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As a solution to copyright protection of the digital media, digital watermarking techniques have been developed for embedding
specific information to identify the owner in the host data imperceptibly. Nowadays, most watermarking methods mainly focused
on digital media such as images, video, audio, and text, and very few watermarking methods have been presented for 3D models
relatively. In the paper, a new robust watermarking scheme is presented which is based on biorthogonal nonuniform B-spline
wavelets (BNBW) in the frequency domain for the purpose of copyright protection in the area of CAD, CAM, CAE, and CG. The
watermark is embedded by modulating the wavelet coefficient vectors with the watermark in the frequency domain. The relative
experiments prove that this approach not only can withstand common attacks on 3D models such as polygon mesh simplifications,
addition of random noise, model cropping, translation, rotation, scaling, as well as a combination of such attacks but also can

detect and locate tampered vertices.

1. Introduction

The digital media have been widely used to create many
digital products. For example, people can obtain, duplicate,
process, and distribute the digital media relatively easily by
many of the existing tools and the Internet. As a result,
these facilities are also exploited by pirates who use them
illegally for their personal gains to violate the legal rights
of the digital content providers. The digital watermarking
has been introduced as an effective complementary to the
traditional encryption for the digital watermark could be
embedded into the various kinds of digital media, including
images, audio data, video data, and three-dimensional
graphical models such as 3D polygonal models. Most of
the previous researches have focused on general types of
multimedia data, including text data, images, audio data,
and video data until 1997, when Ohbuchi proposed 3D
mesh model watermarking algorithm [1, 2] for first time.
Recently, with the interest and requirement of 3D models
such as VRML (virtual reality modeling language) data, CAD
(computer aided design) data, polygonal mesh models, and
medical objects, 3D model watermarking has received much
attention in the community, and considerable progress has

been made. Several watermarking techniques for 3D models
have been introduced [3-8].

Theoretically, watermarking algorithms can fall into two
categories: spatial-domain methods and frequency-domain
methods. In the spatial-domain methods, the watermark is
embedded directly by modifying the positions of vertices, the
colors of texture points or other elements representing the
model. While in the frequency-domain methods the water-
mark is embedded by modifying the transform coefficients.
For the spatial-domain algorithms the researchers embed
watermarking into certain 3D model invariants like triangle
similarity quadruple (TSQ), tetrahedral volume ratio (TVR)
[1, 2, 9, 10], affine invariant embedding (AIE) [11, 12],
and so forth. But most of these algorithm are very sensitive
to noise. Most of frequency-domain algorithms provide
better robustness. They use wavelet analysis [13, 14] and
Laplace transforms [15, 16] to embed watermarking. They
can embed one bit watermarking into the whole 3D model.

Kanai et al. [13], in 1998, proposed the first mesh
watermarking scheme based on wavelet analysis. The scheme
decomposed a 3D polygon mesh into a multiresolution
representation by performing lazy wavelet transform pro-
posed by Lounsbery et al. [17]. Uccheddu et al. [14] extend



[13] by detecting the watermark without the original mesh.
Both of them cannot process irregular meshes directly
because of the limitation of Lounsbery’s scheme [17]. Some
other trials using multiresolution scheme also have been
introduced in paper [18-21]. The multiresolution techniques
could achieve good transparency of watermark except for
the solution for various synchronization attacks such as
vertex reordering, remeshing, and simplification. Now, we
propose a new robust watermarking scheme based on
the biorthogonal nonuniform B-spline wavelets (BNBW)
transform. The novelty of this paper lies in that the scheme
not only can be applied to both regular and irregular 3D
model but also can be against the various attacks including
the synchronizational attacks and topological attacks. The
proposed scheme can embed the watermark even into the
irregular ones, which overcomes the drawback of only
embedding the watermark into regular meshes in the article
[13, 14, 17]. Furthermore, the scheme extends the various
normal attacks in which the algorithm [18-21] can resist to
the synchronizational attacks.

The rest of this paper is organized as follows. In
Section 2, we introduce some related works including wavelet
analysis for 3D meshes and conventional wavelet analysis-
based watermarking methods. In Section 3, we explain the
watermark insertion and extraction algorithms in detail.
In Section 4, we show some of our experimental results.
Finally, in Section 5, we conclude and mention potential
improvement in future work.

2. Related Works

2.1. Wavelet Analysis. Wavelet analysis is one of the most
useful multiresolution representation techniques which are
used in a broad range of applications such as image compres-
sion, physical simulation, and numerical analysis. Kanai et al.
[13] extended wavelet analysis to mesh watermarking scheme
in 1998. The wavelet analysis scheme simplifies the original
meshes by reversing a subdivision scheme. The simplification
is repeated as hard as possible. The original mesh V,
is decomposed into the multiresolution representation by
applying the wavelet transform at several times. In the
multiresolution representation, Vj is decomposed both into
the set of wavelet coefficient vectors Wy, W, ..., W, at every
resolution level, and into the coarsest approximation Vy,
where d means the coarsest resolution level. Typically, we
simplify the mesh to a suitable coarsest resolution level, and
then the watermark information is embedded into wavelet
coefficient vectors or the coarsest approximation. Finally,
we can get the watermarked mesh Vo by inverse wavelet
transform.

2.2. Biorthogonal Nonuniform B-Spline Wavelets. The bior-
thogonal nonuniform B-spline wavelets is a kind of mul-
tiresolution representation scheme proposed by Pan and Yao
[22], and the article [23, 24] also is about B-spline wavelets
of multiresolution representation. We briefly introduce the
Biorthogonal nonuniform B-spline wavelets for meshes in
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the following; more detailed descriptions can be found in
[22] or in the Appendix of this paper.

We consider nonuniform B-spline wavelets of order k on
finite interval [a, b].LetTy C T; C - - - bea nested sequence
of knot vectors, where T; = {ti0,ti15. .. tin+k}> 1 = 0,1,...
satisfy the following conditions:

a=tio="-"="tik-1 <lix Stig+1 = <tin, <tin+

ij,l,...,ni, I’l,‘Zk—l.

(1)

==tk = by 6 <t ek

Suppose that {Ni,j,k(t)}7;0 is the normalized B-spline basis
of order k determined by knot vector Tj. Then, V; =
Span{Niox(t), Ni1ix(t),..., Nink(k)}, i = 0,1,... constitute
a nested sequence of polynomial spline spaces of degree k—1,
that is, Vo C V; C - - -. On the basis of it, a MRA of the B-
spline wavelets can be established.

Let W; be a complement space of V; in V,;; that is,
Vi1 = V;+W; and {‘I’i,j(t)};":il be a basis of W;, where
m; + n; = n;41. Then, {‘Pi,j(t)}?l:il is a set of the nonuniform
B-spline wavelets. Let

Nik = [NioiNiik - - - Nigokls (2)

andletV; = [V;1¥i2 - - - Yim,]. Then, there exist matrices P;
of order (n11 + 1) X (n; + 1) and Q; of order (n;y; + 1) X m;
such that

[Nix ¥i| =Nix[Pi Qil, (3)

where P; and Q; are called the reconstruction matrices of the
B-spline wavelets. Let [‘;] =[P; Q] "

Then, we have Nj; 1 = [Nix ;] [Q: ], where matrices A;
of order (n; + 1) X (n;31 + 1) and B; of order m; X (n;11 +
1) are called the decomposition matrices of the B-spline
wavelets.

For any fi;1 = Nixdisi € Vi, fir1 can be uniquely
decomposed into the lower resolution part f; = N;xd; € V;
and the detail part g = ¥;w; € W, by decomposition
matrices A; and Bj; that is, fi = f; + g, where

d; = Aidiy, w; = B;d;1. (4)

On the other hand, using P; and Qj;, fi41 can be reconstructed
by fiand g

di; = Pidi + Qiw;. (5)

Hence, the key of the MRA based on B-spline wavelets is the
construction of reconstruction matrices P; and Q; as well
as decomposition matrices A; and B;. The computation of
A; and B; is dependent on reconstruction matrices P; and
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Q;. For all kinds of B-spline wavelets, P;’s all knot insertion
matrices. They can be computed by Olso Algorithm or
recursive algorithm, and so forth. But for different B-spline
wavelets, Q; is different. So, the challenge is to construct Q;
for the construction of B-spline wavelets.

Since semiorthogonal wavelets require that wavelet space
W; is orthogonal to scale space V;, and the orthogonality
is defined by the inner product (f,g) = ff f(t)g(t)dt
of space L,[a,b], a large amount of integral calculations
are involved in the computation of Q;. In order to avoid
integral operation, we abandon the orthogonality defined by
continuous norm L,. Alternately, we construct biorthogonal
wavelets. An essential point is to define orthogonality of W;
and V; by discrete norm /, for vectors, that is, to define
discrete inner product of space V; as {f;,h;) = dIs;, where
fi = Nixdi, hi = Nigs;. Then, from (3), we know the
conditions that reconstruction matrix Q; should satisfy are
column full rank and the following discrete orthogonal
condition:

P/Q; =0, (6)

where 0 is the Zero-matrix of order (n;+ 1) X m;. The method
for the construction of Q; is given in Section 4.

According to (4)—(6), the lower resolution coefficient
vector d; and the wavelet coefficient vector w; are the least
square solutions of (7) and (8), respectively,

Pix = djy1, (7)

Qix = diy1. (8)

Then, according to (4), the decomposition matrices are given
as following:

A =P = (PiTPi)_lPT, 9)

1 1

B,-Q; = (Q/Q) @, (10)

where P/ and Qj are the generalized inverse matrices of
P; and Q;, respectively, satisfying Py P; = I(y+1)x(n+1) and
Q:—Ql = Im,-><m;-

Thus, (3), (6), and (10) are the all conditions that
reconstruction matrices and decomposition matrices should
satisfy for the proposed biorthogonal nonuniform B-spline
wavelets.

3. The Principium of the Scheme

3.1. Watermark Embedding Process. The basic procedures of
watermarking scheme are shown in Figure 1. The steps of the
watermark embedding process are as follows.

(a) Convert Cartesian coordinates of a vertex v; =
(xi, yi»zi) of original mesh model V into spherical coordi-
nates (pj, 6;, ¢;) by

)
(x,-—xg) (11)
)

1 (Zi %

oi=5) 4 (=) 4 (a- %)’

¢i = cos”

>

where 0 < i < N — 1, N is the number of the vertex, and
(g5 ¥g»Z¢) is the center of gravity of the mesh model. The
proposed scheme uses only vertex norms p; for watermarking
and keeps the other two components 6; and ¢; intact. The
distribution of vertex norms is obviously invariant to vertex
reordering and similarity transforms.

(b) The vertices are divided into S distinct sections by 6;
and ¢; with the same range. Each section must be suitable
to embed all watermarks independently. As a result the
watermark can be embedded repeatedly S times into different
sections.

(c) For each section, the norms p; are arranged ascend-
ingly as R(po,p1---pr-1), where L is the number of
the vertex. And then, the B-spline knot vectors T, =
{t0,0> 10,15 - - » ton+k } are computed with R (pg, p1 - - - pr—1) by
Hartley-Judd algorithm. Then, Biorthogonal nonuniform
B-spline wavelets (see Section 2.2) analysis is performed
forward with the B-spline knot vectors T. In this way, a
set of the wavelet coefficient vector Wy (p,,p, - - -ﬁm_l) are
obtained at approximation (resolution) level k which can be
determined by considering the capacity and the invisibility of
the watermark embedding.

(d) Embedded the watermark into wavelet coefficient
vector Wi (pg,p, - - * P, 1) by modifying the wavelet coef-
ficient as follows:

pi=p;tapw; 0<i<m-—1 (12)

The watermark w; € {—1,1}, whose length is m, is
embedded into p; proportion to p; with the global strength
factor a, which can help to extract the watermark easily, but it
has to be selected properly, because it also controls the visual
quality after embedding the watermark.

(e) Execute the inverse Biorthogonal nonuniform B-
spline wavelets transform. Meanwhile, the B-spline knotvec-
tors T can be computed with reconstruction matrices P and
Q by the method proposed in Section 2.2. Moreover, the
new R (Po»p1 - - - pr—1) are contructed to get the new vertex
spherical coordinates v; = (p;, 0, ¢;).
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FiGure 1: Outline of the proposed BNBW-based watermarking method.

(f) Convert the spherical coordinates to Cartesian coor-
dinates. The Cartesian coordinates (X;, J;,2;) of vertex ¥; on
stego mesh model is given by

Xi = picos 0; sin ¢; + xg,

~

Yi = pisin0;sin¢; + yg, (13)

nNe

i = picos ¢; +zg,

where 0 < i < L — 1, 6;, ¢; and the center of gravity
are the same as those calculated in the step (a). Finally, the
watermarked mesh model V' can be obtained.

3.2. Watermark Extracting Process. Figure 1 is the outline of
the proposed BNBW-based watermarking method. The steps
of the watermark extracting process are as follows.

(a) The detected model resampling: the resampling
procedure is as follows: in the beginning, a ray is cast
from the center of the original model to the original
vertex V,; and intersect with the detected model. If
the ray intersects the watermarked model at one or
more points and point Vy; is the closest intersection
point to V,;, then Vy; is taken as the vertex that
corresponds with V,;, or let Vg =V,,;.

(b) Asin steps (a) of the embedding procedure, Cartesian
coordinates of a vertex v, = (x;, y;,2;) of original
mesh model V’ are converted into spherical coordi-
nates (p;, 6;, ¢;).

(c) As in steps (b) of the embedding procedure, the
vertices are divided into S distinct sections by 6; and
¢; with equal range.

(d) As in steps (c) of the embedding procedure, the
biorthogonal nonuniform B-spline wavelets analysis
is performed to obtain a set of the wavelet coefficient
vector Wi (pg, p1 - = * pm,_1) at corresponding (reso-
lution) level k.

(e) Perform forward biorthogonal nonuniform B-spline
wavelets analysis with original mesh V as the steps
of the embedding procedure, so that the wavelet
coefficient vector Wi (py,p; * - - p,,, ;) at level k can
be got. Furthermore, compute the difference between
wavelet coefficient of the watermarked mesh model

V' and wavelet coefficient of original mesh model V
as follows:

Dij = pij = pyj» (14)
where p;; is the ith BNBW wavelet coefficient of
jth sections of original mesh model and pj; is
the ith BNBW wavelet coefficient of jth sections
of watermarked mesh model. D;; is the difference
betwee p;; and p;;.

(f) Extract watermark. The watermark has been embed-
ded repeatedly S times into different sections in the
process of embedding. So, we decide the watermark

as follows:
S-1

D; =Z Dij, w; =sign(D;)) 0<i<m-—1  (15)
j=0

The sign is a function that returns the sign of its
parameter.

(g) Compute the correlation between the extracted
watermark sequence and the designated watermark
sequence to decide whether the designated water-
mark is presented in the detected model

Cor(W', W)
S (W) (w W)
VIS (0 =) 4 32 - W)’

>

(16)

where W' is the extracted watermark sequence, W is
the designated watermark sequence, W is the mean
value of W', W is the mean value of W, and M is the
length of the watermark sequence. If the computed
correlation value exceeds a chosen threshold ThrD,
we conclude that the designated watermark is present
in the detected model.

4. Experimental Results

In order to test our watermarking technique, we conduct
experiments on a triangle of a Venus model. The Venus
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FIGURE 2: (a) Original model. (b) Watermarked model.

model consists of 10002 vertices and 20000 triangle faces.
The length of the original watermarking sequence N is 40,
and we set the Parameter S = 50. So, The bit capacity that
was tested is 40 * 30 = 1200. The PSNR (peak signal to noise
ratio) between the original and the watermarked mesh model
and BER (bit error rate) of detected watermark information
are adopted to test the imperceptibility and the robustness,
respectively. The PSNR is defined as

Dyj = pij ~Pij: (17)

The watermarked Venus model is shown in Figure 2(b), and
the Figure 2(a) is the original Venus model. Visually com-
paring these two figures, we can conclude that the embedded
watermark is imperceptible. Our proposed method is based
on the wavelet transform and multiresolution representation
of the 3D mesh model. The watermark can be embedded
in the wavelet coefficient vectors at the various resolution
levels of the multiresolution representation, which makes
the embedded watermark imperceptible. The experiments
are carried out both on the horse model and bunny model.
We subject the watermarked Venus model to polygon sim-
plification, noise, cropping operations, as well as combined
attacks so as to test the robustness of our algorithm. The
experimental results show that the algorithm is very robust
against these attacks and can detect the integrality of the 3D
model as detailed in the following.

To demonstrate our watermarking algorithm’s resistance
to noise, in our experiment, the noise is added to the water-
marked model by perturbing its vertices at full resolution
in a random way. Especially, different displacement vector
Anoise = (Ax, Ay, A;) is applied for each vertex. The vector
components Ax, Ay and A, are random variables with
uniform distribution in the interval [—-A,A]. In Figure 3,
Anoise 18 0.3%, 0.6%, and 1.2%, respectively, of the distance
of the longest vector extended from a vertex to the center
of the model. In Figure 4, the value of p and ThrD for
increasing values of Ay 1s given. Aiming to set an appro-
priate threshold value, we generate 1000 random watermark

5
TaBLE 1: Results of simplification attacks.
Removing ratio 30% 50% 70%
Venus cor 1.0 0.8451 0.5342
Horse cor 1.0 0.7975 0.4750
Bunny cor 1.0 0.8738 0.6459
TaBLE 2: Results of cropping and noise attacks.

Cropping ratio 30% 50% 70%
Venus cor 0.9128 0.8743 0.6029
Horse cor 0.8751 0.7951 0.5752
Bunny cor 0.9017 0.8871 0.5147

sequences whose length is 100 and then select 500 sequences
randomly as the watermark to be embedded in to the 3D
mesh model. Moreover, we calculate the linear correlation
coefficient between the randomly generated watermarks and
the original watermark. While the experiment indicates
that the correlation values between the randomly generated
watermarks and the original watermark are less than 0.45, so
the threshold T was set to 0.5. In particular, the plot is given
as a function of the quantity Apoise. The models used in this
test are Venus watermarked at level of resolution / = 3 with
a = 0.03. The experimental results in Figure 4 show that the
algorithm can resist these noise attacks very well.

For simplification attack, we simplify the watermarked
bunny model with triangular faces. We reduce 30%, 50%,
and 70%, of the triangular faces of the bunny model,
respectively. We also carry out experiments on the horse
model and Venus model. The experimental result is shown
in Table 1 and Figure 5.

The robustness of the algorithm against the cropping
attacks is tested in three different cases, which included
removing 30%, 50%, and 70% of the vertices in the water-
marked bunny model, respectively. And 0.3% noise is add
to some vertices of the vertices left. Because in each section
we embedded a watermark bit has S vertices, which means
the watermarking scheme embed a watermark bit in different
vertex for S times, the result is the watermarking scheme can
resist the crop attacks. The experiments are also carried out
on the horse model and Venus head model, which are shown
in Table 2 and Figure 6. These results again demonstrate that
the algorithm is also robust against cropping attacks with
high correlation values for the watermark extraction.

Furthermore, we have tested the algorithm’s robustness
against the geometry attack of translation, rotation, and scal-
ing. Experimental results demonstrated that the algorithm
is also robust against attack of translation, rotation, and
scaling. And the proposed scheme uses only vertex norms
pi for watermarking and keeps the other two components 6;
and ¢; intact. The distribution of vertex norms is obviously
invariant to vertex reordering and similarity transforms.
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(a) 0.3% (b) 0.6% (c) 1.2%
FIGURE 3: (a—c) add noise.
1.2
0.2
0 1 1 1 1
0 0.5 1 1.5 2 2.5
x1072

Anoise

B
--- Thrp

FIGURE 4: Robustness against additive noise attack.

5. Conclusion and Future Work

In the paper, a new robust watermarking scheme based
on biorthogonal nonuniform B-spline wavelets (BNBW)
in the frequency domain is presented for the purpose of
copyright protection in the area of CAD, CAM, CAE, and
CG. The watermark is embedded by modulating the wavelet
coefficient vectors with the watermark in the frequency
domain. In order to cast the watermarking problem in a
multiresolution framework, the algorithm is extended to
work with irregular meshes, thus making 3D wavelet analysis
feasible. Experiments show that this approach not only is
able to withstand common attacks on 3D models such as
polygon mesh simplifications, addition of random noise,

model cropping, translation, rotation, scaling, as well as a
combination of such attacks but also can detect and locate
tampered vertices.

Watermarking of 3D meshes has received a limited
attention due to the difficulties encountered in extending
the algorithms developed for 1D (audio) and 2D (images
and video) signals to the topological complex objects such
as meshes. Other difficulties lie in the wide variety of
attacks and the robustness against the manipulations of 3D
watermarks. For this reason, most of the 3D watermarking
algorithms proposed adopted a nonblind detection, which is
known as less useful in practical applications compared with
the blind ones. In the future work, we intend to improve our
algorithm to nonblind watermarking by embedding the side
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(a) (b)

FIGURE 5: (a) 30% (b) 50% (c) 70% triangular faces removed (simplified) from the watermarked 3D model.

(c)

FIGURE 6: (a) 30% (b) 50% (c) 70% faces cropped from the watermarked 3D model and 0.3% noise.

information of original model information as the watermark
of the model.

Several directions for future work remain open. First of
all, we can apply other kinds of attacks and test possible
failures of our algorithms. We can extend our method
to undergoing general affine transformations although it
can only undergoing similarity transformations at present.
Secondly, we can upgrade our watermarking algorithm into
a blind watermarking algorithm. Finally, the possibility of
modulating the watermark strength according to perceptual
considerations will be investigated so as to increase the
imerceptuality of the watermark.

Appendix

Reconstruction and
Decomposition Algorithms

Most of the content of this Appendix is derived from [22],
in which Pan and Yao propose biorthogonal nonuniform B-

spline wavelets based on a discrete norm. We hope this will
facilitate the understandings of our method.

(1) Algorithm Reconstruction. The following is the recon-
struction algorithm for biorthogonal nonuniform B-spline
wavelets based on discrete norm I,.

Input: order of B-spline k, level no. i, lower resolution
coefficient vector d;, wavelet coefficient vector w;, and
knot vectors T; and T;y.

Output: reconstruction matrices P; and Q;, higher resolution

coefficient vector d;;.
(i) Let T =T;, T = Tis1, n = nj, and 71 = nppq.

(ii) Compute P; by equation as follows:



8
o T
k-1 e(j) n o
0 01 0---0|, &<t
- T
pr _ ||k h(j) n -
i = 0 -+-010---0|, F="Ft,
k—1 n T .
00 ol , otherwise,
j=k-1, k,...,n,
'P%(Sl) +C*(S)P>f<(5—1)
j- j 3
() > t] < thrS—l)
€j
*(s) 7
PiG)-r ’
() _ | T
P = s n(j) M
0---010---0], ¢t ="tjrs1
k-1 n T .
00---0], otherwise,
j=k—-sk—-s+1,...,+n, s=2,3,...,k
(iii) Compute Q; by equation as follows:
T
k-1 vj i
[0---0f0---8], P =0,
(1 _
Q k-1 aj vj At (1)
0---0-10---010---0|, P;"#0,
ji=1,2,..,i—n,
QY =CQE, s=2,3,..,k
(A.2)

(iv) Compute d;1; = P;d; + Qiw;.

(2) Algorithm Decomposition. The following is the decom-
position algorithm for biorthogonal nonuniform B-spline
wavelets based on discrete norm /.

Input: order of B-spline k, level no. i, higher resolution
coefficient vector d;;1, and reconstruction matrices P;

and Q;.

Output: lower resolution coefficient vector d; and wavelet
coefficient vector w;.

PdeiH bY

(i) Solve linear equation system PIP;x
Gaussian elimination to obtain d;.

(ii) Solve linear equation system Q/Qx = Qfd;; by
Gaussian elimination to obtain w;.
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(j) > 1, j=r(j) —7(j) +1,

i =t <tjys T(j) <

(j)=s, r(j) —t(j)+1<j<r(j)—s+1,

(A.1)

According to di; = Pid; + Q;w;, another method for
decomposition is to solve the whole linear system

d;
[P Qi]|: ] = djs1.
Wi

The computation consists of two steps: firstly, a band
coefficient matrix is obtained by exchanging its lows or
columns, and then the system is solved with band structure.

(A.3)
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