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Based on simulations on the ability of the Gaussian-function windowed Gabor coefficient spectrum to separate order components,
an improved flowchart for Gabor order tracking (GOT) is put forward.With a conventional GOT flowchart with Gaussian window,
successful order waveform reconstruction depends significantly on analysis parameters such as time sampling step, frequency
sampling step, and window length in point number. A trial-and-error method is needed to find such parameters. However, an
automatic search with an improved flowchart is possible if the speed-time curve and order difference between adjacent order
components are known. The appropriate analysis parameters for a successful waveform reconstruction of all order components
within a given order range and a speed range can be determined.

1. Introduction

Because of the inherent mechanism features, the frequency
contents of the main excitations in rotary machinery are
integer or fractional multiples of a fundamental frequency,
which is usually the rotary speed of the machine [1]. The
integer or fractional multiples of the fundamental frequency
are called “harmonics” or “orders.” A machine’s run-up
or run-down operation is a typical nonstationary process.
The excitations in the machine are analogous to frequency-
sweep excitations with several excitation frequencies at a time
instant because the fundamental frequency is time varying.
The vibroacoustic signals acquired during this stage carry
information about structural dynamics. Information extrac-
tion from these signals is important. Order tracking (OT) is a
dedicated nonstationary signal processing technique dealing
with rotarymachinery. Several computational OT techniques
have been developed, such as resampling OT [1], Vold-
Kalman OT [2, 3], and Gabor OT (GOT) [4], each with its
strengths and shortcomings. Among them, GOT can easily
implement the reconstruction of order waveforms, but it has
the following limitations.

(i) It is not suitable for signals with cross-order compo-
nents [5].

(ii) The appropriate analysis parameters are determined
by the trial-and-error method (human-computer
interaction) to separate order components in the
Gabor coefficient spectrum. However, no reports
have explained how to find the appropriate param-
eters.

In this study, we addressed the second limitation, and
established a flowchart for GOT without trial and error.
We first generalized the conditions from simulations under
which a Gabor coefficient spectrum with a Gaussian window
can separate order components, and then combined the
conditions and current GOT technique for an improved
flowchart.

This paper is organized as follows. Section 2 introduces
the GOT and the convergence conditions for the recon-
structed order waveform. Section 3 investigates the ability
of a Gabor coefficient spectrum with Gaussian window
to separate order components using simulation. Section 4
explains the improved flowchart. Section 5 verifies the
proposed flowchart. Section 6 concludes the paper.
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2. GOT and the Convergence Conditions for the
Reconstructed OrderWaveforms

2.1. Discrete Gabor Transform and Gabor Expansion. GOT is
based on the transform pair of discrete Gabor transform (1)
and Gabor expansion (2) [6]. Gabor expansion is also called
Gabor reconstruction or synthesis:

c̃m,n =
mΔM+L/2−1
∑

i=mΔM−L/2
s[i]γ∗m,n[i],

=
mΔM+L/2−1
∑

i=mΔM−L/2
s[i]γ∗[i−mΔM]e− j2πni/N ,

(1)

s[i] =
M−1
∑

m=0

N−1
∑

n=0
c̃m,nhm,n[i]

=
M−1
∑

m=0

N−1
∑

n=0
c̃m,nh[i−mΔM]e j2πni/N ,

(2)

where s[i] is the signal, i,m,n,ΔM,M,N ,L ∈ Z, ΔM denotes
the time sampling step in the point number; M denotes the
time sampling number, N denotes the frequency sampling
number or frequency bins; and L denotes the window
length in point number, and “∗” denotes complex conjugate
operation.

The set of the functions {hm,n[i]}m,n∈Z is the Gabor
elementary functions, also termed as the set of synthetic
functions, and {γm,n[i]}m,n∈Z is the set of analysis functions.
h[i] is the synthetic window and γ[i] is the analysis window.
Thus, {hm,n[i]}m,n∈Z and {γm,n[i]}m,n∈Z are the time-shifted
and harmonically modulated versions of h[i] and γ[i],
respectively.

Equation (1) shows that the Gabor coefficients, c̃m,n, are
the sampled short-time Fourier transform with the window
function γ[i]. To utilize the FFT, the frequency bin, N , is
set to be equal to L, which has to be a power of 2. L has
to be divided by both N and ΔM in view of numerical
implementation. For stable reconstruction, the oversampling
rate defined by

ros = N

ΔM
(3)

must be greater or equal to one. It is called the critical
sampling rate when γos equals one. The critical sampling
means the number of Gabor coefficients is equal to the
number of signal samples.

Equation (2) exists if and only if h[i] and γ[i] form a
pair of dual functions [7]. Their positions in (1) and (2) are
interchangeable.

2.2. Convergence Conditions for Reconstructed Order Wave-
forms. Given h[i], ΔM and N , generally, the solution of γ[i]
is not unique. If viewed only from pure mathematics, we can
perfectly reconstruct the signal s[i] with (1) and (2) as long
as γos ≥ 1 and γ[i] is a dual function of h[i], regardless

whether h[i] and γ[i] are like. However, the idea behind
GOT is to reconstruct the different order components (or
harmonics) in the signal. There are three other conditions
for the convergence of the reconstructed order waveforms.

(i) The analysis window γ[i] has to be localized in the
joint time-frequency domain so that c̃m,n will depict
the signal’s time-frequency properties. In the context
of rotary machinery, c̃m,n are desired to describe the
signal’s time-varying harmonics for a run-up or run-
down signals.

(ii) The time-frequency resolution of γ[i] should be able
to separate adjacent harmonics within the desired
order range and rotary speed range.

(iii) The behaviors of h[i] and γ[i], such as time/fre-
quency centers and time/frequency resolution, have
to be close. Only in this way will the reconstructed
time waveform with (4) converge to the actual order
component:

ŝp[i]

=
M−1
∑

m=0

N−1
∑

n=0
ĉm,nhm,n[i] =

M−1
∑

m=0

N−1
∑

n=0
ĉm,nh[i−mΔM]e j2πni/N ,

(4)

where ĉm,n denotes the extracted Gabor coefficients asso-
ciated with the desired order p, and ŝp[i] denotes the
reconstructed pth order component waveform.

Given a window function h[i], the Gabor transform’s
time sampling step ΔM, and the frequency sampling step N ,
the orthogonal-like Gabor expansion technique [8], which
seeks the optimal dual window so that the dual window
γ[i] most approximates a real-value scaled h[i], has been
developed. When h[i] is the discrete Gaussian function, that
is,

h[i] = g[i] = 4

√

1

2π(σD)2
e−1/4(i/σ

D)
2 ∀i ∈

[

−L

2
,
L

2
− 1
]

,

(5)

then when
(

σD
)2 =

(

σDopt
)2 = ΔM ·N

4π
, (6)

the obtained dual window by the orthogonal-like technique
is the optimal [7]. Moreover, the optimal dual window is
related to the oversampling rate. Generally, the difference
between a window and its optimal dual window decreases
as the oversampling rate increases. The difference between
the analysis and synthesis windows is negligible for the
commonly used window functions, such as the Gaussian and
Hanning windows when the oversampling rate is not less
than four [7]. The window in this study is limited to the
Gaussian window.

2.3. Conventional Flowchart for GOT. Figure 1 is the flow-
chart for the conventional GOT routine. There is no
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Figure 1: Flowchart for the conventional GOT.

problem about the convergence conditions (1) and (3),
while condition (2) is satisfied using the trial-and-error
method.

In conventional GOT flowcharts, human-computer in-
teraction is needed to determine the appropriate analysis
parameters. Each time the analysis parameters are changed,
the user needs to give a visual inspection to the obtained
Gabor coefficient spectrum to judge how well the order
components are separated in the spectrum. If it fails, then
the analysis parameters are adjusted to get another Gabor
coefficient spectrum.

3. Simulation Investigation on the Ability of the
Gabor Coefficient Spectrumwith Gaussian
Window to Separate Order Components

To examine the ability of the Gabor coefficient spectrum
to separate order components quantitatively, the Gaussian
window, which is optimally localized in the time-frequency
domain, is used as the analysis window. The time standard
deviation σt in seconds of the Gaussian window in the
continuous time domain is utilized as an input parameter to
generate the discrete window in discrete Gabor transform. Its
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advantage is that it is easy to find the relationship between σt
and the signal’s characteristic because the signals of interest
come originally from the continuous time domain.

3.1. The Gaussian Window and Its Time Standard Deviation.
The energy-normalized discrete Gaussian window is

g[i] = 4

√

1

2π(σD)2
e−1/4(i/σ

D)
2 = 4

√

√

√

√

1

2π
(

σt fs
)2 e

−1/4(i/(σt fs))2

= 4

√

√

√

√

1

2π
(

σt fs
)2 e

−L2/(4σ2t f 2s )(i/L)2

= 4

√

√

√

√

1

2π
(

σt fs
)2 e

−1/(4σN 2)(i/L)2 ∀i ∈
[

−L

2
,
L

2
− 1
]

,

(7)

where fs denotes sampling frequency, L denotes the window
length in point number, σD denotes the standard deviation
of the discrete window, and σt denotes the time standard
deviation in seconds of the continuous time domain function
g(t), whose sampled version is g[i]:

σt = σD

fs
, (8)

where σN denotes a normalized value defined by

σN = σt fs
L

. (9)

Window length L should be large enough to make σN
small enough. Small σN means the values at both ends of the
Gaussian window are small, which will reduce the spectral
leakage in Gabor transform. In our simulations, σN ≤ 0.1
was generally guaranteed, which implies that the values at
both ends of the Gaussian window are not larger than 0.2%
of the window’s peak value.

The frequency domain standard deviation in Herzs of
g(t) is

σ f = 1
4πσt

. (10)

3.2. Simulations. The discrete Gabor transform (1) is no
more than a sampled short-time Fourier transform (STFT).
The inherent limitation of STFT is that its time and
frequency resolutions cannot be improved simultaneously.
Our simulations did not aim to demonstrate this point but
to disclose the conditions under which the Gabor coefficient
spectrum can separate order components. We limited the
frequency bins N equal to L.

Figure 2 depicts three Gabor coefficient spectra of
the simulation signal S1 with different Gaussian window
functions. For convenience of explanation, auxiliary points
“0,” “1,” some auxiliary lines, and two characteristic values
determined from numerical experiments, 6σ f and 6σt, are
listed in this figure. In each spectrum, the abscissa is time in

seconds and the ordinate is frequency in Hz. The color in the
spectrum indicates the magnitude of the Gabor coefficients.

S1 consists of five order components and a Gaussian
white noise with SNR equal to 50 (34 dB). The rotary speed
n = 60t; the instantaneous amplitude of the pth order
component Ap(t) = 1; the instantaneous frequency of the
pth order component fp(t) = p · t.

The closer two components are located theoretically
in the time-frequency domain, the more likely they will
overlap in the Gabor coefficient spectrum and the more
difficult it will be to distinguish them. The feature of run-
up or run-down signals is that not only are there multiple
components at the same time instant but there are also
multiple components at the same frequency.

In Figure 2(a), at 6.82 s (indicated by line “0”), the
frequency spacing between the adjacent order components
is 6.82Hz, equal to 6σ f . There are no obvious overlaps
between the five components at times larger than 6.82 s.
When the time is larger than 6.82 s, the theoretical time
spacing between any adjacent two-order components at the
same frequency is larger than 6σt .

When σt is equal to 200ms, 6σ f is equal to 2.387Hz
(Figure 2(b)), and the instantaneous frequency spacing
between the adjacent order components is larger than 6σ f

when the time is larger than 2.387 s. However, different from
Figure 2(a), there are still overlaps in Figure 2(b) between
the components when the time is larger than 2.387 s. These
are due to the small time spacing between the adjacent
order components at the same frequency. The overlaps exist
between S4 and S5 below the frequency of about 24Hz, at
which the corresponding instant of S4 is 6 s and that of S5 is
4.8 s. The spacing is 1.2 s, equal to 6σt . Similarly, the overlaps
exist between S4 and S3 below the frequency of about 14.4Hz,
where the corresponding time of S3 is 4.8 s, and that of S4 is
3.6 s. The spacing is 1.2 s, also equal to 6σt. We can explain
Figure 2(c) in a similar manner.

To sum up, assume that fspaing,min (Hz) is the minimum
theoretical frequency spacing between the adjacent order
components at the same time instant and tspacing,min (s) is
the minimum theoretical time spacing between the adjacent
order components at the same theoretical frequency. If a
Gabor coefficient spectrum with a Gaussian window of time
standard width σt can separate the order components within
a given order range and a speed range (i.e., the coefficient
at any time-frequency sampling point is significantly the
contribution from an individual component but not a
combined contribution of several adjacent components),
then there are the following approximate relationships:

fspacing,min ≥ 6σ f = 6
4πσt

⇐⇒ σt ≥ σt,min = 6
4π fspacing,min

,

(11)

tspacing,min ≥ 6σt ⇐⇒ σt ≤ σt,max =
tspacing,min

6
. (12)

Inequalities (11) and (12) are the conditions for the min-
imum frequency spacing and the minimum time spacing,
respectively.
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Figure 2: Gabor coefficient spectra with different Gaussian window widths for Signal S1, S1(t) = ∑5
p=1 Sp(t) + Noise|SNR=50(34 dB) =

∑5
p=1 cos(2πp(t

2/2)) + Noise|SNR=50(34 dB).

4. Improved GOT Flowchart

A Gabor coefficient spectrum that could separate the order
components is obtained by trial and error in the conventional
GOT flowchart. The conditions for σt ((11) and (12)) to
separate components in the Gabor coefficient spectrum are
used to improve the GOT flowchart (Figure 3). Determining
fspaing,min and tspacing,min becomes the first step in the
improved flowchart, and σt is then determined by (11) and
(12) to generate the Gaussian window (analysis window). It
is possible that there is no value for σt that could separate all
order components within a given order and a speed range.

4.1. Determination of fspacing,min and tspacing,min. Given a
Gaussian window’s σt for discrete Gabor transform, when the
order difference between the adjacent order components are
the same (Figure 4), it is liable to destroy the condition for
the minimum frequency spacing with a small rotary speed.

The smaller the rotary speed and the larger the order, the
smaller the time spacing between adjacent order components
at the same frequency and the more liable the destruction
of the condition for the minimum time spacing. It can be
determined from Figure 4 that

tspaing,min = tB = nmin · Δp
pmax · k , (13)

fspacing,min = nmin · Δp
60

. (14)

Equtions (13) and (14) hold when the speed is linearly
varying and the order difference between the adjacent order
components is the same. When the speed does not change
this way, it is still easy to determine fspacing,min analytically.
fspacing,min = (nmin/60)Δpmin, where Δpmin denotes the
minimum order difference between the adjacent order
components. However, it would be difficult to determine
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Figure 3: Flowchart for the improved GOT.

tspacing,min analytically even if it is not impossible. However,
as long as the speed n(t) changes monotonously, we can
numerically determine tspacing,min within the given speed
range [nmin,nmax], order range [pmin, pmax], and frequen-
cy range [ fmin, fmax]. The process is described as follows
(Figure 5):

(i) input n(t), [nmin,nmax], [pmin, pmax], [ fmin, fmax], δ f ,

(ii) calculate the theoretical frequency curve

f j(t), j = 0, 1, . . . J , (15)

of all order components according to the speed-time curve
n(t), where j denotes the index for the order value pj

within [pmin, pmax] and j increases as pj increases; the order
difference between the adjacent order componentsΔpj| j≥1 =
pj − pj−1,

(iii) i = 0, fi = fmin,

(iv) find the abscissa t j of the intersection of the two
curves: f (t) = fi and f (t) = f j(t), j = 1, 2, . . . , J ,
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signal S2(t); and (b) signal S2(t) (in black) and the simultaneous speed n(t) (in red).
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(vi) find the minimum of the set {tspacing, j} j≥1 and assign
it to tspacing,i,

(vii) i = i + 1, fi = fi + δ f ,

(viii) repeat steps (4)−(7) until fi is larger than or equal to
fmax,

(ix) find the minimum of the set {tspacing,i} and assign it
to tspacing,min.

5. Verification

To verify the effectiveness of the improved flowchart, a
simulation signal is defined as

S2(t) =
40
∑

p=1
Sp +Noise|SNR=50(34 dB)

=
40
∑

p=1
Ap cos

(

2πp
60

(

nmint +
k

2
t2
))

+Noise|SNR=50(34 dB),

(17)
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where nmin = 800 r/min, k = 93.3 r/(min×s); the instan-
taneous amplitude of the pth order component is:

Ap = 1. (18)

For this signal, if the order range of interest is [1, 30] and
the speed range of interest is above 800 r/min, then fspaing,min

and tspacing,min determined with (13) and (14) are 13.3Hz and
285.6ms, respectively. Consequently the appropriate range
for σt is [35.8, 47.6] ms. Figure 6 shows the result when σt
equals to 40ms. There are no overlaps between the order
components with an order not larger than 30 in Figure 6(a).

We tested some real-world signals with simultaneous
speeds not linearly varying. Figures 7 and 8 are two such
examples. In both cases, a photoelectric tachometer was used
to detect the simultaneous speed.

For signal S3(t) (Figure 7), the order difference between
the adjacent order components is 0.5, the ranges of interest
are order range: [0.5, 20], speed range: [1, 600, 2, 100]
r/min; frequency range: [0, 700] Hz. Then fspaing,min with (13)
is 13.3Hz and tspacing,min determined by numerical algorithm
is 511.745ms, which is between order 20.5 and order 20 at
the 674Hz frequency. Consequently, the determined range
for σt with (11) and (12) is [35.8, 85.3] ms. Figure 7 shows
the result when σt equals 80ms. All order components with
an order not larger than 20 are separated in Figure 7(a).

For signal S4(t) (Figure 8), the order difference between
the adjacent order components is 1, the ranges of interest are
order range: [1, 16], speed range: [1, 120, 3, 800] r/min, and
frequency range: [0, 1, 000] Hz. Then fspaing,min with (13) is
18.7Hz and tspacing,min determined by numerical algorithm is
219.382ms, which is between orders 17 and 16 at the 340Hz
frequency. Consequently, the determined range for σt with
(11) and (12) is [25.6, 36.6] ms. Figure 8 shows the result
when σt equals 36ms. All order components with an order
not larger than 16 are well separated in Figure 8(a).

Our tests on simulation and real-world signals indicate
that the proposed search of parameters for GOT is successful.

6. Conclusion

In this study, we designed an automatic search method
to find appropriate analysis parameters for GOT, which
eliminates the trial-and-error process. We first generalized
the conditions for the minimum time spacing limit and
the minimum frequency spacing limit from simulations,
under which the Gabor coefficient spectrum with Gaussian
window will well separate order components. The conditions
were then utilized to generate an analysis window in the
improved GOT flowchart. Our simulation results and real
applications both verified its effectiveness. According to the
improved flowchart, as long as σt,min ≤ σt,max, any value
within [σt,min, σt,max] for σt will guarantee well-separated
order components in the Gabor coefficient spectrum. This
is an important convergence condition for the reconstructed
order waveform. The prerequisite for this improved GOT
is with a proper speed-time curve and prior knowledge
on order differences between adjacent order components.
Usually, the simultaneous speed-time curve is easy to acquire

by a tachometer, and Δpj can come from prior knowledge
about the test objects or be determined by preliminary
trials. For the GOT of signals without simultaneous speed
information, automatic search of appropriate processing
parameters should deserve future research.
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