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Since its recent adoption for the uplink transmissions in the next-generation cellular systems 3GPP long-term evolution (LTE) and
LTE advanced, single-carrier frequency-domain equalization (SC-FDE), an effective technique to mitigate the distortion induced
by long-spanning intersymbol interference has seen a surge of interest in the research community. Implementation of SC-FDE in
multiple-input multiple-output (MIMO) systems usually requires, in advance, the channel information in terms of the channel
frequency response (CFR). In this paper, we present a training-based CFR estimation scheme, which is hardware efficient when
integrated with SC-FDE and space-time coding (STC) inMIMO systems. A thoroughmean square error (MSE) analysis of this CFR
estimation scheme is provided, where we consider linear estimators based on both least squares (LS) and minimumMSE (MMSE)
criteria by assuming different knowledge of the channel statistics. More specifically, for the LS-based approach, we assume no a
priori knowledge of the channel statistics is given other than the noise statistics, while for the MMSE-based method, we assume
both the channel covariance matrix and the noise statistics are known. Given a constraint which effectively limits the transmit
power of training signals, we also investigate the optimal design of training signals under both criteria. For the special case when the
number of transmit antennas is equal to 2, we further demonstrate that the CFR estimation could be implemented in an adaptive
manner by means of certain block-wise recursive algorithms. Extensive simulation results are provided, which demonstrate the
efficacy of this CFR estimation scheme.

1. Introduction

The severe frequency selectivity often characterizing wide-
band radio channels would inevitably induce intersym-
bol interference (ISI) which can span over many symbol
intervals. High-speed broadband wireless systems targeting
data rate of tens of megabits or beyond should be, as
a result, designed to mitigate the effect of such intense
ISI. Traditionally, time-domain equalization (TDE) is a
popular approach to compensate for ISI in single-carrier
communication systems. But for wideband channels, TDE
becomes unattractive as its complexity grows exponen-
tially with channel memory or it requires very long finite
impulse response filters to achieve acceptable performance.
An alternative approach is the single-carrier frequency-
domain equalization (SC-FDE), which has the advantage

of large reduction in the computational complexity due
to the use of the computationally efficient fast Fourier
transform (FFT) (see [1–3] for a tutorial treatment). Even
compared with orthogonal frequency-division multiplexing
(OFDM), a well-recognized multicarrier solution to combat
channel delay spread which also uses FFT, single-carrier
transmission with FDE can handle the same channels with
similar performance and essentially the same overall com-
plexity but smaller peak-to-average transmitted power ratio
[1]. This is particularly advantageous to mobile terminals
and mobile personal assistants, as it can greatly alleviate
the requirements on the radio frequency hardware at the
transmitter, such as the digital-to-analog converter and the
power amplifier, to name a few. For that reason, a technology
named single-carrier frequency division multiple access (SC-
FDMA), which is essentially based on SC-FDE, has been
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Figure 1: Block diagram of the CFR estimation for MIMO system with STC and SC-FDE.

adopted for the uplink transmissions in the next-generation
cellular systems 3GPP long-term evolution (LTE) and LTE
advanced [4]. SC-FDE has thus grasped more attention in
both academic and industrial circles.

SC-FDE has also been applied to multiple-input
multiple-output (MIMO) communication systems. This,
however, is often done jointly with space-time coding (STC),
in order that the spatial diversity available in a MIMO system
can be exploited to further mitigate the frequency selectivity,
for example, [5–9]. For this case, properly designed ST block
codes (STBCs) are generally required and there exist some
works in that regard. For example, a time-reversal Alamouti-
like STBC scheme with FDE was proposed firstly in [5]. This
scheme is attractive as it can achieve full spatial diversity, and
nearly full transmit rate if the cyclic prefix (CP) overhead is
ignored. For SC-FDE in MIMO systems with more than 2
transmit antennas, a general block-level STC was proposed
in [6] and a method based on quasi-orthogonal STBCs was
proposed in [7].

Note that when performing FDE in MIMO systems, the
channel frequency response between each transmit-receive
antenna pair is usually required at the receiver to recover the
transmitted signals [2, 3]. To obtain such channel frequency
response (CFR) knowledge, one approach is to obtain the
channel impulse response (CIR) firstly and then transfer
it back to the frequency domain through FFT processing.
As a result, the CFR estimation problem merely reduces
to the problem of estimating the CIR in MIMO systems,
which has been vigorously investigated over the years, for
example, see [10] and references therein. As an alternative,
one can apply the FFT firstly, and then estimate the CFR
directly afterwards. In fact, we notice that this alternative
approach, or the CFR estimation problem, has been studied,
for example, in [11] for systems with single transmit and
single receive antenna, and in [12] for SC-FDE in ultra-
wideband communication systems. However, there does not
seem to exist a lot of works which explore this alternative
approach particularly for MIMO systems employing both
STC and SC-FDE. This line of work merits interest on its own
terms, for not only can it advance the existing knowledge
on the subject of CFR estimation, but the CFR estimation
scheme, when designed in a manner to be integrated with
the techniques of STC and FDE in MIMO systems, can be
amenable to system implementation, and has the potential

to induce less hardware complexity and cost. This basically
motivates our work as detailed next.

In this paper, we present and investigate a CFR estimation
scheme for MIMO systems with both STC and FDE. In this
scheme, training sequences are encoded in space and time in
a similar manner as data sequences. (We notice that the CIR
estimation for MIMO channels using ST codes was consid-
ered in [13, 14].) In fact, the same set of coding hardware
can be reused; thus, no additional hardware complexity is
introduced at the transmitter and this is particularly suitable
for mobile terminals. At the receiver, different from the tradi-
tional approach where CIR is obtained first then transferred
to CFR, these training sequences are simply processed in
a similar fashion as the data sequences, for example, CP
removal and FFT processing. Following these procedures,
estimation of the CFR can thus be done directly in the
frequency domain. As the CFR estimation can make use of
the existing FFT modules for FDE, fewer complexity or cost
would be required at the receiver. This scheme is illustrated in
Figure 1. Further, in this paper, we provide a thorough mean
square error (MSE) analysis for the CFR estimation based on
two criteria, least squares (LS) and minimumMSE (MMSE),
by assuming different a priori knowledge of the channel
statistics. More specifically, for the LS-based approach, we
assume no a priori knowledge of the channel statistics is given
other than the noise statistics, while for the MMSE-based
method, we assume both the channel covariance matrix and
the noise statistics are known. Under both criteria, we also
study the optimal training sequence design by imposing
a constraint on the transmit power of training sequences.
Finally, we investigate the adaptive implementation of the
proposed CFR estimation scheme for Alamouti-like trans-
missions. We provide several block-wise recursive algorithms
to update the adaptive filter, and also study the convergence
behaviors of these recursive algorithms.

The remainder of this paper is structured as follows.
In Section 2, we describe the system model and the trans-
mission scheme of the training sequences. In Section 3, we
describe in detail the CFR estimation scheme for MIMO
systems with more than 2 transmit antennas. We also
investigate the optimal training sequence design under both
LS and MMSE criteria. In Section 4, we focus on the special
Alamouti case with 2 transmit antennas. We discuss an
adaptive implementation of the CFR estimation scheme for
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this special case, and provide a brief convergence analysis. In
Section 5, we provide extensive simulation results and also
compare with others’ work to demonstrate the efficacy of this
estimation approach. Section 6 concludes this paper.

Notation. Throughout this paper, we use bold upper case
letters to denote matrices and bold lower case letters to
signify column vectors. Superscript {·}H , {·}∗, and {·}T
will be used to denote the complex conjugate transpose,
conjugate, and transpose of a matrix or vector, respectively.
We use diag{a} for a diagonal matrix with its diagonal vector
given by a, and ⊗ for Kronecker product. IK denotes the
identity matrix of size K × K , and 0M×N for a zero matrix
of size M × N . We use the subscript {·}F to denote the
matrices or vectors in the frequency domain, and (·)+ for the
nonnegative part of a real-valued scalar or matrix.

2. Signal and SystemModel

We consider an ST-coded MIMO system equipped with
NT transmit and NR receive antennas. With symbol rate

sampling, let h(p,q) = [h(p,q)(0), . . . ,h(p,q)(ν)]
T
denote the

equivalent baseband discrete-time CIR (including the trans-
mit and receive filters as well as the multipath effect) between
the pth transmit antenna and the qth receive antenna, where
1 ≤ p ≤ NT , 1 ≤ q ≤ NR, and ν is the channel order.
We assume the channel is quasistatic, that is, its response
remains time invariant within one ST-coded frame but can
vary from frame to frame. We defineNS vectors of dimension
L × 1, {si}NS

i=1 as the training sequences, where the symbols
in si belong to the same alphabet A, and L denotes the
sequence length and is assumed to be at least equal to the
number of multipaths, that is, L ≥ ν + 1. In this proposed
CFR estimation scheme, the training sequence si is encoded
in space and time, using the same ST block encoder for
data sequences, as depicted in Figure 1. As a result of this,
the same set of hardware can be reused without additional
complexity and cost. As for the ST encoder, we adopt the
code design described in [6]. It is an extension of the
original orthogonal STBCs in [15, 16] for frequency-selective
fading channels. This type of STBCs are capable of achiev-
ing full spatial diversity and are particularly amenable to
FDE.

Without loss of generality, suppose theNS training blocks
are ST coded in amanner that they are transmitted overNc =
2NS time slots, where a time slot is defined as the duration
required to transmit a CP appended training block. Thus,
the code rate is given byR = NS/Nc = 1/2. There exist some
sporadic code designs which could achieve code rate higher
than 1/2. For example, when NT = 3 and 4, the code design
with R = 3/4 can be found in [16]. However, it has been
proved in [17] that with complex signal constellation and
under the orthogonality assumption, R cannot be greater
than 3/4 for NT > 2. For simplicity, in this part we only focus
on the case ofR = 1/2 for NT > 2. The special case ofR = 1
for NT = 2 will be discussed in detail in Section 4.

Let {Πi}NS
i=1 be a set of NS × NT real-valued matrices

of a full-rate generalized orthogonal STBC design for real

symbols. Entries of Πi are either 0 or ±1, and Πi further
satisfies the following conditions [18, Chapter 7]:

ΠT
i Πi = INT ,

ΠT
i Π j = −ΠT

j Πi, i /= j.
(1)

Then, for the block-level generalized complex orthogonal
STBC that is employed in our work, the code matrix, if
denoted as G ∈ CNcL×NT , can be written as

G =
NS∑

i=1

(
ΓAi ⊗ si + ΓBi ⊗ P(1)

L s∗i
)
, (2)

where ΓAi and ΓBi are both Nc × NT matrices, and are,
respectively, defined as

ΓAi =
⎡
⎣

Πi

0NS×NT

⎤
⎦, ΓBi =

⎡
⎣
0NS×NT

Πi

⎤
⎦. (3)

In (2), P(1)
L is an L× L permutation matrix which performs a

reverse cyclic shift when applied to an arbitrary L× 1 vector,
for example, suppose s = [s(0), s(1), . . . s(L− 1)]T , we then
have

P(1)
L s∗ = [s∗(0), s∗(L− 1), s∗(L− 2), . . . , s∗(1)]T . (4)

Given the properties ofΠi in (1), it can be easily verified that
ΓAi and ΓBi have the following properties:

ΓTAi
ΓAi = INT , ΓTBi

ΓBi = INT ,

ΓTAi
ΓAj = −ΓTAj

ΓAi , ΓTBi
ΓBj = −ΓTBj

ΓBi , i /= j,

ΓTAi
ΓBj = 0NT×NT , ∀i, j.

(5)

LetG(:, i) denote the ith column of G that corresponds to
the training blocks to be transmitted from the ith transmit
antenna over Nc time slots. For notational convenience, we
express the ith column of G as follows:

G(:, i) =
NS∑

m=1

[
Γ(:, i)⊗ sm + Γ(:, i)⊗ P(1)

L s∗m
]

=
[
sTi (1), s

T
i (2), . . . , s

T
i (Nc)

]T
,

(6)

where i = 1, . . . ,NT . To give an example of G, let us consider
a code design with rate R = 1/2 for NT = 3, where NS = 4
and Nc = 8. For this instance, G is illustrated as below

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1 s2 s3

−s2 s1 −s4
−s3 s4 s1

−s4 −s3 s2

P(1)
L s∗1 P(1)

L s∗2 P(1)
L s∗3

−P(1)
L s∗2 P(1)

L s∗1 −P(1)
L s∗4

−P(1)
L s∗3 P(1)

L s∗4 P(1)
L s∗1

−P(1)
L s∗4 −P(1)

L s∗3 P(1)
L s∗2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1(1) s2(1) s3(1)

s1(2) s2(2) s3(2)

s1(3) s2(3) s3(3)

s1(4) s2(4) s3(4)

s1(5) s2(5) s3(5)

s1(6) s2(6) s3(6)

s1(7) s2(7) s3(7)

s1(8) s2(8) s3(8)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7)
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After ST coded, the transmission structure of the training
sequences is shown in Table 1.

To avoid the interblock interference from preceding
information or training sequences, a CP with a length of
ν is inserted for each block before transmission. Then, at
time slot k, the training sequence sp(k) is forwarded to the
pth transmit antenna after CP insertion. The length of total
training symbols from each transmit antenna, denoted as
Nb, is equal to Nb = Nc(L + ν), and its minimum length is
Nb = Nc(2ν + 1) when L is chosen to be equal to ν + 1.

3. CFR Estimation for
MIMO Transmissions (NT > 2)

At the receiver, symbols corresponding to the CP are
discarded. Thus, the received signal at the qth receive antenna
at time slot k can be written as

xq(k)

=
NT∑

p=1
H(p,q)sp(k) + nq(k), q = 1, . . . ,NR, k = 1, . . . ,Nc,

(8)

whereH(p,q) is an L× L channel matrix with its (k, l)th entry
given by h(p,q)((k−l) mod L), and nq(k) denotes the additive
white Gaussian noise (AWGN) vector. It is easy to verify that
H(p,q) is a circulant matrix. Thus, its eigen matrix is the FFT
matrix, or in other words, its eigendecomposition can be
written as

H(p,q) = FHL · diag
(
h
(p,q)
F

)
· FL. (9)

FL is the orthonormal FFT matrix whose (k, l)th entry is
given by

FL(k, l) = 1√
L
exp

{− j2π(k − 1)(l − 1)
L

}
, (10)

where k = 1, . . . ,L and l = 1, . . . ,L. If denoting D
(p,q)
F =

diag(h
(p,q)
F ), we have

D
(p,q)
F (i, i) = h

(p,q)
F (i) =

ν∑

k=0
h(p,q)(k)e− j2πk(i−1)/L, (11)

where i = 1, . . . ,L. Applying the FFT operations on both
sides of (8), we obtain

xqF (k) =
NT∑

p=1
D

(p,q)
F spF (k) + nqF (k), (12)

where xqF (k) = FLxq(k), spF (k) = FLsp(k), and nqF (k) =
FLnq(k).

SinceD
(p,q)
F is diagonal, we can rewrite (12) into

xqF (k) =
NT∑

p=1
SpF (k)h

(p,q)
F + nqF (k), (13)

Table 1: Transmission structure of training sequences (NT > 2).

1 · · · Nc

TX 1 s1(1) · · · s1(Nc)
...

...
. . .

...

TX NT sNT (1) · · · sNT (Nc)

where SpF (k) = diag{spF (k)}. Stacking Nc blocks of
received signals at the qth receive antenna, we have

⎡
⎢⎢⎢⎢⎣

xqF (1)

...

xqF (Nc)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x
q
F

=

⎡
⎢⎢⎢⎢⎣

S1F (1) · · · SNTF (1)

...
. . .

...

S1F (Nc) · · · SNTF (Nc)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
SF

×

⎡
⎢⎢⎢⎢⎢⎣

h
(1,q)
F

...

h
(NT ,q)
F

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
h
q
F

+

⎡
⎢⎢⎢⎢⎣

n1F (1)

...

nqF (Nc)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
n
q
F

(14)

or in a more simplified form

x
q
F = SF h

q
F + n

q
F . (15)

Collecting the received signals across all those NR receive
antennas, we obtain the received data matrix XF =
[x1F , . . . ,x

NR
F ], which is expressed as

XF = SFHF +NF , (16)

where HF = [h1F , . . . ,h
NR
F ] and NF = [n1

F , . . . ,n
NR
F ]. Thus,

our task is to recover the CFRHF from (16).

Additionally, let us denote hq = [h(1,q)
T

, . . . ,h(NT ,q)
T

]
T

as the corresponding CIR associated with the qth antenna,
and stack all the CIR across NR receive antennas in matrix
H = [h1, . . . ,hNR]. We further define the compound inverse
FFT (IFFT) matrix F H

NT
= INT ⊗ FHL , and the compound

transmit matrix TNT = INT⊗[Iν+1 | 0(ν+1)×(L−ν−1)]. Therefore,
the corresponding CIR estimate can be computed by

Ĥ = 1√
L
TNTF

H
NT
ĤF , (17)

where ĤF is the CFR estimate for HF . In the sequel, we
discuss the linear CFR estimators based on both LS and
MMSE criteria, along with the respective optimal designs of
training sequences.

3.1. LS Estimator with Power Constraint. For the convenience
of ensuing analysis, we explicitly make the following assump-
tion.

(A1) All noise components are assumed to be com-
plex, independently and identically Gaussian dis-
tributed with zero mean and variance σ2

n . Thus,
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we have n
q
F ∼ CN (0NcL×1, σ2

nINcL) and NF ∼
CN (0NcL×NR , σ

2
nNRINcL).

Except for the noise statistics, we assume no a priori knowl-
edge of the channel parameters (e.g., the covariance matrix
of the CFR) is given, and we only consider the conventional
LS method. Therefore, the unique LS solution ĤF that
minimizes the cost function defined by ‖XF − SFHF ‖2 can
be written as

ĤF =
(
SH
F SF

)−1
SH
F XF . (18)

It should be noted that if we want to obtain the CFR with
a length greater than the default length L, interpolation is
needed.

Based on assumption (A1), it is clear that this estimate
is unbiased since E{ĤF } = HF . Let us define the CFR
estimation error as EF = ĤF − HF . Using (16) and (18),
we obtain

EF =
(
SH
F SF

)−1
SH
FNF . (19)

Its correlation matrix, REF = E{EF EH
F }, can be calculated

through

REF = σ2
nNR

(
SH
F SF

)−1
. (20)

Thus, the MSE for this CFR estimation is given by

E
{
‖EF ‖2

}
= tr

{
REF

} = σ2
nNR · tr

{(
SH
F SF

)−1}
. (21)

Now we consider the problem of designing the matrix
SF so that the estimation error is minimized. To have a
reasonable solution, it is necessary to impose a constraint to
limit the power of training sequences. Let such a constraint
be ‖SF ‖2 ≤ P0, where P0 is a given constant. Note that
the power used in the cyclic prefix is not included in this
formulation. Mathematically, this power constraint can also
be written as tr{SH

F SF } ≤ P0. For simplicity, we start
with a general problem formulation, without examining the
structure of the data matrix SF but only assuming it has
full rank. Therefore, our task is to find SF that minimizes
the MSE subject to the power constraint given above. This
constrained optimization problem can be cast as

min
SF

tr
{(

SH
F SF

)−1}
,

s.t. tr
{
SH
F SF

}
≤ P0.

(22)

To solve this problem, the following lemma will be useful.

Lemma 1. For any M × M positive semidefinite Hermitian
matrix A with its (i, j)th entry given by ai j , the following
inequality holds

tr
(
A−1

) ≥
M∑

i=1

1
aii

, (23)

where the equality is achieved if and only if A is diagonal.

Applying this lemma and the method of Lagrange
multipliers [19], we could readily solve this optimization
problem. For brevity, we omit the details and simply provide
the solution

SH
F SF = P0

NTL
INTL, (24)

which means that the diagonal entries of SH
F SF have the

same value. Re-examining the matrix SF as defined in
(14) and its relation to G in (2), we find that due to the
orthogonal structure of the ST code, SH

F SF is precisely
diagonal. Moreover, recall {si}NS

i=1 are training sequences, we
define siF = FLsi and SiF = diag{siF } for i = 1, . . . ,NS.
Then, we arrive at the following result.

Theorem 1. The following equality holds

SH
F SF = INT ⊗

⎧
⎨
⎩2

NS∑

i=1
SHiF SiF

⎫
⎬
⎭. (25)

Proof. SH
F SF is an NTL × NTL matrix and can be expressed

in the block matrix form as

SH
F SF =

⎛
⎜⎜⎜⎜⎝

Ξ1,1 · · · Ξ1,NT

...
. . .

...

ΞNT ,1 · · · ΞNT ,NT

⎞
⎟⎟⎟⎟⎠
, (26)

where Ξi, j , i = 1, . . . ,NT , j = 1, . . . ,NT , is a square matrix
of size L × L. According to both (6) and (14), Ξi, j can be
expressed as

Ξi, j =
[(
INc ⊗ FL

) ·G(:, i)]H[(
INc ⊗ FL

) ·G(
:, j

)]

=
⎧
⎨
⎩

Ns∑

m=1

[
ΓTAm

(:, i)⊗ SHmF + ΓTBm
(:, i)⊗ SmF

]
⎫
⎬
⎭

×
⎧
⎨
⎩

Ns∑

n=1

[
ΓAn

(
:, j

)⊗ SnF + ΓBn

(
:, j

)⊗ SHnF
]
⎫
⎬
⎭.

(27)

To simplify (27), we need to use the mixed-product
property of Kronecker product, that is, (A ⊗ B)(C ⊗ D) =
AC⊗BD, where A, B, C, and D are matrices of such size that
one can form the matrix productsAC and BD. Further, given
the properties of ΓAm and ΓBn in (5), we have the following:

ΓTAm
(:, i)ΓAn

(
:, j

) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, m = n, i = j,

0, m = n, i /= j,

−ΓTAn
(:, i)ΓAm

(
:, j

)
, m /= n.

(28)

Similar properties also hold for ΓTBm
(:, i)ΓBn(:, j). Moreover,

we have

ΓTAm
(:, i)ΓBn

(
:, j

) = ΓTBm
(:, i)ΓAn

(
:, j

) = 0, ∀i, j,m,n.
(29)
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Based on the above properties, (27) can be simplified into

Ξi, j =

⎧
⎪⎪⎨
⎪⎪⎩

2
NS∑

i=1
SHiF SiF , i = j,

0, i /= j.

(30)

Plugging (30) into (26), we then obtain (25).

Based on (24) and (25), we summarize the following
result.

Theorem 2. The optimal training signals under the LS
criterion should satisfy the following condition:

NS∑

i=1
SHiF SiF =

P0

2NTL
IL. (31)

This condition is the same as

NS∑

i=1

∣∣siF
(
j
)∣∣2 = P0

2NTL
, ∀ j ∈ [1,L], (32)

where siF ( j) denotes the jth element of siF .

Of note is that although Theorem 2 states the conditions
for training signals to be optimal in the sense of achiev-
ing the minimum value of MSE, it does not mean any
sequences which satisfy (32) would be suitable for practical
applications. This is because practical implementation of
communication systems will inevitably impose some addi-
tional constraints on the sequences. To give an example, let
us consider the CP-based communication systems. These
systems are usually plagued by the well-known peak-to-
average ratio (PAR) problem; thus, sequences with lower PAR
values are, in general, more preferred in practice, for they
can greatly alleviate the requirement on the power amplifier.
Under this circumstance, training sequences which not only
satisfy (32) but have a constant magnitude in both the time
domain and the frequency domain would lend themselves to
be a superior choice, for they are able to successfully preclude
the PAR problem while achieving the minimum value of
MSE. Chu sequences [20] and the class of training sequences
proposed in [21] are examples of those sequences. Finally, the
resulting minimum value of MSE can be calculated by

E
{
‖EF ‖2

}
=

L∑

j=1

NTNRσ2
n

2
∑NS

i=1
∣∣siF

(
j
)∣∣2 =

σ2
nNR(NTL)

2

P0
. (33)

3.2. MMSE Estimator with Power Constraint. In this section,
we consider the linear MMSE estimation of the CFR as
well as the optimal training sequence design. For simplicity,
we consider only the CFR associated with the qth receive
antenna, that is, h

q
F , which was defined in (14). Besides

assumption (A1), we make one additional assumption about
the channel statistics as follows.

(A2) The CFR h
q
F is a Gaussian random vector with zero

mean and full-rank covariance matrix Σq.

For convenience, we denoteΣq byΣ. Since h
q
F = (INT⊗FL)hq,

we have

Σ = (
INT ⊗ FL

) · E
{
hq(hq)H

}
·
(
INT ⊗ FHL

)
, (34)

where E{hq(hq)H} is the covariance matrix of the corre-
sponding CIR.

The MMSE estimate of the CFR can be computed
through

ĥ
q
F =

(
SH
F SF + σ2

nΣ
−1

)−1
SH
F x

q
F . (35)

We define the CFR estimation error as e
q
F = ĥ

q
F − h

q
F , then

the resulting MSE can be expressed as

E
{∥∥∥eqF

∥∥∥
2
}
= tr

{(
σ−2n SH

F SF + Σ−1
)−1}

. (36)

Similar to the approach that we took in Section 3.1, we also
impose a power constraint, and the design problem can be
formulated into

min
SF

tr
{(

σ−2n SH
F SF + Σ−1

)−1}

s.t. tr
{
SH
F SF

}
≤ P0.

(37)

Note that Σ can be diagonalized through its eigenvalue
decomposition, that is,

Σ = VΛVH , (38)

where V is a unitary matrix whose columns are eigenvectors
of Σ, and Λ is a nonnegative and diagonal matrix consisting
of all the eigenvalues of Σ. Then, (36) can be reformulated
into

E
{∥∥∥eqF

∥∥∥
2
}
= tr

{(
σ−2n ΨHΨ +Λ−1

)−1}
, (39)

where Ψ = SF V is an NcL × NTL matrix. As V is unitary, it
follows tr{SH

F SF } = tr{ΨHΨ}. According to Lemma 1, the

minimum value of E{‖eqF ‖
2} is attained when (σ−2n ΨHΨ +

Λ−1) is diagonal. Let Q = ΨHΨ, then Q must be a
diagonal matrix with elements Qii ≥ 0, for i = 1, . . . ,NTL.
Consequently, we can reformulate the optimization problem
into

min
Q

tr
{(

σ−2n Q +Λ−1
)−1}

,

s.t. tr{Q} ≤ P0.

(40)

Using the method of Lagrange multipliers [19], we can
obtain the following solution to the modified optimization
problem

Qii =
(
τ − σ2

n

Λii

)+

, ∀i ∈ [1,NTL], (41)

where Λii denotes the (i, i)th element of Λ, and the value of τ
can be found by solving

NTL∑

i=1

(
τ − σ2

n

Λii

)+

= P0. (42)
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Alternatively,Q can be rewritten as

Q =
(
τINTL − σ2

nΛ
−1)+. (43)

Thus, the resulting MSE can be computed through

E
{∥∥∥eqF

∥∥∥
2
}
=

NTL∑

i=1

Λii(
Λiiσ−2n τ − 1

)+ + 1
. (44)

It is worth noting that ΨHΨ is invariant to the post-
multiplication of Ψ by a semi-orthogonal matrix. Thus,
given the optimal solution for Q in (43), a general solution
for Ψ can be composed as Ψ = ZQ1/2, where Z is an
NcL× NTLmatrix with its column forming an orthonormal
basis. SinceΨ = SF V, it is clear that the necessary condition
for SF to be optimum is SF = ZQ1/2VH . Meanwhile, we
have SH

F SF = VQVH and both sides are diagonal matrices.
Considering the structure of SF in (14) and applying
Theorem 1, we are thus led to following result.

Theorem 3. The optimal training signals under the MMSE
criterion should satisfy the following condition for a specific
channel statistics (i.e., Σ)

V ·
(
τINTL − σ2

nΛ
−1)+ ·VH = INT ⊗

⎡
⎣2

NS∑

i=1
SHiF SiF

⎤
⎦. (45)

Equation (45) specifies the essential characteristics of the
optimum sequence under the MMSE criterion. It indicates
that the optimal design should employ a water-filling type
power allocation. Evidently, the structure of the covariance
matrix Σ will have a large impact on the optimal training
signal design. For example, when Σ is diagonal, then from
(34), we can see that E{hq(hq)H} can be a block circulant
matrix, and the optimum condition (45) would represent a
water-filling in power distribution with respect to the power
spectral density samples of the CIR. For this special case, the
optimal sequence may be generated through the frequency-
domain water-filling. For cases where Σ is not diagonal, the
optimal condition (45) may need to be jointly considered
with the Kronecker product approximation in [22]. We omit
further discussions for brevity.

4. CFR Estimation for
Alamouti-Like Transmissions

Here, we study the CFR estimation for the special case of
NT = 2 and NR = 1. This corresponds to the Alamouti-
type transmission, where NS = Nc = 2 and R = 1.
The transmission structure for the training sequences is
illustrated in Table 2. The length of total training symbols
from each transmit antenna, Nb, is equal to Nb = 2(L + ν),
and its minimum length isNb = 4ν+2 when L is chosen to be
the minimum value ν + 1. At the receiver, CPs are removed,
which yields the channel input-output relationship in matrix
vector form as

x1(k) = H(1,1)s1 +H(2,1)s2 + n1(k),

x1(k + 1) = −H(1,1)P(1)
L s∗2 +H(2,1)P(1)

L s∗1 + n1(k + 1),
(46)

Table 2: Transmission structure of training sequences (NT = 2).

time slot k time slot k + 1

TX1 s1(k) = s1 s1(k + 1) = −P(1)
L s∗2

TX2 s2(k) = s2 s2(k + 1) = P(1)
L s∗1

where x1(k) and x1(k + 1) denote two consecutive received
blocks at the single receive antenna. Applying the orthonor-
mal FFT matrix FL on (46), we obtain the frequency domain
input-output relationship as shown below
⎡
⎣

x1F (k)

x1F (k + 1)

⎤
⎦ =

⎡
⎣
S1F S2F

−S∗2F S∗1F

⎤
⎦
⎡
⎣
h(1,1)F

h(2,1)F

⎤
⎦ +

⎡
⎣

n1F (k)

n1F (k + 1)

⎤
⎦.

(47)

For this special case, the CFR estimation based on both the LS
and MMSE criteria can be readily obtained by following the
procedures outlined in Section 3. In this section, we further
demonstrate that the CFR estimation for this special case
can be implemented adaptively with block-wise recursive
algorithms. Additionally, we also provide a brief convergence
analysis of these algorithms.

4.1. Adaptive Implementation of CFR Estimation. It is easy
to show that the CFR estimator for this special case has the
following structure

GF =
⎡
⎣
G1F −G2F

GH
2F GH

1F

⎤
⎦, (48)

where G1F and G2F are both L × L diagonal matri-
ces. Consider the LS estimator as an example, we

have G1F = [SH1F S1F + SH2F S2F ]
−1
SH1F and G2F =

[SH1F S1F + SH2F S2F ]
−1
S2F . Now let us define the diagonal

vectors of G1F and G2F as g1F and g2F , respectively, that
is, G1F = diag{g1F } and G2F = diag{g2F }. Then, we can
write the CFR estimate as

⎡
⎣
ĥ1F

ĥ2F

⎤
⎦

︸ ︷︷ ︸
ĥF

=
⎡
⎣
G1F −G2F

GH
2F GH

1F

⎤
⎦

︸ ︷︷ ︸
GF

⎡
⎣

x1F (k)

x1F (k + 1)

⎤
⎦

︸ ︷︷ ︸
xF

.
(49)

We further define L × L diagonal matrices X1F (k) =
diag{x1F (k)} and X1F (k+1) =diag{x1F (k+1)}. Then, (49)
can be reformulated into
⎡
⎣
g1F

g2F

⎤
⎦

︸ ︷︷ ︸
gF

=
⎡
⎣

Φ ·XH
1F (k) Φ ·X1F (k + 1)

−Φ ·XH
1F (k + 1) Φ ·X1F (k)

⎤
⎦

︸ ︷︷ ︸
UF

⎡
⎣
ĥ1F

ĥ∗2F

⎤
⎦

︸ ︷︷ ︸
h̆F

(50)

or the simplified form

gF = UF h̆F , (51)

where in (50), Φ = [XH
1F (k)X1F (k) + XH

1F (k + 1)X1F (k +
1)]−1; h̆F is a 2L×1 vector;UF is an orthogonal matrix with
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the size of 2L × 2L; gF is a 2L × 1 vector that contains the
elements of g1F and g2F .

We would like to emphasize that this reformulation from
(49) to (50) is largely attributed to the benign property of
Alamouti’s code. This, as a result, enables the CFR estimation
to be performed adaptively, and the channel to be tracked
when the adaptive filter operates. To be more specific, we
can view UF as the tap-input data matrix, gF as the output,
and h̆F as the filter coefficients. The block diagram of this
adaptive filter is depicted in Figure 2. We further define the
error signal ĕF , which is generated by comparing the filter
output with the desired response, that is,

ĕF = gF −UF h̆F . (52)

Note that as gF is fixed and already available beforehand
at the receiver, the adaptive filter can always operate at the
training mode. Hence, if the channel is slowly time-varying,
the adaptivemethod, through estimating the current channel
gains based on the previous channel estimate, can achieve
accuracy refinement without significantly increasing the
complexity. Simulation results illustrating this can be found
in Section 5. For notational convenience, we add in the time
index for vectors or matrices in the ensuing description.
And we summarize the recursive algorithms that are used to
update the CFR estimate in Table 3, which include the block
least mean square (LMS) algorithm and the block recursive
least squares (RLS) algorithm.

The block RLS algorithm usually achieves a quicker
convergence than the block LMS algorithm (as will be shown
later by simulation results). But such a quick convergence is
attained at the cost of a heavy increase in the computational
complexity. To exemplify this, let us examine the computa-
tional complexity of both algorithms. At each iteration, the
block LMS algorithm requires around O(8L) computations,
while the block RLS algorithm requires O(24L3 + 20L2 +
4L) operations. A fast version of this block RLS algorithm,
namely fast subsampled-updating RLS algorithm [23], can
be used to achieve some complexity reduction, butmaymake
this filter cumbersome. Fortunately, thanks to the special
structure of the Alamouti’s code, it is easy to verify that
UH

F (k)UF (k) = I2L. Furthermore, we can induce that P (k)
(cf. Table 3) is a 2L × 2L diagonal matrix, that is, P (k) =
I2 ⊗ P(k), where P(k) denotes an L × L diagonal matrix.
Then, by following a similar technique used in [24, 25], we
can avoid the need for matrix inversion in the block RLS
algorithm and hence can eventually achieve a substantial
reduction in the computational complexity but without
losing the convergence advantage. For brevity, we summarize
the simplified algorithm in Table 4. This simplified algorithm
requires only O(13L) operations for each iteration, which is
much less than that of the original block RLS algorithm.

It is worthwhile to make a remark here that the above
adaptive implementation of the CFR estimation is a special
property owned by the Alamouti scheme withNT = 2.When
NT increases beyond 2, the linear CFR estimator GF , under
both the LS and MMSE criteria (cf. (18) and (35)), will no
longer have the simple Alamouti’s structure. And so, a similar
transformation as that from (49) to (50) may not necessarily

Table 3: Adaption algorithms for Alamouti-like transmissions.

Block LMS algorithm

Computation: for k = 2, 4, . . ., compute

ĕF (k − 2) = gF (k − 2)−UF (k − 2)h̆F (k − 2)

h̆F (k) = h̆F (k − 2) + μUH
F (k − 2)ĕF (k − 2)

where μ denotes the step size.

Block RLS algorithm

Initialize the algorithm by setting

h̆F (0) = 0,

P (0) = δ−1I2L.

δ is a small positive constant and λ is the forgetting factor (λ < 1).

For each instant of time, k = 2, 4, . . ., compute

C(k) = P (k− 2)UH
F (k)

V(k) = λI2L +UH
F (k)C(k)

K(k) = C(k) ·V−1(k)

P (k) = λ−1[P (k − 2)−K(k)UF (k)P (k − 2)]

ĕF (k) = gF (k)−UF (k)h̆F (k − 2)

h̆F (k) = h̆F (k − 2) +P (k)UH
F (k)ĕF (k)

Table 4: Simplified block RLS algorithm.

Initialize the algorithm by setting

h̆F (0) = 0,

P(0) = δ−1IL.

δ is a small positive constant and λ is the forgetting factor (λ < 1).

For each instant of time, k = 2, 4, . . ., compute

Ω(k) = [λIL + P(k)]−1

P(k) = λ−1[P(k− 2)− P(k − 2)Ω(k)P(k − 2)]

ĕF (k) = gF (k)−UF (k)h̆F (k − 2)

h̆F (k) = h̆F (k − 2) + [I2 ⊗ P(k)]UH
F (k)ĕF (k)

hold. Then, the adaptive implementation for CFR estimation
for cases of NT > 2 requires further investigation.

4.2. Convergence Analysis. Convergence behaviors of these
block-level recursive algorithms are briefly discussed as
follows. We are interested in the behavior of ξ(k) =
E{ĕF (k)ĕHF (k)}, particularly at the steady state, where ĕF (k)
denotes the error signal, as defined in (52). For the block
LMS algorithm, we define the weight-error vector as

vF (k) = h̆F (k)− hF ,0, (53)

where hF ,0 is the optimum tap-weight vector for the filter.
Thus, we have

vF (k) = vF (k − 2) + μUH
F (k − 2)ĕF (k − 2). (54)

Defining eF ,0(k) = gF (k)−UF (k)hF ,0, we have

ĕF (k) = eF ,0(k)−UH
F (k − 2)vF (k). (55)

Let the weight-error correlation matrix be given as

Rvv(k) = E
{
vF (k) · vHF (k)

}
. (56)
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g2F (k)

Figure 2: Block diagram of the adaptive filter.

Thus, the MSE of weight vector error can be obtained
by simply taking the trace of Rvv(k). To facilitate the
convergence analysis, we make the following assumptions.

(A3) Elements of eF ,0(k) are samples of a white noise
process, which implies that E{eF ,0(k)eHF ,0(k)} =
ξmin ·I2L, where ξmin is the minimumMSE at the filter
output.

(A4) UF (k) and eF ,0(k) are jointly Gaussian, and are
uncorrelated with each other.

(A5) vF (k) is independent of UF (k) and eF ,0(k). Further,
we assume Ruu = E{UH

F (k)UF (k)}/2L, where Ruu is
the correlation matrix of the filter tap inputs.

Based on the above assumptions and following a similar
procedure in [26, Appendix 8A], we can compute the excess
MSE, which is defined as the difference between the steady-
state MSE (i.e., ξ(k = ∞)) and the minimumMSE ξmin of an
adaptive filter, approximately by

ξBLMS
excess =

μξmin

2
tr(Ruu), (57)

where tr(Ruu) is equivalent to the sum of the powers of
the signal samples at the filter tap inputs. Accordingly, the
misadjustment, a dimension-free degradation measure that
is defined as the ratio of the steady-state value of the excess
MSE to the minimumMSE, can be written as

MBLMS = μ

2
tr(Ruu). (58)

Also, the steady-state MSE of the block LMS algorithm is
given by

ξBLMS
steady = 2Lξmin +

μξmin

2
tr(Ruu). (59)

It is obvious that the convergence behavior of the block LMS
algorithm is governed by the eigenvalues of the correlation
matrix Ruu of the filter tap input. Therefore, similar to the

conventional LMS algorithm, the block LMS algorithm in
nature is also a stochastic implementation of the steepest-
descent method [26].

For the block RLS algorithm, its convergence analysis is
undertaken on an adaptive identification scheme [27]. We
consider a linear multiple regression model characterized by

gF (k) = UF (k)hF ,0 + eF ,0(k), (60)

where hF ,0 is the regression parameter vector, UF (k) is the
tap-input matrix, eF ,0(k) is the measurement noise, and
gF (k) is the desired response. We define the weight error
vector vF (k) the same as in (53) and its correlation matrix
Rvv(k) the same as in (56). Further, we assume that the input
signal vector is drawn from a stochastic process which is
ergodic in the autocorrelation function, thus the time average
can be used instead of the ensemble average [28]. Then, for
λ < 1, following a similar approach as described in [27] for
the analysis of RLS algorithms, the excess MSE for this block
RLS algorithm at steady state can be written as

ξBRLSexcess =
1− λ

1 + λ
2Lξmin, (61)

and the misadjustment is simply

MBRLS = 1− λ

1 + λ
2L. (62)

Finally, the steady-state MSE is approximately given by

ξBRLSsteady =
4L
1 + λ

ξmin. (63)

5. Simulation Results

In this section, we provide some simulation results to
demonstrate the efficacy of our proposed scheme. In our
simulations, we employ a specific block structure for both
data and training sequences, which is illustrated in Figure 3,
taking the case of NT = 2 as an example. This structure
would be able to accommodate the proposed CFR estimation
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Figure 3: Block structure for both data and training sequences.

scheme and various FDE techniques. We assume the channel
is frequency selective with channel memory ν = 3, and
further assume block fading, that is, the channel fading gains
are constant over one ST-coded block including both data
and training subblocks, but vary from block to block. For
simplicity, we assume no a priori knowledge is available
regarding the channel second-order statistics. Hence, only
LS method is considered in our simulations. Chu sequences
[20], a special case which satisfies the optimal condition
given in (32), are chosen to be the training sequences. We
use 8-PSK for data transmission without channel coding. At
the receiver, channel estimation and equalization are both
processed in the frequency domain. As a result, the FFT
modules for FDE can be easily reused for the CFR estimation.
Several different FDE approaches that are applicable to the
structure shown in Figure 3 can be found in [9], and are
employed in our simulations.

Figures 4(a) and 4(b) illustrate the BER performance cor-
responding to the frequency-domain MMSE linear equaliza-
tion andMMSE decision-feedback equalization, respectively,
under both CFR estimation and perfect CFR knowledge.
When L = 4 (Nb = 14), that is, the minimum length
to estimate the CFR, we have P0 = 16. The performance
penalties due to inaccurate channel estimation, if evaluated
at BER = 10−4, are about 2.4 dB for the decision-feedback
equalization and 2.8 dB for the linear equalization. When L
extends to 7, or equivalently Nb extends to 20 as shown in
Figure 3, P0 is accordingly increased to 28. Then, the BER
performance penalties for the decision-feedback equalization
and the linear equalization are reduced to 1.1 dB and 1.9 dB,
respectively.

Furthermore, we also compare the performance of our
approach with the method proposed in [29]. The approach
reported in [29] was designed for channel estimation in
MIMO systems with SC-FDE. It allows the transmitted
sequence to be nulled on certain frequency tones, causing

the transmitted training sequences to be orthogonal in
the frequency domain. Essentially, this approach [29] is
equivalent to the on-off type estimation for each channel.
To ensure a fair comparison, we apply the reference method
[29] to the same structure depicted in Figure 3 for the case
of NT = 2. Then, both our scheme and the reference
scheme [29] will achieve full rate, that is, R = 1. Since
there are 20 symbols in total allocated for the channel
parameter estimation in the structure shown in Figure 3,
when implementing the approach reported in [29], we
allocate 16 for training sequences, and 4 (rather than ν =
3) for the CP. This is because it is required in [29] that
the length of training sequences must be evenly divisible
by NT . Furthermore, in the simulations, Chu sequences
[20] are also adopted as the training sequences for this
benchmark approach, as they as well satisfy the condition
of optimality described in [29]. The BER performance of
such an algorithm is depicted in Figure 4 by dash-dot lines.
As illustrated by Figure 4, the system using our proposed
scheme performs as well as, if not better than, the system
using the approach described in [29]. However, considering
the fact that implementation of the method given in [29]
requires the transformation from CFR to CIR and then back
to CFR (see details in [29]), our approach appears much
simpler and straightforward.

Under similar simulation set-up, we also study the case
of 2TX-2RX where the Alamouti-type STBC is employed at
the transmitter side. At the receiver side, CFR estimation is
performed based on the received signals across those two
receive antennas, which is followed by FDE. In particular,
we consider the equal gain diversity combining in the
frequency domain. We further consider the case of 3TX-
1RX, where the code design illustrated in (7) is used. BER
performance of these scenarios under the frequency-domain
linear equalization is depicted in Figure 5. For the purpose
of comparison, we also plot in the same figure the BER
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Figure 4: BER performance with FDE under CFR estimation and perfect CFR knowledge.
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Figure 5: BER performance comparison for 2TX-1RX, 2TX-2RX,
and 3TX-1RX with linear equalization.

performance of the 2TX-1RX case. From these curves, we
notice that performance penalties due to inaccurate channel
estimation are almost the same for the 2TX-1RX and 2TX-
2RX cases, but are relatively smaller for the 3TX-1RX
case. Furthermore, because of the addition of one more
receive antenna, the BER performance of 2TX-2RX is much
improved over that of the 2TX-1RX case. However, as shown

in Figure 5, the BER performance of 2TX-2RX is inferior
to that of the 3TX-1RX case. This is largely due to the fact
that this 3TX-1RX system we consider here is not a full-rate
system (i.e., R = 1/2), which is in contrast to those systems
employing two transmit antennas and Alamouti-type code.

For the special case of NT = 2, we also conduct simu-
lations to study the behaviors of these adaptive estimation
algorithms. For simplicity, Chu sequences [20] are used again
in our simulations. We set L = ν + 1, P0 = 16, and σ2

n = 0.1.
Block fading is still adopted, but the channel fadings are
further assumed to be correlated in the time domain. This
means the Doppler spread is introduced, and it may affect
performance of the adaptive algorithms, as will be confirmed
later. The rate of fading in our simulations is determined by
fdT, where fd denotes the maximumDoppler frequency shift
and T denotes the duration of one whole ST-coded block. A
larger value of fdT implies faster fading and vice versa. The
following simulation results are obtained by setting fdT =
10−4, unless otherwise stated. Figure 6(a) shows a plot of
the squared error ‖ĕF (k)‖2 versus the number of iterations
for a single run or trial of the block-wise LMS and RLS
algorithms. Since those algorithms only iterate once for each
ST-coded frame, the number of iterations also corresponds
to the number of frames. As is shown by Figure 6(a), the
learning curves for a single trial of both adaptive algorithms
exhibit a noisy form. However, it is clearly seen that the block
RLS algorithm converges much faster than the block LMS
algorithm. Additionally, we are also interested in the behavior
of the squared error deviation ‖vF (k)‖2 for both algorithms.
For the same realization, Figure 6(b) shows the transient
behavior of ‖vF (k)‖2 for both algorithms. As ‖ĕF (k)‖2
converges, ‖vF (k)‖2 converges accordingly. But notice that
the curves in both figures are plotted at different vertical
scales. It is worth noting that in our simulations, we ran
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Figure 6: Transient behavior of squared error ‖ĕF (k)‖2 and ‖vF (k)‖2 of the block-wise LMS and RLS algorithms. fdT = 10−4. Block RLS:
λ = 0.8; block LMS: μ = 0.08.
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(a) E{‖ĕF (k)‖2}

0 50 100 150 200

0 50 100 150 200

0

1

2

3

4

5

6

7

8

Number of iterations

M
ea
n
-s
qu

ar
e
er
ro
r

0.35

0.4

0.45

Simulated MSE (LS based)
Theoretical MSE (LS based)

Block RLS

Block LMS

(b) E{‖vF (k)‖2}

Figure 7: Learning curves of the block-wise LMS and RLS algorithms for themean-square error E{‖ĕF (k)‖2} and E{‖vF (k)‖2}. fdT = 10−4.
Block RLS: λ = 0.8; block LMS: μ = 0.08.

the filter from scratch by simply initializing elements of the
channel estimate (i.e., the filter coefficients) all to zeros.
This is to demonstrate the convergence performance of these
block-wise algorithms. However, in practice, it is certainly
possible to speed up the convergence process and reduce the
amount of training data. For example, for the first frame,
we can obtain the channel estimate by using nonadaptive
approach from (49) (i.e., hot start initialization). Afterwards,
we can apply the adaptive method.

Given the same set of parameters that lead to the
results shown in Figure 6, we conduct 100 independent
trials and compute the ensemble average. In Figure 7(a), we
plot the learning curves of both block-wise algorithms for
E{‖ĕF (k)‖2} versus the number of iterations. It is clearly
seen that ensemble averaging helps smooth out the effects
of gradient noise in the learning curves. For the same
set of trials, we also compute the corresponding values of
E{‖vF (k)‖2}, and plot them in Figure 7(b). In addition, for
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the purpose of comparison, MSE values obtained from the
nonadaptive CFR estimation experiments based on the LS
method are also plotted in the same figure, together with
the theoretical value. Such a theoretical MSE value can be
obtained by plugging these simulation parameters into (33),
and we obtain E{‖EF ‖2} = 0.4. The subplot in Figure 7(b)
indicates a very good match between the simulated values
and the theoretical one, which in turn corroborates the
correctness of our derivations. Moreover, it is also observed
that after the learning curves converge (especially for the
block RLS algorithm), the MSE values attained are much
smaller than those obtained by the nonadaptive method
or the one computed theoretically. This basically demon-
strates the performance advantage of using this adaptive
approach.

Finally, we provide some simulation results in Figure 8
to demonstrate the error performance of both adaptive esti-
mation algorithms at higher Doppler spreads. In particular,
we consider three different Doppler spreads: fdT = 10−4,
10−3, and 10−2. And we conduct 100 independent trials for
each case. For simplicity, we leave the step sizes unchanged
in our simulations, that is, λ = 0.8 and μ = 0.08; but
note that it is desirable to reduce them accordingly as the
frequency dispersion or Doppler spread increases. Here,
we only study the behavior of E{‖vF (k)‖2}, and for the
ease of comparison, we also plot in Figure 8 the theoretical
MSE value of the nonadaptive LS estimation approach. The
results shown in Figure 8 indicate that as the Doppler spread
increases moderately, for example, from fdT = 10−4 to
fdT = 10−3, the estimation accuracy of both algorithms will
degrade a little, but not severely. However, further increase
in the Doppler spread, for example, from fdT = 10−3

to fdT = 10−2, will lead to a drastic degradation in the
estimation accuracy for both algorithms. In fact, in this
case, the estimation accuracy of each of these two adaptive
algorithms is inferior to that of the nonadaptive estimation
approach, indicating that they are unable to track faster
channel variations and thus may no longer be usable in
practice.

6. Conclusion

In this paper, we presented and studied a training-based
CFR estimation scheme for ST-coded MIMO systems with
SC-FDE. This scheme is different from the traditional one
which obtains the CIR firstly then transfers it to the CFR.
In this scheme, CFR estimation is jointly implemented with
FDE; thus, estimate of the CFR can be obtained directly
and the hardware complexity of the transceiver can also
be reduced. To be more specific, training sequences are ST
block encoded at the transmitter using the same encoder
for data sequences. At the receiver, similar procedures are
applied to both data and training sequences, including the
CP removal and FFT processing. Then, estimation of the
CFR is performed immediately afterwards. Conditioning on
different a priori channel knowledge, we further studied
the CFR estimation based on two criteria: LS and MMSE.
A thorough analysis of the MSE in estimating the CFR
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Figure 8: Learning curves of the block-wise LMS and RLS algo-
rithms for E{‖vF (k)‖2} under different Doppler spreads: fdT =
10−4, 10−3, and 10−2. Block RLS: λ = 0.8; block LMS: μ = 0.08.

was provided under each criterion. Moreover, imposing a
constraint on the transmit power of training sequences, we
also investigated the optimal design of training signals. It is
shown that under the LS criterion, training sequences having
a constant sum magnitude at each frequency tone, such as
Chu sequences, will lead to the least MSE. For the MMSE
criterion, we have shown that the optimal design of training
sequences features a water-filling-type power distribution.
Additionally, we demonstrated that adaptive implementation
of the CFR is feasible when the number of transmit antennas
is equal to 2, which is due to the benign property of
Alamouti’s code. However, we feel that the identical property
may not be possessed when NT increases beyond 2 although
it may need further investigation.
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