Hindawi Publishing Corporation

EURASIP Journal on Advances in Signal Processing
Volume 2011, Article ID 495394, 10 pages
doi:10.1155/2011/495394

Research Article

A Fast Algorithm for Selective Signal Extrapolation with

Arbitrary Basis Functions

Jiirgen Seiler (EURASIP Member) and André Kaup (EURASIP Member)

Chair of Multimedia Communications and Signal Processing, University of Erlangen-Nuremberg, Cauerstrafe 7,

91058 Erlangen, Germany

Correspondence should be addressed to Jiirgen Seiler, seiler@Int.de

Received 7 July 2010; Revised 1 December 2010; Accepted 18 January 2011

Academic Editor: Ana Pérez-Neira

Copyright © 2011 J. Seiler and A. Kaup. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Signal extrapolation is an important task in digital signal processing for extending known signals into unknown areas. The Selective
Extrapolation is a very effective algorithm to achieve this. Thereby, the extrapolation is obtained by generating a model of the signal
to be extrapolated as weighted superposition of basis functions. Unfortunately, this algorithm is computationally very expensive
and, up to now, efficient implementations exist only for basis function sets that emanate from discrete transforms. Within the scope
of this contribution, a novel efficient solution for Selective Extrapolation is presented for utilization with arbitrary basis functions.
The proposed algorithm mathematically behaves identically to the original Selective Extrapolation but is several decades faster.
Furthermore, it is able to outperform existent fast transform domain algorithms which are limited to basis function sets that
belong to the corresponding transform. With that, the novel algorithm allows for an efficient use of arbitrary basis functions, even

if they are only numerically defined.

1. Introduction

The extrapolation of signals is a very important area in
digital signal processing, especially in image and video signal
processing. Thereby, unknown or not accessible samples
are estimated from known surrounding samples. In image
and video processing, signal extrapolation tasks arise for
example, in the area of concealment of transmission errors
as described in [1] or for prediction in hybrid video coding
as shown in [2].

In general, signal extrapolation can be regarded as under-
determined problem as there are infinitely many different
solutions for the signal to be estimated, based on the known
samples. According to [3], sparsity-based algorithms are
well suited for solving underdetermined problems as these
algorithms are able to cover important signal characteristics,
even if the underlying problem is underdetermined. These
algorithms can be applied well to image and video signals, as
in general natural signals are sparse [4] in certain domains,
meaning that they can be described by only few coefficients.

As has been shown in [5, 6], out of the group of sparse
algorithms the greedy sparse algorithms are of interest, as
these algorithms are able to robustly solve the problem.
One algorithm out of this group is for example, Matching
Pursuits from [7]. Another powerful greedy sparse algorithm
is the Selective Extrapolation (SE) from [8]. SE iteratively
generates a model of the signal to be extrapolated as weighted
superposition of basis functions. In the past years, this
extrapolation algorithm also has been adopted by several
others like [9, 10] to solve extrapolation problems in their
contexts.

Unfortunately, SE as it exists up to now is computa-
tionally very expensive. This holds except for the case that
basis function sets are regarded, that emanate from discrete
transforms. In such a case, the algorithm can be efficiently
carried out in the transform domain. The functions of the
Discrete Fourier Transform (DFT) [11] are one example
for such a basis function set. Using this set, an efficient
implementation in the Fourier domain exists by Frequency
Selective Extrapolation (FSE) [8]. If basis function sets that



do not emanate from discrete transforms or overcomplete
basis function sets or even only numerically defined basis
functions are regarded, such transform domain algorithms
cannot exist.

Although Fourier basis functions have proven to form a
good set for a wide range of signals, there also exist signals
where other basis function sets lead to better extrapolation
results. This may happen when the support area on which
the extrapolation is based is very unequal or in the case when
very steep signal changes occur as for example, in artificial
signals. Figure 1 shows three examples for such signals. The
left column shows the original signal, the second column
shows a distorted signal with the area to be extrapolated
marked in black. The signals in the third column result
from applying FSE which utilizes Fourier basis functions.
In the last column, Selective Extrapolation is carried out
with different basis function sets. In the first row, the basis
function set results from the union of the functions from
the Discrete Cosine Transform (DCT) [12] and the Walsh-
Hadamard Transform (WHT) [13]. In the second row, a
binarized version of DFT functions is used in order to
reconstruct the steep changes in this artificial signal. In the
third row, the basis function set emanates from the union
of DFT functions and binarized DFT functions. The three
examples have in common that the used basis function sets
produce significantly better subjective as well as objective
results than the Fourier-based extrapolation does. But they
have also in common that for such sets no efficient transform
domain implementation can exist which would be necessary
for a fast implementation.

Within the scope of this contribution we want to
introduce a novel spatial domain solution for SE which is
called Fast Selective Extrapolation (FaSE). This algorithm
is able to generate a model of the signal for arbitrary basis
functions in the same way as the original SE, even in the
case that the basis function set does not possess any structure
and the basis functions are only numerically defined or in
the case that an overcomplete basis function set is regarded.
But at the same time, the algorithm is very fast as it can
efficiently trade computational complexity versus memory
consumption. The paper is organized as follows: first, SE
will be reviewed for the general case of complex-valued basis
functions. With that, an overview of the algorithm is given
and the computationally most expensive steps are pointed
out. After that, the novel Fast Selective Extrapolation is
presented in detail and its complexity is compared to SE.
Finally, simulation results are given for proving the abilities
of the novel algorithm.

2. Review of Selective Extrapolation

For the presentation of Selective Extrapolation (SE), a
scenario as shown in Figure 2 is regarded. There, signal
parts which have to be extrapolated are subsumed in loss
area B. For extrapolating the signal, surrounding correctly
received signal parts are used. These signal parts form the
support area +4. The two areas together form the so-called
extrapolation area /£ which is of size M X N samples and
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Ficure 1: Examples for image signals where Fourier basis functions

PSNR = 22.3dB PSNR = 23.27dB
provide insufficient extrapolation quality. In every row, original
signal, distorted signal, and extrapolated signals are shown. Extrap-
olation is carried out either with DFT basis functions or alternative
ones. Top row: union of DCT and WHT basis functions. Mid row:
binarized DFT basis functions. Bottom row: union of DFT and
binarized DFT basis functions.

is depicted by the spatial coordinates m and n. The signal
in &£ is denoted by s[m,n] but is only available in the
support area #. The extrapolation of square blocks is used
for presentational reasons at this point only. In general,
arbitrarily shaped regions can be extrapolated. In addition
to that, in general, the used basis functions can as well be
larger than the regarded extrapolation area. In such a case,
the extrapolation area has to be padded with zeros to be of
the same size as the basis functions. But, for presentational
reasons we also assume that the extrapolation area and the
basis functions have the same size subsequently.

As described in [8], SE aims at generating a parametric
model g[m, n] for signal s[m, n] in whole area .£. The model

glm,n] = > Ceprlm,n] (1)
ker

emanates from a weighted superposition of the basis func-
tions ¢k [m, n] which are defined over complete £ and are
indexed by k. Set R contains the indices of all basis functions
used for model generation. As not all possible basis functions
are used for the model, set R is a subset of dictionary ® which
holds all basis functions. In order to control the weights of
the individual basis functions, one expansion coefficient ¢
is assigned to each basis function @i [m, n]. The challenge is
to determine which basis functions to use for the model and
to calculate the corresponding weights. SE solves this prob-
lem iteratively, at which in every iteration one basis func-
tion is selected and the corresponding weight is estimated.
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This is achieved by successively approximating signal s[m, n]
in support area 4 and identifying the dominant basis func-
tions of the signal. In doing so, the signal can be continued
well into area B if an appropriate set of basis functions is
used.

Initially, model g(o) [m, n] is set to zero and with that the
initial approximation residual

rOm,n] = s[m,n] (2)

is equal to the original signal. At the beginning of each
iteration, in general the v-th iteration, a weighted projection
of the residual onto each basis function is conducted. For
every basis function, this leads to the projection coefficient

(v—1) *
o 2mmer 'V [m,nlef [m, n]w[m,n]
= . Vk (3
Pk Smmer O [m,nlw[m, nli[m,n) ®)

which results from the quotient of the weighted scalar
product between the residual and the basis function and the
weighted scalar product between the basis function and itself.
In this context, the weighting function

{p[m,n], for (m,n) € A
wlm,n] = (4)
0, for (m,n) € B

has two tasks. Firstly, it is used to mask area B from the
calculation of the scalar product as there is no information
available about the signal. Secondly, using the function
plm,n] can control the influence different samples have
on the model generation depending on their position. For
instance, samples far away from loss area B can get a
smaller weight and due to this weaker influence on the model
generation compared to the samples close to area B. In [14],
an exponentially decreasing weight

N _ _ 2 _ _ 2
plm,n] = p/om=(M=1/2) +n=((N=1)/2) (5)

is proposed with p controlling the decay.

After the projection coefficients have been calculated for
all basis functions, one basis function has to be selected to be
added to the model in the actual iteration. The choice falls on
the basis function that minimizes the weighted distance

e = > (’N—”[m,n]—Pz(cv)?’k[m’”]’zw[m’n]) ©)
(mn)eL

between the approximation residual "~V [m,n] and the

projection p,(cv) @k [m, n] onto the according basis function. In
this process, again weighting function w[m, n] from above is
used. Hence, the index u® of the basis function to be added
in the »-th iteration is

u"” = arg min(e,(f))
k

2
= arg :nax(’pl(;') ‘ z gplj[m,n]w[m,n]q)k[m,n]).
(m,n)eL
(7)

[ Support area A
I Lossarea B

FIGURe 2: Extrapolation area £ consisting of loss area B and
support area .

Subsequent to the basis function selection, the corre-
sponding weight has to be determined. In this process, it
has to be noted that although the basis functions may have
been orthogonal with respect to the complete extrapolation
area L they cannot be anymore if the scalar products
are evaluated in combination with the required weighting
function. This effect which has not been considered in the
original paper from [8] is called orthogonality deficiency
and is described in detail in [15]. In [16], fast orthogonality
deficiency compensation is proposed to efficiently estimate
the expansion coefficient by taking only the fraction y of the
projection coefficient:

G =y U (8)

The factor y is between zero and one and depends on the
extrapolation scenario, as described in detail in [16].

After one basis function has been selected and the
corresponding weight has been determined, the model and
the residual have to be updated by adding the selected basis
function to the model generated so far:

g [m,n] = g" "V [m,n] + &0 pu [m, n]. (9)

The approximation residual can be updated in the same way
and results in

r[m,n] = O V[m,n] - Cor@un [m,n].  (10)

The above described iterations are repeated until the pre-
defined number of I iterations is reached. Finally, area 8B is
cut out of the model and is used for replacing the lost signal.

Algorithm 1 shows the pseudocode of SE for giving a
compact overview of this algorithm. Regarding this code
and taking into account the equations above, the weighted
projection onto all the basis functions in every iteration
can be identified as computationally most expensive step.
To obtain the projection, a weighted scalar product between
the residual and every basis function has to be carried out,
leading to a large number of multiplications and additions.
Compared to this, the actual basis function selection, the
expansion coefficient estimation, and the model and residual
update have a very small complexity.



functions @i [m, n]

rlm,n] = s[m,n], V(m,n)
forall v=1,...,I do

end for

C=ypu

end for

forall (m,n) € B do
s[m,n] = g[m, n]
end for

input: distorted signal s[m, n], weighting function w[m, n], basis

/* Initial residual is equal to original signal */

/* Projection onto basis functions */
forallk =0,...,|9| -1do

pk _ Z(m,n)ei r[mv ﬂ](P;: [m> n]w[m, Vl]

2 mmes Pk lm,n]wlm, n]gi[m, n]

/* Basis function selection s/
u = arg max(|pel® Zonmes @i [m, nlwlm, nlgi[m, n])
/* Expansion coefficient estimation */
/* Model and residual update */
glm,n] = glm,n] +cp,[m,n], V(m,n)

rlm,n] = r[m,n] — cp,[m,n], ¥ (m,n)

/* Replace distorted signal parts */

output: extrapolated signal s[m, n]
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ArLgoriTHM 1: Selective Extrapolation for arbitrary basis functions.

3. Fast Selective Extrapolation

In order to solve the dilemma of the huge computational
complexity of SE, we propose a novel formulation of this
algorithm that also operates in the spatial domain but is
as fast as transform domain algorithms which have been
mentioned at the beginning. With that, the advantages of
both approaches are combined: the high speed of transform
domain algorithms and the independence from certain basis
function sets, offered by the spatial domain SE algorithm.
The high speed of the novel algorithm results from the fact
that the weighted scalar products only have to be evaluated
once, prior to the first iteration. In the successive iterations
they can be replaced by a recursive calculation. The novel
algorithm is called Fast Selective Extrapolation (FaSE) and
is outlined in detail for the general complex-valued scenario
subsequently. If only real-valued signals and basis functions
are regarded, the conjugate complex operations can just be
discarded.

Although the principal behavior of FaSE is similar to SE,
the residual r[m, n] in the spatial domain is not regarded, but
rather the weighted scalar products between the residual and
the basis functions. This yields

R = > rOlmnlgf [mnlwlm,nl, vk (11)
(mn)eL

for depicting the weighted scalar product between the
residual and the basis function with index k in the v-th
iteration. This scalar product has to be evaluated only once

explicitly. This has to be done for the initial step, where the
residual is equal to the original signal, leading to

Rio): Z slm, nlof [m,nlwlm,n], Vk. (12)
(mn)eL

After the initial R,io) have been determined, all subsequent
calculations can be carried out with respect to the weighted
scalar products and no explicit evaluation of the scalar
products is necessary anymore.

Using R,(;') and exploiting the fact that the square root is
a monotonic increasing function for positive arguments, the
basis function selection from (7) can be simplified to

(-1)
) ’Rkv ’
u'”’ = arg max . .

k \/Z(m,n)ac of [m, n]lw[m, n]er[m, n]

(13)

Using expression Rf}; Y for the weighted scalar product
between the selected basis function and the residual from the
previous iteration, the estimate for the expansion coefficient
results in

(r-1)
Ru?w

- . 14
Y D mmyer P [m, nlwlm, nleyem [m, n] (14

Cy)

Here, again fast orthogonality deficiency compensation is
used to derive the estimate for the expansion coefficient from
the projection coefficient. Finally, the update of the model in
every iteration can be carried out according to (9).
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For the subsequent iterations, the weighted scalar prod-
ucts can be updated by applying definition (11) on the
residual update from (10), yielding

RI(;’) = > (r(”’”[m,n] - Eumgoum[m,n])
(mn)eL

X @i [m, n]w[m, n]

02 gilmynlw

(mn )EL

_ROV ¢ wlm, n]g,o [m,n].

(15)

Obviously, the weighted scalar product between the residual
and a certain basis function can be easily updated from
one iteration to the other by subtracting the weighted scalar
product between the actual basis function and the selected
one, further weighted by the estimated expansion coefficient.
Since the update only incorporates the weighted scalar
product between two basis functions and is independent
of the actual residual, it can be carried out very fast by
calculating the different weighted scalar products of all basis
functions in advance.

This novel formulation of the SE algorithm has two
advantages. First of all, the residual now does not have to be
calculated explicitly in every iteration step anymore, and the
weighted scalar products between the residual and the basis
functions are updated. But more important is the fact that
the most complex calculations can be carried out in advance
and can be tabulated. Namely, these are the weighted scalar
products between every two basis functions and one over the
square root of the weighted scalar product between a basis
function and itself. This leads to the matrix

Can= 2. o¢flmnlw

(myn)eL

[m,n]ei[m,n], VkI  (16)

containing the weighted scalar products between every two
basis functions and the vector

1

Dy = .
\/Z(m,n)d of [m, nlwlm, nlei[m, n]

_ 1
\/ Cliek)

(17)

holding the inverse of the square root of the weighted scalar
products. Obviously, C,) and Dy are independent of the
input signal and the residual. Hence, they only have to be
calculated once and do not have to be calculated for every
extrapolation process. Thus, they can either be computed
at the beginning of the extrapolation process or read from
storage. During the whole computation, they are kept in
memory. Furthermore, as Cy is of size |D I and Dy
has length |®][, the memory consumption is manageable
without any problems. Here, the expression || expresses the
cardinality of dictionary ® that contains all possible basis
functions. Regarding the two equations above, one can see
that they both depend on the weighting function. If different
weighting functions are used, C(x,) and D have to be adapted
according to the weighting function. But, regarding typical
signal extrapolation tasks as for example, error concealment

or prediction, the same patterns or only a small number
of different patterns occur. Therefore, this also is not a
problem, as C(x) and Dy can be calculated for the different
patterns in advance as well. During the generation of C),
the complex symmetry of this matrix can be exploited and
only (1D1? + 1D)/2 weighted scalar products have to be
actually calculated.

Using these precalculated and tabulated values, the basis
function selection from (13) can be rewritten as

u” = = arg max‘R(v D - Dy. (18)

In addition to that, the estimation of the expansion coeffi-
cient from (14) can also be expressed very compactly by

N -1
Cun = YRS(}VJ )Dﬁm- (19)

Furthermore, the update of the weighted scalar products
between the residual and all possible basis functions from
(15) can also be formulated very efficiently by

R]((v) _ R]((v—l) — 8 Clpury,  Vk. (20)

Regarding the three equations above, one can recognize
that instead of evaluating the weighted scalar products in
every iteration step explicitly, only one value has to be read
from memory for every calculation. Thus, the very high
computational load from the original spatial domain SE is
traded against an increased memory consumption. But as the
memory consumption still is easily manageable this is a quite
reasonable exchange.

The novel FaSE implementation has the further advan-
tage that no divisions are required. With that, this implemen-
tation is suited more for fixed point or integer implementa-
tions than the original SE. In such a scenario, Dy could be
calculated with high accuracy and then quantized to integer
or fixed point values. Thus, no expensive divisions have to be
carried out within the iteration loop and the effect of error
propagation due to a restricted word length can be reduced.
Depending on the architecture on which the extrapolation is
carried out and the regarded application, it may be preferable
to store 1/Ckx) instead of 1/\/C(k,k) and to calculate | - |
instead of | - |. By using this modification, the complexity
could be reduced a little bit more if the platform on which the
extrapolation runs directly supports the relevant operations.
Nevertheless, at this point a sufficiently high computational
accuracy is assumed for the above outlined calculations.
For a hardware implementation or an implementation on a
digital signal processor, finite-word length effects have to be
considered and further research is necessary for determining
the required bit-depth of the tables and the impact of fixed-
point arithmetic.

In order to give a final overview of FaSE, Algorithms 2
and 3 show the pseudo code for generating the tabulated
values and for the actual model generation. The table
generation is separated from the model generation for
emphasizing again that the generation of the tables only has
to be carried out once. Regarding the operations that have to
be carried out within the iteration loop, one can recognize



input: basis functions ¢y [m, n], weighting function w[m, n]
forall k =0,...,|9| -1 do

forall/ =k,...,|®| -1 do
Cikpy = Zimmer 9i [m,n]w[m, nlgi[m,n]
Cur = Clpy
end for
1
D, =
YT JCuw
end for

output: tabulated values Cy and Dy

ArGoriTHM 2: Generation of the tabulated values C) and Dy.

that only very simple operations have to be performed
which can furthermore be processed very fast. The only
computational expensive operation is the initial calculation
of Rio), but compared to the original SE, this complex step
has to be carried out only once instead of in every iteration.

4. Complexity Evaluation

Regarding the two previous sections, one can recognize
that FaSE is able to outperform the original SE since
the computational complexity within the iteration loop is
reduced and since as many calculations as possible are carried
out in advance and are tabulated. To quantify the complexity
of SE and FaSE, the number of operations is regarded that is
necessary for generating the model by each of the algorithms.
In Table 1 for SE, FaSE, and the table generation for FaSE, the
number of operations is listed, depending on the extent M, N
of extrapolation area £, dictionary size ||, and the number
of iterations I to be carried out. Here, the operations are
separated into three groups, the number of multiplications
(MUL), the number of additions (ADD), and the number
of other operations (OTHER) like divisions, comparisons
or the calculation of a square root. As the general case
of complex-valued signals and basis functions is regarded,
MUL and ADD describe complex-valued multiplications and
additions. For presentational reasons, a further separation of
these operations into real-valued operations is omitted.

The computationally most expensive step in SE is
the projection onto the basis functions. For the weighted
projection of the residual onto a single basis function, 4MN
complex-valued multiplications, 2MN additions and one
division are required. Since SE has to project the residual
in each iteration onto every of the |®]| basis functions,
these numbers have to be further multiplied by I - |D|. For
selecting the basis function to be added, in every iteration
(2MN + 1)|®| multiplications, MN|®| additions and D]
comparisons and absolute value calculations are required
and the model and residual update consumes 2MN + 1
multiplications and 2MN additions. Due to this, the overall
complexity of SE with respect to the number of iterations
is proportional to O(I - MN - |®]). In contrast to this,
FaSE has to evaluate the weighted scalar product between
the input signal and the basis functions only once, prior
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TaBLE 1: Number of required operations for model generation by
SE and FaSE and for generating the tables.

SE
MUL I-(6MN - |D|+|D|+2MN +1)
ADD I-(3MN - |D|+2MN)
OTHER 31D
FaSE

MUL 2MN - |D|+1-(2|D|+MN +1)
ADD MN - |D|+1-(|D]+MN)
OTHER 21 - D]

FaSE table generation
MUL (D1 +1D1) - MN
ADD (D> + D) - MN/2
OTHER (IDF+1D1) - MN/2 + D]

to the iterations. This calculation requires only 2MN - | D]
complex-valued multiplications and MN - |®]| additions.
Within every iteration, only 2|®| + MN + 1 complex-valued
multiplications, |®| + MN additions, and |®| comparisons
and absolute value calculations have to be carried out. As
D] and MN are of the same magnitude, the computational
complexity of FaSE increases proportional to O(I - |D])
with respect to the number of iterations. For generating
the tables, one has to consider that the weighted scalar
products between every two basis functions have to be
evaluated, resulting in a complexity that is proportional to
O(MN - IZD\Z), as shown in Table 1.

Figure 3 shows the number of operations with respect to
the number of iterations for M = N = 64 and |D| = 4096.
This plot only shows the overall number of operations, that
is, the sum of MUL, ADD, and OTHER, in order to give
a rough impression of the overall complexity and compare
the different algorithms. The fact that complex operations
like divisions require more processing time than a simple
multiplication is omitted for this plot. It can be easily
recognized that the number of operations that is necessary
for generating the model by SE is several decades larger than
for FaSE. The plot further shows the number of operations
that is required for generating the tabulated C and Dy,
indicated by a rhomb. In addition to that, the number of
operations for the table generation is displayed as dashed
line over the complete iteration range. It has to be noted that
the table generation is independent of the iterations and this
illustration is only chosen for comparing the complexity of
the table generation with SE. Therewith, it can be recognized
that the table generation requires roughly as many operations
as 1000 iterations of SE would require. Since the number of
iterations for generating the model can easily reach values
larger than 200 as has been shown in [16], the expense for
generating the tables amortize even after a small number of
blocks. Taking into account that in typical scenarios a large
number of blocks are extrapolated with the same weighting
function, the complexity for generating the tables very soon
becomes negligible.
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forallk = 0,..

end for
forallv=1,...,1 do

u = arg max; |Ri|Dx

¢=yR,D?
/* Model update */

forall k =0,...
Rk = Rk — ‘/:\C(k,u)
end for
end for

forall (m,n) € B do
sim,n] = g[m,n]
end for

input: distorted signal s[m, n], weighting function w[m, n], basis
functions @i [m, n], tabulated values Cx) and Dy
/* Calculation of the initial weighted scalar product */

LD -1do

Ry = X mer Slm,nlof [m,n]w[m, n]

/* Basis function selection */

/* Expansion coefficient estimation */

glm,n] = glm,n] + cp,[m, n],
D] -1 do

/* Replace distorted signal parts */

output: extrapolated signal s[m, n]

Y (m,n)

ALGorITHM 3: Fast Selective Extrapolation for arbitrary basis functions.

5. Results for Arbitrary Basis Functions

In order to support the complexity evaluation from the
previous section, the processing time for SE and FaSE is
further examined. The first results presented are for arbitrary
two-dimensional basis functions. In this case, only the
original SE and the novel FaSE can be used, as transform
domain algorithms like FSE cannot deal with arbitrary basis
functions. For the runtime evaluation, the model generation
has been implemented in C, compiled with gcc 4.3.2 and
optimizations -O3, and the simulations have been carried
out on an Intel Core2 Quad @ 2.83 GHz, equipped with
8GB RAM. In order to reduce the influence from the
operating system, multiple runs of the simulations have been
conducted and the computation has been limited to the usage
of only one single core.

For the simulations, a block of size 16 x 16 samples
is extrapolated from its surrounding samples. Furthermore,
different sizes of extrapolation area L between 48 X 48 and
96 x 96 samples are regarded. Figure 4 shows the extrap-
olation time per block for different numbers of candidate
basis functions and for 250 iterations performed for model
generation. For this plot, the cardinality of the dictionary
is selected to be of the same size as the extrapolation area.
Thus, © varies between |®| = 2304 basis functions of size
48 x 48 and |®D| = 9216 basis functions of size 96 X 96.
Comparing the two curves of SE and FaSE, one can easily
recognize that FaSE is about 250 times faster than the original
SE, independently of the problem size. This is due to the fact
that for FaSE the computationally expensive weighted scalar
products only have to be evaluated once, namely, prior to
the first iteration. In the later iterations, the expensive steps
can be avoided by making use of the tabulated values and

1012

10]] 4

1010

109 X

Operations

107 F
106 N N N N N N N
0 500 1000 1500 2000 2500 3000 3500 4000
Iterations
= SE
—O- FaSE

Table generation

FIGURE 3: Operations per block for model generation by SE and
FaSE and operations necessary for generating tabulated Cy,; and
Dy. For comparison, the operations for generating the tables are
drawn over the complete iterations range although they have to
be calculated only once. Spatial sizes M = 64 and N = 64 and
dictionary size |D| = 4096.

avoiding the update of the residual. For these evaluations,
the calculation time for generating the tabulated values is not
considered, as they only have to be computed once and can
be stored. The very high computational cost of the weighted
scalar products can also be recognized by regarding Figure 5
that shows the extrapolation time per block over iterations
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FIGURE 4: Processing time over dictionary size for 2D model
generation with arbitrary real-valued basis functions and 250
iterations. The size of the extrapolation area is chosen so that MN =
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FIGURE 5: Processing time over iterations for 2D model generation
with arbitrary real-valued basis functions of size 64 X 64 and
dictionary size |D| = 4096.

for an extrapolation scenario of size 64 x 64 samples. Taking
into account the logarithmic axis, one can recognize that the
processing time per block more or less linearly increases for
SE, whereas for FaSE the processing time per block increases
only very slowly. The results correspond well to the analytical
complexity evaluation, and the speed gain of FaSE over SE
is of the same magnitude as shown in the previous section.
Apparently, Figure 3 cannot be directly translated into the
processing time shown in Figure 5, since not all regarded
operations consume the same processing time and since
the analytical evaluation cannot account for optimizations
introduced by the compiler.

Figure 6 shows the processing time for generating the
tables for different dictionary sizes |®| and for different
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TABLE 2: Average results for extrapolation of 126 blocks of size 16 X
16 samples in every image of the Kodak test image database.

Algorithm PSNR Processing time per block
TV [17] 22.40dB 0.54 sec
SFG [18] 23.63dB 15.29 sec
SDI [19] 21.60dB 0.0003 sec
FaSE 23.82dB 0.38 sec
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FIGURE 6: Processing time for generating tables over dictionary size
|®| for extrapolation areas of different sizes MN.

sizes of extrapolation area £. Comparing these results with
the ones shown in Figure 5 one can recognize that for
an extrapolation area of size 64 X 64, a dictionary size of
|D| = 4096 and 250 iterations, the table generation only
takes as long as SE would roughly need for extrapolating
6 blocks. This corresponds well to the theoretical results
presented in the analytical evaluation. The discrepancy
follows from the fact that different operations consume
unequal amounts of processing time while in the analytical
evaluation only the absolute number of operations has been
counted.

Since the proposed novel spatial domain solution does
not affect the model generation principle of SE, still a very
high extrapolation quality can be achieved. Due to the
acceleration of the algorithm, now very good extrapolation
results can be achieved at a manageable complexity for
arbitrary basis functions. To prove this, Table 2 shows the
average extrapolation quality in terms of PSNR and the
processing time for extrapolating 126 blocks of size 16 X 16
samples in every image from the Kodak image database.
For comparison, the Total Variation Image Reconstruction
(TV) algorithm from [17], the patch-based algorithm from
[18] that uses Stochastic Factor Graphs (SFG), and the
simple but very fast Spatial-Domain Interpolation (SDI)
from [19] are regarded. The comparison has been carried
out in MATLAB R2008b, and again only one core of
the above-mentioned computer has been used. Apparently,
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FaSE provides the highest extrapolation quality among the
considered algorithms only with SFG coming close. But at
the same time, it is the second fastest algorithm.

6. Modifications for Transform-Based
Basis Function Sets

As aforementioned, for FaSE the weighted scalar products
only have to be evaluated prior to the first iteration. In the
case that the regarded basis function set contains a subset
of basis functions that emanate from a discrete transform as
for example, functions of the DCT or the DFT, the explicit
evaluation of the weighted scalar products can be simplified
by replacing the summation over the product between the
weighted signal and the basis function by the corresponding
transform coefficient of the weighted signal which can be
achieved through a fast transform. To give an example, the
idea that the basis function set contains some basis functions
which emanate from the DFT will be extended. In this case,
a basis function is defined by

ng[m,i’l] _ ej(2n/M)ykmej(2n/N)f1kn (21)

with vertical frequency y; and horizontal frequency #. Then,
the summation from (12) can be expressed by the DFT

> slm,nlei [m,nlwm,n] = DFT {s{m,nlw[m,n]}|,,,,
(mn)eL
(22)

at frequency p, 7jx. Thus, the weighted scalar products for
many basis functions can be efficiently evaluated simul-
taneously by making use of fast transforms like the Fast
Fourier Transform [20] or, respectively, a fast transform that
is appropriate to the regarded basis functions. It has to be
noted that the utilization of fast transforms is only reasonable
if a large number of transform domain coefficients has to
be calculated at the same time. The fast transforms only
speed up the parallel calculation of many coefficients. The
calculation of just a single coefficient would take as long as
the explicit evaluation of the weighted scalar product. The
above-described property could also be used for speeding up
the table generation in (16). Regarding again the example of
a subset of DFT basis functions, the product between a basis
function and a conjugate complex second one is equal to a
basis function where the horizontal and vertical frequency
results from the difference of the original frequencies:

of [m, nlgilm, n]

— e—j(2ﬂ/M)ykme—j(2n/N)qknej(2ﬂ/M)y1mej(2n/N);1m (23)
= o/ CA/M) (=) m o j2r/N) (ni—ni)n

Hence, (16) can also be expressed by the corresponding
coefficients from the DFT. For other transform-based basis
function sets, similar properties exist.

In addition to the results for arbitrary basis functions
shown in Section 5, the performance of FaSE and SE is
compared to a transform domain algorithm. For this, FSE
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FIGURE 7: Processing time over iterations for 2D model generation
with DFT basis functions, |9 | = 4096.

is regarded that utilizes Fourier functions for extrapola-
tion. Here the circumstance has to be considered, that, as
described in [8], FSE does not generate a complex-valued
model. FSE selects in every iteration step one basis function
and its corresponding conjugate complex one, in such a
way that the model is always real-valued. Hence, in most
cases two basis functions are selected in an iteration, with
the exception of the real-valued constant basis function and
the function with the highest possible alternation. Thus, the
number of iterations has to be doubled for SE and FaSE
for a fair comparison as they select only one basis function
per iteration. Figure 7 shows the processing time per block
for the different approaches with |®| = 4096 Fourier basis
functions of size 64 X 64. For these simulations, the initial
scalar products for FaSE are expressed by the transform
coefficients according to (22). Although FaSE needs twice
the number of iterations as FSE for generating the model,
it is still significantly faster than FSE and furthermore several
magnitudes faster than the original spatial domain SE.

Taking all the results from the two previous sections into
account, the following recommendations can be given. In
the case that the Selective Extrapolation is carried out with
Fourier basis functions or other basis function sets that are
based on a discrete transform, one can decide either to use
a transform domain algorithm or the novel FaSE. If the
same extrapolation scenario always is considered, the tables
only have to be calculated once and the time gain of FaSE
prevails, otherwise the transform domain algorithm is the
better choice as no calculation of the tables is necessary. If
the extrapolation process is carried out with basis functions
for which no transform domain implementation is possible,
FaSE should be preferred over the original SE. FaSE is able
to efficiently trade computational complexity versus memory
consumption as the expensive operations only have to be
carried out once. Thus, the actual iterations for generating
the model become very simple and very fast.
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7. Conclusion

Within the scope of this contribution, we presented Fast
Selective Extrapolation for image and video signal extrap-
olation. For this, Selective Extrapolation, a powerful signal
extrapolation algorithm has been reviewed and its most
complex parts have been identified. The novel algorithm
behaves mathematically identical to the original algorithm
but is able to outspeed the original algorithm by several
decades by effectively trading memory consumption versus
processing time. Furthermore, the novel algorithm is able
to outperform existent fast transform domain extrapolation
algorithms which are even limited to certain basis function
sets. With that, it opens the door for further research on car-
rying out the extrapolation with different basis function sets.
Up to now, the extrapolation only has been computationally
manageable for special basis function sets that are based
on discrete transforms. But by using Fast Selective Extrap-
olation, the extrapolation can be carried out for arbitrary
basis functions which may even be only numerically defined.
This ability allows for further research on extrapolation
with signal adapted basis functions, obtained through the
Karhunen-Loéve Transform [21, 22], which has not been
computationally feasible up to now.

Although the algorithm has been introduced only for
two-dimensional data sets, it can be extended straightfor-
wardly to three dimensions by making use of the ideas
from [23] and four dimensions by using [24]. There, a
three-dimensional or, respectively, a four-dimensional model
is generated in the same way as described above for two
dimensions.
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