

Zak was the first to make a systematic study of the transform
that bears his name [38]. The Zak transform has several
applications in mathematics, quantum mechanics, and signal
analysis [35, 39, 40]. Here, we will state, without proofs, the
properties of the FZT that are relevant to our constructions.
For a more extensive review of Zak transform theory the
reader is referred to [41] and a chapter in [42].

The FZT can be thought of as a generalization of the DFT.
Therefore, a convenient way to describe it is to compare its
basic properties with the properties of the DFT.

Take x to be any N-periodic sequence in CV and set
er(j) := €™/t The DFT of x is

N-1

x(m) = > x(n)en(nm),

n=0

0<m<N. (1)

Suppose that N = KL?, where L and KL are positive integers.
Then, the FZT of x is given by
L-1

X1(j, k) = > x(k+rKL)e.(rj),

r=0

0<j<L, 0<k<KL

2)

It follows from (2) that computing X;(j, k) requires KL L-
point DFTs of the data sets

x(k),x(k+KL),...,x(k+(L—-1)KL), 0<k<KL. (3)

Like the DFT, the FZT is a one-to-one mapping. A signal
x can be recovered from its FZT by

L-1
x(k+rKL) = L7V Y X (j, k) e (—77),
j=0 (4)

0<r<L, 0<k<KL

Among the most fundamental properties of the FZT are
shifts. Take 0 < j < Land 0 < k < KL for the remainder of
this paper, unless indicated otherwise. The FZT is periodic in
the frequency variable and quasiperiodic in the time variable,
that is,

X (j+L,k) = X.(j,k), (5)
and
X1 (j,k+KL) = X1 (j, k)er(— ). (6)

A related property describes the FZT of time and frequency
shifts of x. Set y(n) = x(n—c) and z(n) = x(n)en(dn), where
0 <c¢<KLand 0 < d < L. Then, the FZTs of y and z are
given by
Yi(j,k) = Xi(j k= c) , (7)
and
Z1(j, k) = X, (j +d, k)en(dk). (8)

The properties (5)—(8) follow directly from (2). The rela-
tionship of the FZT to the DFT and the Zak space cross-
correlation formula are discussed separately in Sections 4 and
5, respectively.

3. The Linear FM Chirp

One of the most ubiquitous waveforms in radar is the linear
FM chirp. In this section, we state several key results on
chirps, including the chirp discretization, the finite support
condition, and the FZT formula. These results will be used
later to construct more general sequences with optimal
correlation properties.

Define the linear FM signal, or the continuous chirp [11],
by

x(t) = " 2mib 520, 0<t<T, 9)
where T is the chirp time duration, B is the chirp bandwidth,
a = B/T is the chirp rate, and f is the carrier frequency, a, f3,
T, and B € R. Choose the factorization N = KL?, L, KL €
Z*. The sequence

an?
x(n) = ep2 BN er(bn), a,beR, a#0, (10)

is called the discrete chirp, where a = a(T/KL)* is
the discrete chirp rate and b = B(T/KL) is the discrete
carrier frequency. To compactify expressions, we will use the
following normalized chirp parameters, @ = aK, a = aK?,
and b = bK.

We impose two conditions on the discrete chirp. First,
to apply the Zak space techniques, we require that x(n) be
periodic with period N, that is,

x(n+N) = x(n). (11)

Since
_ al? -
x(n+ N) = x(n)e(an)e BN +0bL |, (12)
the condition (11) is satisfied if and only if
a (EL+2E)£ €z (13)
’ 2

Next, to facilitate Zak space processing, we impose the binary
support constraint on the FZT of x [27]. First, we need to
define a few basic concepts. X; has a binary support iff

A, ik X N Nk,
IXL(j,k)|={ k) € supp(Xi) © N X N (14)

0, else,

where A = [|X.]l2/v/48(XL) € R and $(X;) is the cardinality
of the support of X;. The binary support of X is called
minimal when §(X;) = KL. We call a periodic discrete chirp
having an FZT with a binary support a finite chirp.

Taken = k+rKL,0 < k < KL,0 < r < L. The chirp in
(10) can then be expressed as

—12 =2
x(k +rKL) = ey (“’2‘ +bLk +aLkr>e<a; + br). (15)



It follows from (2) that the FZT of x has a binary support if
and only if

=5
e(ar + br) =1, (16)
2
or, equivalently,
(a +22b) - (17)

Combining (13) and (17) leads to the Zak space condition
for the finite chirp.

Theorem 1. The discrete chirp is N-periodic and has minimal
support on the L X KL Zak transform lattice if and only if

— (= 7\L
a,a, (a+2b)- €1 18
a,a (a b) 5 € (18)
The next result follows directly from substitution.

Theorem 2. Set xi := ey(ak?/2+bLk). Then, the LXx KL FZT
of a finite chirp is

Lxy, ﬁk+j+a2—L+ELz 0(mod L)

X.(j, k) = (19)

0, otherwise,
provided (18) is satisfied.

We call the congruence specifying the support of the
FZT of a finite chirp an algebraic line. The availability of
chirps with highly structured Zak space support suggests
many applications. These include, among others, chirp rate
and carrier frequency estimation, chirp detection, chirp de-
noising, chirp unmixing, reduced complexity computation
of matched filters, and design of new sequence families with
good correlation properties. This paper addresses the last two
topics.

4. FZT Tessellation

Having introduced the FZT of a finite chirp, we can discuss
issues related to FZT support more concretely. At the core
of these issues is the close relationship between the DFT and
the FZT. This relationship plays a key role in both theory and
applications. In the latter case it leads, for example, to the
reduced complexity realization of the Gerchberg-Papoulis
algorithm [39]. In the former case it illuminates the structure
of Zak space computations and permits an assessment of
signal complexity. The purely computational aspect of this
phenomenon has been remarked on in Section 2: the FZT
arises formally from a sequence of DFTs performed on the
decimated data set, when appropriately organized in a form
of a L x KL array. The Zak space realization of a DFT pair
provides a complementary view. Let X; be the FZT of x and
Y1 be the FZT of the DFT of x. Write the DFT of x

N-1
x(m) = Z en(nm)x(n), 0=<m<N, (20)
n=0
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andsetn =k+rKL,m= j+sL,0<k,s<KL,0=<r,j<lL,
which leads to

x(j+sL) = Kil EeN[(k +rKL)(j +sL)|x(k +rKL).
e 1)
After extracting the FZT of x, (21) can be rewritten as
KL-1
x(j+sL) = k% exr(ks)en (jk) Xz (j, k). (22)

Formula (22) is readily seen as the inverse FZT of
en(jk)X1(j, k), that is,

Theorem 3.
KLeyn (jk) X1 (j, k) = Yr (=K, j). (23)

It follows from Theorem 3 that the FZTs of x and x differ
only by a ninety degree rotation and a complex factor
multiplication.

Still, another way to view the relationship between DFT
and FZT is by considering the range of values spanned by
the FZT tesselation parameter, L. When L = 1, then K = N
and the FZT is equal to the signal being transformed. When
L = N, then K = 1/N, and the Zak transform is equal to
the DFT of the signal. These two extreme cases are illustrated
in Figure 1, together with the canonical, L = +/N, choice
of the FZT. The FZT in Figure 1 is supported at L points
on the algebraic line ak + j = 0 (mod L), while both the
time signal and its DFT are nonzero everywhere [36]. The
effect of chirp support compression in the Zak space has been
investigated in depth in [27], and it was the main driving
factor for transferring many chirp signal processing tasks to
the Zak space [25, 37].

To consider the support of the FZT of a discrete chirp in
greater generality, recall from [25] the following relaxation of
(18).

Corollary 4. Take a = n/d, n,d € Z, (n,d) = 1. Then
$(X,) = dKL iff

a,2bL,bL + %L ez (24)

Figure 1 shows the canonical choice for the Zak transform
lattice parameter, K = 1. Other choices of K are possible,
provided N is sufficiently composite. A few of these choices
are shown in Figure 2; the associated tessellations parameters
are listed in Table 1. The tessellations a = 1/64, K = 64,
L=2,b=1/32,anda = 64,K = 1/64, L = 128, b = 2 are
not shown but they follow a similar pattern. The canonical
lattice yields the sparsest representation of the finite chirp.
As the FZT tessellation varies approaching either the time
or the Fourier representation, the support of the transform
becomes less sparse, and, as previously observed, becomes
nonzero everywhere in the two limits.
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FIGURE 1: Real and imaginary parts of a chirp (top two plots), its FZT (middle plots), and its DFT (bottom plots). Chirp parameters: a = 1,

K=1,L=16,and b = 1/4.

TaBLE 1: Parameters of chirps in Figure 2.a = 1,2 = K, N = 256,
and bL = 4 for all chirps.

a K L b 2b dKL
16 1/16 64 1 1/8 64
4 1/4 32 1/2 1/4 32
1 1 16 1/4 1/2 16
1/4 4 8 1/8 1 32
1/16 16 1/16 2 64

Is the canonical representation always the sparsest? This
is assured if the signal under consideration is a finite chirp
or one of its generalizations discussed in Section 7, but it is
not in many other cases. For example, for a chirp given by
N = 256, a = 4 and bL = 4, the most compact realization,
dKL = 8, is obtained for the choice of parameters a = 16,
K=1/4,L=32,and b = 1/2.

5. Zak Space Correlation

The cyclic cross-correlation of two N-periodic polyphase
sequences, x and y, is given by

N-1
z(n) = (yox),:= % Zy(m)x*(m -n), 0<n<N,
m=0
(25)

where m — n is taken modulo N. When y = x, the
cyclic cross-correlation is called the cyclic autocorrelation. For
computational efficiency the cyclic cross-correlation is often
realized in the Fourier domain. Take x, y, and z to be the
DFTs of x, y, and z, respectively. Then,

1

- —yx*. 2
z= X (26)

A sequence x satisfies the perfect autocorrelation property if

and only if
1,
(xox), =
0,

Furthermore, two distinct sequences, x and y, satisfy the
perfect cross-correlation property if and only if

n=0
(27)
otherwise.

)(yox)n} =N, (28)
Now, we can introduce the second main tool (after Theo-
rem 2) for the study of polyphase sequences in Zak space.
Take X;, Y1 and Z; to be the FZTs of x, y and z in (25),
respectively. Write

L-1

Z1(j,k) = D z(k+rKL)er(rj).

r=0

(29)

By (25), we have

ZL(j’k)
= KL-1L-1
= NZeL(rj) Z Zy(k +rKL)x*(I+sKL — k — rKL).
r=0 1=0 s=0
(30)
Rearranging the RHS of (30), we have
Z1(j,k)
| KL-1L-1 L-1
=5 2 2 yU+sKL) Y er(rj)x* (1= k) + (s = KL).
=0 s=0 r=0
(31)
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FIGURE 2: FZT magnitude of the finite chirp given by a = 1, N = 256, and bL =4 forK = 1/16, 1/4, 1, 4,and 16 (top to bottom).

Setting p = s—r and again rearranging the terms on the RHS
of (31) leads to

ZL(]>k)
1 KL-11L-1 L-1
=5 2 2elsp)yU+sKL) Y er(~pj)x* (I -k + pKL),
I=0 s=0 =0

(32)

which produces the Zak space correlation formula

Theorem 5.
= ' (33)

The computation of Z;, realized as a superposition of the
inner products of Y;, and X;, and parameterized by a shift
of Xp, is shown in Figure 3. Alternatively, the Zak space
correlation can be viewed as a collection of L KL-point time
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Ficure 3: Computation of the Zak space correlation of two finite chirps. To better illustrate the main idea, only the magnitude of FZTs is
shown in the plots. First row: Y;. Second row: cyclic shifts of X;, from X (j,k) to X;(j,k — 4). Third row: pointwise products of Y; and
cyclic shifts of X;. Fourth row: sums of the pointswise products in k. Fifth row: concatenation of the vectors in the fourth row makes up the

cross-correlation array Z;.

domain cross-correlations performed on frequency slices of
the Lx KL Zak space signals, X; and Y;. While the operations
proceed identically for arbitrary X; and Y, the sparse
support of Zak space chirps makes certain computations
unnecessary, which suggests the possibility of adapting the
correlation procedure to individual tasks and signals. This
possibility will be explored in the next sections.

6. Perfect Chirp Sets

The main application of Theorem 5 discussed in this paper
is the Zak space construction of PPSs. The construction
includes families of finite chirps and families of certain
more general sequences that are related to chirps. The next
several results specify perfect correlation conditions for sets
of finite chirps. This is followed by a construction of a
perfect sequence set. We begin with a statement of the perfect
autocorrelation condition for finite chirps.

Theorem 6. A finite chirp satisfies the perfect autocorrelation
property if and only if

(a,KL) = 1. (34)

A finite chirp satisfying condition (34) is called a bat
chirp. In the following discussion we will identify a collection
of bat chirps that additionally satisfy the perfect cross-
correlation property. We focus on the case K = 1, but
a more general construction is easily available. The first
result provides an explicit description of the FZT of cross-
correlation of bat chirps. This is a simplified version of result
described in [25].

Theorem 7. Take X;(j, k) to be the FZT of a bat chirp, and
consider the set

Br

= {XL(j,k) | K =1, L anoddprime, 1 <a<L, 2b € Z}
(35)

Take any two chirps y and x, with the chirp rates a, and
ay, a1 #a; (mod L), and the carrier frequencies by and b,.
Suppose that the Zak transforms of y and x, Yi(j, k) and
Xi1.(j, k), respectively, are in By. Then the Zak transform of the
cross-correlation of y and x is given by

aa ] o
Zks ——— | k+j=0(mod L),
Zu(jk) =17 [az—al Jri=0tmed D )
0, otherwise,
where
Zk=e¢e 5372 e (b k)
k = EN P L 3 >
_ _ ap 2 _ ap
O
a —aydg a; —aplp
— S 7
b3=b2+(b1—b2)[7 ,]>
a; —apdgp

and [a]; denotes a (mod L).

The next result states the perfect cross-correlation condi-
tion for bat chirps.
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FIGURE 4: FZT magnitude of PCS sequences for L = 17. b = 1 when @ is even, and b = 1/2 otherwise.

Corollary 8. Any two bat chirps with a, # a, whose FZTs are
in By satisfy the perfect cross-correlation condition.

We call the set B;, the perfect chirp set (PCS). The PCS
contains L — 1 sequences, parameterized by the values of the
chirp rate. An example of a PCS for L = 17 is shown in
Figure 4. The family of PCSs is, essentially, identical with
the family of Zadoff-Chu sequences, when the length of the
sequence is a square of an odd prime. However, the Zak
space construction, unlike the Zadoff-Chu construction, is
not limited to chirps. This is elucidated in the next section.

Remark 9. The constraints: K = 1, L are an odd prime, and
1 <@ < Lin (35) can be relaxed in some cases, leading to the
construction of smaller PCSs. For example, we can lift the
requirement that L be an odd prime, provided the condition

(a-da,KL)=1 (38)

is satisfied for every pair of chirps in the set

B = SLXL(j,k) |K=1,1<a<lL, (E+2E)§ ez}.

(39)
We illustrate this effect in the next two examples.
Example 10. Take L = 16. The only chirps in the set
Si={X, |K=1,L=16 1<a<L} (40)

that satisfy (34) are chirps with odd valued chirp rates
(Figure 5). Moreover, since all differences of chirp ratesa—a’

of chirps in the set share a common factor with L, no subset
of S; isa PCS.

Example 11. Take L = 15. The only chirps in the set
S ={X,|K=1,L=15 1<a<L} (41)

that satisfy the condition (34) are chirps with chirp
rates a = 1,2,4,7,8,11,13, and 14. Twelve subsets of
S, form two-element PCSs. The associated pairs of chirp
rates are: (1,2),(1,8),(1,14),(2,4),(2,13),(4,8),(4,11),(7,8),
(7,11),(7,14),(11,13), and (13, 14).

Remark 12. Tt is useful to note that while no subset of S,
is a PCS, pairs of chirps with odd-valued chirp rates that
are subsets of S; have a two-valued cross-correlation, equal
either to zero or to +/(a; — a;,L)/L. For example, the pairs
of chirps (1,3) and (1,5) have cross-correlations with the
maximum values of /2/L and 2/L, respectively.

7. Generalizations

In the previous section, we introduced the PCS. Here, we
describe the two principal relaxations of the PCS to a perfect
sequence set (PSS). Sequences contained in PSS satisfy,
like sequences contained in PCS, the perfect correlation
properties (27) and (28), but they are not necessarily chirps.

7.1. Relaxation of the Modulation Constraint

Corollary 13. Let X;(j,k) be an arbitrary L X L complex-
valued array, such that

L, ak+j=0(modL),
| X1 (j, k)| = (42)

0, otherwise.
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Then, the set of inverse FZTs of elements of the set

8={X.(j,k) | K=1, L anoddprime, 1 <a<L}

(43)
is a PSS.
Example 14. Let
Len(p(k)), ak+j=0(mod L),
Xl = { | (49)
0, otherwise,

where p(k) is a polynomial in k. Then, the set

FZT '{X.(j,k) | K =1, L anodd prime, 1 <a< L}
(45)

is a PSS.

Example 15. Consider two chirps as in Example 10, but each
modulated by a distinct complex factor. It can be shown that
while the maximum cross-correlation sidelobe value is still
V(@) — a3, L)/L, the cross-correlation is no longer twovalued.

7.2. Relaxation of the Support Constraint. Corollary 13
suggests that a PCS can be extended in a straightforward
fashion to the set of generalized Frank sequences. A further
generalization of 4 can be obtained by observing that the
Zak space support of a perfect sequence does not need to
be restricted to an algebraic line. In fact, any unimodular
sequence that has a support on the Zak transform lattice
at indexes specified by an appropriately chosen permutation
sequence is a perfect sequence. This statement is made
precise in [25], where it is shown that the set of all perfect
autocorrelation sequences associated with the set B; can be
factored into (L — 2)! PSSs. The construction is outlined in
the next example.

Example 16. Fix L = 5. The PSS sequences are given by lists
of indices j (except for j = 0, for which k = 0), ordered in k,
of the nonzero values of the associated L x L FZTs

(1) (1,2,3,4), (2,4,1,3), (3,1,4,2), (4,3,2,1)

(2) (]"2)4)3)’ (2)4)3)1)) (3’ 1’2)4)) (4)3) 1)2)

(3) (]"3)2)4)’ (2) 1’473)) (3)4)1)2)7 (4)2’3’]‘)

(4) (1,3,4,2), (2,1,3,4), (3,4,2,1), (4,2,1,3)

(5) (]"4)2)3)’ (2)3)4)]‘), (3)2)1)4)’ (47 1)3)2)

(6) (1,4,3,2), (2,3,1,4), (3,2,4,1), (4,1,2,3).
The collection of PSSs forms a partition of the sets of
all perfect autocorrelation sequences. The first PSS in the
partition is the set of generalized Frank sequences. The
remaining PSSs are formed by appropriate permutations
of sequences in the first PSS [25]. The construction of a

partition of the set of all perfect autocorrelation sequences
into PSSs proceeds as follows.

(1) Start with the sequence (1,2,...,L—1), and apply the
mapping k — —ak (mod L), 1 <a < L — 1 to each of
its elements.

(2) Generate the “j” sequences by reordering the
sequence (1,2,...,L — 1) according to the index
sequences obtained in the previous stage. This yields
the first PSS.

(3) For each sequence in the first PSS, compute (L — 2)!
permutations of its last L—2 elements. Each permuta-
tion generates a new PSS. with the remaining element
being fixed. There are (L — 2)! such sequences.

The construction can be described more formally using the
language of group theory. The main stage of the construction
is the coset decomposition of a certain permutation group
[25].

8. Matched Filter

The most direct application of the cross-correlation formula
(33) is the Zak space implementation of the matched filter.
Matched filter processing is used in many radar, sonar, and
communications tasks [10, 20, 26, 31, 33, 43, 44].

Set x to be the probing signal and y the received or echo
signal. Suppose that y is delayed by s € Z and attenuated by
a € R* replica of x, that is,

y(n)=ax(n—s), s=p+gqL, 0<p,q<L. (46)
The matched filter for y is given by the cross-correlation
N-1

z(n) = % Z ax(m—s)x*(m—-n), 0<n<N. (47)
m=0

Suppose that x is a bat chirp. Then, it follows from (33) that
the Zak transform of z is

aer(jq), k=rp,
Zi(j, k) = ‘[ ) (48)
0, otherwise.

In general, when y is a sum of delayed and attenuated replicas
of x, that is,

D-1
y(n) = > agx(n—sa), si=pa+qal, 0= pa,qa<L,
=0
(49)

then the Zak space matched filter can be viewed as a sum,
over d, of a sequence of individual matched filters of the form

ager (jqa), k= pa,
7 (j, k) = { (50)

0, otherwise.

This view is strictly formal, of course; it is far more efficient
to compute the Zak transform of a sum of signals than the
sum of the respective Zak transforms.
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The reason for considering a matched filter in the Zak
space is that the sparse and highly structured Zak space
support of pulse compression signals avails a radically differ-
ent view of the cross-correlation task. The full advantage of
this view was taken in the sequence design work described in
previous sections. In the case of the matched filter, the benefit
is more modest but still significant. The advantage is twofold.

First, in contrast with either time or frequency space
representations, the Zak space representation of echo signals
preserves the separateness of supports of distinct replicas
of the probing signal. This is true of all cases, except for
replicas whose delay times differ by a multiple of L. As
each replica is an algebraic line on the FZT lattice, by
the shift property of the FZT, differently delayed replicas
are parallel lines. In effect, the Zak space replicas can be
better distinguished than either the time or the frequency
space replicas, even in the presence of noise, when the Zak
space lines become degraded. Figures 6, 7, and 8, showing
an example of a matched filter realized in the Zak space,
succinctly illustrate this point. The geometric aspect of Zak
space processing is also present in the Zak transform of
the matched filter, Z;. A match of a probing signal and a
replica in the Zak space is a horizontal line on the FZT lattice
(Figure 8). If a replica is delayed by more than L, this line
is modulated by the factor e;(jg). If a replica is delayed by
less than L, all points on the line have constant magnitude
with zero imaginary part. These geometric effects can be
taken advantage of by combining classical signal estimation
procedures with various image processing techniques. Some
approaches toward that end have been suggested in [37].

Second, the Zak space implementation of the matched
filter has a computational complexity advantage over the
standard Fourier space realization. The Fourier space imple-
mentation of the matched filter requires the computation of
the DFT of the echo, N pointwise multiplication of DFTs of
the probing and received signals, and an inverse DFT of the
product of the two DFTs. Jointly these tasks require N(1 +
2log,N) multiplications. The Zak space implementation of
the matched filter requires the computation of the FZT of the
echo, N multiplications for realization of the Zak space cross-
correlation, and an inverse FZT of the Zak space correlation.
Jointly these tasks require N(1 + 2log,L) multiplications. In
effect, the Zak space implementation of the matched filter
achieves nearly 50% reduction in the computational cost of
the Fourier space realization.

9. Open Problems

The Zak transform methods avail a powerful new frame-
work for the design and analysis of sequences with good
correlation properties. The key feature of this framework
is the two-dimensional time-frequency analysis space that
is closely coupled with the Fourier space. This setting
permits characterization of PPSs in terms of two separable
operations: modulation and permutation. These operations
can be conveniently related to the individual steps of the
Zak space correlation. Prior investigations utilizing this
framework led to reframing of some well-known sequence
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design results in the Zak transform language and to the
design of new sequence sets [25, 37]. While these results are
useful, they suggest further inquiries into the fundamental
structure of the Zak space. Among the principal tasks in this
area are:

(1) exact specification of the class of PPSs amenable to
the Zak transform methods,

(2) characterization of the abstract algebraic properties
of certain families of PPSs; this task includes extend-
ing the results on closure of PCS under DFT and
correlation, postulated in [18] and given in [25],

(3) construction of design guidelines for embedding
additional properties, such as acyclic correlation
properties, sub-optimal cyclic correlation properties,
and doppler immunity, into PPSs,

(4) investigation of higher dimensional spaces as poten-
tial settings for PPS design,

(5) investigation of potential new constructions of binary
and generalized Barker codes.

The first of these problems is particularly important. In [25],
it was shown that the only unimodal FZT associated with a
PSS is an FZT supported on an algebraic line. We will make
the following claim.

Conjecture 17. Every PPS is associated with an FZT supported
on an algebraic line.

If Conjecture 17 is true then the PPS design can be
completely transferred to the Zak space. This change of
design settings might inspire many new investigations. For
example, one of the outstanding problems in sequence design
is verification of existence of PPSs for various sequence sizes
[12]. In a recent work, Mow proposed that the number of
PPSs, whose length is a square of a prime is greater than
or equal to LINT [15]. If conjecture 1 is true, then it can
be shown that the Mow bound is tight. The argument is
based on the observation that there are L! possible choices
for an algebraic line (including cyclic shifts) on a square FZT
lattice, and that for each algebraic line each of the L nonzero
values of the FZT of a PPS can assume one of exactly N
values (the Nth roots of unity). The number of PPSs can be
slightly refined when a different accounting method is used.
For example, after removing the sequences that vary only by
a cyclic shift (N) or a constant factor multiplication (N), the
number of PPSs is reduced to LINL~2. We call these PPSs the
unique PPSs (UPPSs).

Example 18. Take L = 2. The number of UPPSs is LINL=2 =
LI = 2. There is only one shift-invariant permutation
of X5(j,k) that can be associated with a UPPS, given by
X5(j,k)#0 for j = k and zero otherwise. Set X,(0,0) =
e(0) = 1 and Xo(1,1) € {es(0),e4(1),e4(2),e4(3)} =
{1,4i,—1,—i}. The inverse FZT in these four cases yields
the sequences (1,1,1,-1), (1,i,1,-i), (1,—1,1,1), and
(1,-14,1,7). Note that for brevity, we skip the scaling factor,
L~!, here and in the next example.
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FIGURE 5: FZT magnitude of sequences in S; (Example 10) in lexicographical order according to the value of @. Only sequences with odd
valued g, that is, a = 1,3,5,7,9, 11, 13, 15 satisfy the perfect autocorrelation condition (34). b = 1/2 for all a.
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FIGURE 6: (a)—(d): real and imaginary parts of the chirp x, and real and imaginary parts of the echo y, where y is the sum of replicas of x
delayed by 9 and 7 + 2L. Chirp parameters: @ = 1, N = 169, and bL = 13/2.
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FIGURE 7: (a)—(d): real and imaginary parts of Fourier space cross-correlation of signals from Figure 6. The upper two plots show the
noise-free case and the lower two plots show the case when signal is contaminated by 0 dB noise.
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FIGURE 8: Zak space realization of matched filter of signals from Figure 6. Lexicographically: FZT magnitude of the chirps x and y, real and
imaginary parts of Zak space cross-correlation in no noise, FZT magnitude of the echo signal, y, in 0 dB noise, real and imaginary parts of
Zak space cross-correlation in 0 dB noise, and the inverse Zak transform of Zak space cross-correlation in 0 dB noise.
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Example 19. Take L = 3. The number of UPPSs is LIN1=2 =
LIN = 6 % 9 = 54. Suppose that X5(j, k) # 0 when j = k and
zero otherwise. Then,

x(0+7rL) = X3(1,1)e3(0)
x(1+7rL) = X3(2,2)es3(r) (51)
x(2+7rL) = X5(3,3)e5(2r)

Fix X3(0,0) = 1 and let X5(1,1) € {e9(0),...,e9(2)} and
X3(2,2) € {e9(0),...,e9(8)}. Then, half of the UPPSs are
given by

(000 036 063) (010 046 073) (020 056 083)
(001 037 064) (011 047 074) (021 057 084)
(002 038 065) (012 048 075) (022 058 085)
(003 030 066) (013 040 076) (023 050 086)

(004 031 067) (014 041 077) (024 051 087)

(005 032 068) (015 042 078) (025 052 088)
(006 033 060) (016 043 070) (026 053 080)
(007 034 061) (017 044 071) (027 054 081)

(008 035 062) (018 045 072) (028 055 082), (52)

where(ng, ..., ni2—1),n; € Z mod L*denotes

(er2(ng),..., er2(n2-1)). Taking X3(j, k) = 1 when j = 2k
and zero otherwise produces the remaining UPPSs (e.g.,
(000 063 036), etc.).

We will comment on other open problems only briefly.
Problems 2 and 3 are related. As explained in [25], PPS
sets can be associated with cyclic groups. Can more general
structures be defined that combine certain cosets of these
groups so that while the perfect correlation property is
moderately relaxed, the sequence set size increases? Can
these structures be parameterized by the values of both
chirp rate and carrier frequency in the case of PCS? Can
a similar sequence design formalism be developed for the
acyclic correlation? The FZT of the acyclic correlation is
closely coupled with the expression for the FZT of a zero-
padded chirp. This topic was discussed in [37]. Among other
things, it was shown that the Zak space correlation of chirps
can be used in sensing applications to distinguish between
closely spaced radar echoes. It remains to be shown how
chirp modulation may affect these computations.

It was stated in the introduction that chirps and
chirp-like sequences are intrinsically high dimensional.
Subsequently, we analyzed these sequences in the two-
dimensional Zak space. Are other multidimensional con-
structions, including higher dimensional Zak transforms,
potentially advantageous, at least for some factorizations of
the sequence length? It follows directly from the Zak space
cross-correlation formula that the Zak space analysis cannot
be improved directly, as the L-point support of PPS is the
smallest that can be achieved with the Zak space methods.
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Can PPSs be compactified to a fewer than L nonzero values
using other methods?

A question of significant theoretical and practical inter-
est, which extends beyond the focus on PPSs, concerns
the exact relationship between the FZT and the discrete
fractional Fourier transform [34]. Both of these transforms
are closely related to the DFT and both are linked to chirps,
yet no major work has so far compared these two important
signal-analytic tools. Indeed, the field of Zak space analysis
appears to us as the field of sequence design did some fifty
years ago to Woodward [10]: while the results discovered are
clearly useful over a wide range of applications, much of the
underlying theory still remains hidden.
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