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This paper presents a complementary study of the methodology for diagnosing of pathologies, based on relevance analysis of
stochastic (time-variant) features that are extracted from ¢-f representations of biosignal recordings. Dimension reduction is
carried out by adapting in time commonly used latent variable techniques for a given relevance function, as evaluation measure of
time-variant transformation. Examples of both unsupervised and supervised training are deliberated for distinguishing the set of
most relevant stochastic features. Besides, two different combining approaches for feature selection are studied. Firstly, when the
considered input set comprises a single type of stochastic features, that is, having the same principle of generation. Secondly, when
the whole input set of parameters is taken into consideration no matter of their physical meaning. For validation purposes, the
methodology is tested for the concrete case of diagnosing of obstructive sleep apnea. Achieved results related to performed accuracy
and dimension reduction are comparable with respect to other outcomes reported in the literature, and thus clearly showing that
proposed methodology can be focused on finding alternative methods minimizing the parameters used for pathology diagnosing.

1. Introduction

Regarding to analysis and processing of a biological sig-
nal, termed biosignal, stochastic modeling has been under
continuous formulation for extracting valuable information,
when directly taking into account evolution of random
biological variables along a given argument (time, space,
etc.). Stochastic modeling assumes that each observation
comprises an ordered sequence of measures (or trajectory)
and may be intrinsically more difficult to assess if comparing
to the standard scenario, where each measurement consists
of a mere collection of unconnected values. Indeed, the use
of stochastic modeling precedes the necessity of building a
suitable method of processing. So, it is well known that the
complexity of stochastic modeling increases because of the
need to carry out the nonstationary estimation of parameters
derived from biosignal recordings; one can refer to that

issue as the most important difference between static and
argument-variant statistical processing.

In this line of analysis, the time-frequency representation
(TFR), planned to determine the energy distribution along
the frequency axis at each time instant, has been proposed
before to investigate the time-variant properties of the
spectral parameters during either transient physiological or
pathological episodes [1]. It has established the discrimi-
nating capability of frequency bands of biological activity
between normal and pathological patterns, and for that rea-
son, the set of TFR-based stochastic features to be considered
should be suitable estimated by spectral subband methods.
Nonetheless, if considering that classification is often more
accurate when the pattern is simplified through representa-
tion by important features, then another specificity concern-
ing the construction of stochastic modeling is the analysis of
relevance of stochastic features as a justification for reducing



dimensionality. Also, there is a need to cope with the problem
of either overtraining data or incrementing the computa-
tional overhead, which is particularly exasperating in those
cases of multivariate TFR analysis. Extraction of relevant
information from stochastic feature sets had been discussed
in the past as a means to improve performance during and
after training in learning processes. Namely, as pointed out
in [2], to get an effective feature selection algorithm, in the
context of an inference, two main issues are to be solved:
the same measure associated to a given relevance function
(i.e., a proper measure of distance among time series),
and the multivariate transformation through the time axis,
which is assumed to maximize the measure of relevance
present in the features by their projection onto a new space
[3].

In the present work, a methodology for diagnosing of
pathologies is discussed that is based on relevance analysis
of stochastic features extracted from #-f representations of
biosignal recordings. Dimension reduction is carried out by
adapting in time commonly used latent variable techniques,
in such a way that the data information is maximally
preserved, given a relevance function as evaluation measure
of time-variant transformation, and therefore distinguishing
relevant stochastic features. Specifically, since the maximum
variance is assumed as a measure of relevance, time-adapted
Principal Component Analysis (PCA) approach is developed.
But PCA maximizes the variability on the data set, and
for classification purposes, the attained components are
not always related to the most discriminative information
[4]. Thus, similar time-variant decomposition approach,
but grounded on Partial Least Squares (PLS), is deliberated
as a supervised multivariate transformation that yields
components maximally related with labels. Besides, two
different combining approaches for selecting the best set
of contours based on relevance analysis are studied: firstly,
when considering partly divided sets with a single type of
stochastic features, having the same principle of generation.
Secondly, when the best features are chosen among the whole
set of considered time-variant parameters no matter of their
physical meaning.

This paper is organized as follows: the time-varying
spectral analysis is introduced, including a brief description
of the extraction of stochastic features using either short-
time fourier Transform or wavelet transform for calculation
of TFR. Then, the methodology for stochastic-based rele-
vance of extracted features is described in detail. Lastly, the
effectiveness of a feature set representing the dynamics of
the biological activity is illustrated for the concrete case of
obstructive sleep apnea detection, followed by a discussion
of the results and conclusions.

2. Background

2.1. Generation of TFR-Based Time-Variant Features.
Because of physical restrictions that are usually imposed on
real random signals, rather than the linear time-frequency
(t-f) representation, (x,¢), estimation of time-dependant
energy spectral density is carried out, which for a given
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x(t) € R(T) is directly calculated by the spectrogram,
S:(t, f)

2
(o g) | = H KD — e de| 281, f),
r (1)

t,t €T, Sc(t, f) € R™.

The commonly used TFR calculated by Short Time
Fourier Transform (termed STFT) introduces a time local-
ization concept by using a tapering window function, ¢,
of short duration going along the studied signal, x, but
the window length remains constant for (1). Therefore, the
extraction of information with fast changes in time (i.e.,
high frequency components) should be accomplished with
short and well-timed localized intervals. In contrast, the low-
frequency components have to involve large time intervals of
analysis. As a result, given a nonstationary signal of relatively
small time-bandwidth product, the STFT spectrogram might
be not good enough for revealing properly the ¢-f dynamics.
Certainly, this drawback is used to be partially solved by
different windowing functions [5]. Instead, another worthy
approach to analyze nonstationary signals is to expand them
into basis functions, assembled from shifted and scaled
versions of a given mother function, but keeping the energy
concentrated in short intervals of the ¢-f plane (referred as
wavelets). The Wavelet Transform (WT) gives an appropriate
time resolution and poor frequency resolution at high
frequencies, but providing a good frequency resolution at
low frequencies. This approach makes sense, especially, when
the signal has high-frequency components during a short
period, while exhibiting low-frequency components for large
intervals, which is true in most cases of biological signals.

Basically, some TFR-based short-time parameters have
been widely accepted for characterizing the biosignals that
are computed by filter-bank decomposition, when efficiently
combining frequency and magnitude information from the
short-term power spectrum input signals. Time-variant
outputs of these filters that might be chosen so as to cover
the most relevant part of the frequency range are regarded
as the set of time-variant features x, = {x,(I) n e
N,! € T}. Therefore, sampled vector over discrete time, I,
of each narrow-band feature, x,, is attained by filter bank
modeling, for instance, using the set of Linear Frequency
Cepstral Coefficients (LFCC) that is extracted by discrete
cosine transform of triangular log-filter banks, {F,,(k) : m =
1,...,nup}, linearly spaced in the frequency domain

x, (1) = nﬁ log(sm(l))cos<n<m - 1”)), (2)

m=1

where p is the number of desired LFCC trajectories to be
considered, and s,,(I) is the weighted sum of each frequency
filter response set, su(I) = X5, Se(l,k)Fn(k), being m, I,
and k the indexes for filter ordinal, time, and frequency axes,
respectively; ng stands for the number of samples in the
frequency domain.
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Other effective way of generating ¢-f based time-variant
features can be achieved through computation of the his-
tograms of the subband spectral centroids that are estimated
for each filter in the frequency domain, F,,(k), by

>SS, kF, (k) S (1, k)
S F(k)SE(LK)

x,(1) = 3)

where y is a parameter that represents the dynamic range of
the spectrum, used in the computation of the centroid, and
the filters F; (k) are linearly distributed along the spectrum.
In addition, the energy around each centroid can be also
considered as time-variant feature that for a fixed bandwidth
Ak is computed by means of

Xn(D+Ak

xn(l) = Z

k=x,()-Ak

Se(L, k), (4)

where %, (I) is the actual value of the time-variant centroid
that is estimated by (3).

2.2. Definition of Feature Relevance. Relevance analysis dis-
tinguishes variables that are effectively representing the
subjacent physiological phenomena according to some eval-
uation measure, named relevant features; it tries to reject
variables, whose contribution to representation target is as
near zero as possible (irrelevant features), as well as those that
have repeated information (redundant features). Thus, when
providing feature selection in the context of any inference,
the foremost issue is defining the notion of relevancy [6].

Let X¢ € RN*? be an object set comprising N
observation samples that are described by a p-dimensional
feature set & = {& : i = 1,..., p}. Besides, each sample is
associated to one, and only one, element from the class label
setc = {ct € N:k =1,...,K,}, where K is the amount
of classes under consideration. Then, given X¢, and for each
one of the features ; € &, the relevance function g is defined
as follows:

g: RV x & — R,

(5)
(Xe, &) — g(Xe, &) € R,
where over the introduced feature relevance function the
following properties are determined.

(i) Nonnegativity, that is, g(X¢, &) = 0, for all i.

(ii) Nullity, the function g(X¢, &;) is null if feature &; has
not relevance at all.

(iii) Nonredundancy, if & = a&; + 1, where the real-valued
a# 0 and # is some noise with mean zero and unit

variance, then, |g(Xe, &) — g¢(Xg, &) — 0.

To ensure the lack of redundancy between any pair of
considered features, (&;,¢& i), then a direct way to remove one
of these redundant features is verifying that the zeroth lag
of their normalized correlation function does not exceed

a given small positive-valued threshold 4 — 0, and thus the
relevance is recomputed as follows:

0 Efen&it] <1-n:
g<X§’&'): ij=1,...,psi#j,  (6)
g(Xg, &), otherwise,

where E{-} is the expectance operator.

The evaluation of ¢(X¢, &) is called relevance weight. The
main assumption in the proposed approaches is that the
largest weight is associated to the most relevant feature. So,
we reorder the weights according to their relevance, forming
the relevance array

g(XE,f) = [gl . |gl.| .. |gp]T €RP, with g > gis1.
(7)

Finally, the proper number of selected parameters having
essential information is achieved by truncating the set of
stochastic features given in (7). This subset is proposed to
be assessed as follows:

q p
Z = {&-:ng = Zg]z—e: i= 1,...,qsp]>, (8)
-1

j=1

with € € R being a predetermined small threshold positive
value.

2.3. Feature Selection by Stochastic-Based Relevance Analysis.
Any stochastic feature E(t) refers to random numeric values
that represent measures evolving over time; that is, there is a
certain set of parameters, 8 = {x; = &§(¢) : i = 1,...,p},
that changing along the time axis, t € T, is supposed to
carry temporal information of the nonstationary signals.
Because of high computational cost of stochastic feature-
based training, dimension reduction of input spaces is
to be carried out, being latent variable techniques widely
used for this aim that finds a transformation reducing p-
dimensional stochastic feature arrangement, & € RP*T into
g-dimensional stochastic set, Z € R9*T, g < p, in such
a way that the data information is maximally preserved.
Besides, as the relevance function g, the evaluation measure
of transformation is given that distinguishes variables effec-
tively representing the subjacent physiological phenomena,
termed relevant stochastic features.

Given a set of stochastic features, {x;}, with observation
assemble comprising N objects that are disposed in the
input observation matrix Xg = [Xi|---1Xil - [ XNI],
denoting every object X;, i = 1,...,N, that is
described by the respective observation set of time-
variant arrangements, {x; C &, j = 1,...,p}, such
that X; = [xyl-- - |xjil -+ pri]T, X; € RP*T, where
Xj; = [xji(1) - - - xj(t) - - - x;(T)] is each one of the meas-
ured or estimated short-term features from biosignal
recordings, equally sampled evolving through the time, and
being x;;(t), the jth stochstic feature for the ith object upon
a concrete t instant of time.



For the sake of simplicity, the reduction dimension is
developed when projecting by the simplest time-evolving
latent variable approach. So, given the observation matrix,
Xg, there will be a couple of orthonormal matrixes, U, V,
plus diagonal matrix X, as well, so that the following linear
decomposition takes place

U e RVN, 3x e RNVT, v e RPTXT,

)

Xz = UxxVT,

where Xx € RPT*PT holds first ordered g as most relevant
eigenvalues of matrix Xz, v1 = v2,...,2 Vg = Vgilr...r =
vor = 0, that implies the relevance measure to be
considered. It must be quoted that inherently to basic latent
variable approach, the minimum mean squared-based error
is assumed as the evaluation measure of transformation,
g(Xg,Z) ~ minE{||E — Z||,}, (where || - ||, is the norm
squared value); that is, maximum variance is preferred
as relevance measure, when the following estimation of
covariance matrix is carried out

coviXg} = XIXg = VIRV, (10)

To make clear the contribution of each time-variant value
xij(t), (10) can be further extended in the form Xz =
?:1 v;Uj V]»T, where Uj is the jth column of matrix U. So,
each vector time row 7 = 1,...,pT of Xg is written by
terms of the sum of the respective eigenvalues, {7;}; that
is, x(1) = Z?ZI/\,jVj, where A;; = v;U;j, and Uy being
the 7jth element of U. Each time row 7 of Xz is a vector
comprising | 7/(T + 1) | + 1-th stochastic variable, measured
upon the whole object set for a given 7 mod (T) moment of
time, where | z| denotes the largest integer less than or equal
to z.

Consequently, the amount of variance captured at
moment t by the decomposition eigenvalue set is assessed
as time-variant relevance measure, which is associated to the
variance of respective time row, 7, for each feature along the
time as follows:

g(Xg,Z; 1) = var(x(1)). (11)

Nonetheless, based on minimum mean squared-based
relevance measure, one might take advantage of the extra
information given by the label class set ¢ = {c}, thus
considered relevance function g(XE,fj;T, cx) becomes also
label dependent. Linear multivariate technique based on
PLS regression might be used as a supervised technique
that somehow generalizes PCA orthogonal decomposition of
(10), but with different way to chose the latent vectors where
additional conditions are required, new basis vectors, {y; :
i=1,...,q}, are resulting after simultaneous decomposition

Xz = TP " +ex, ¢ =TIQ" +e, (12)
with T''T = I, where matrices €x and ¢. are the error terms,
assumed independent and identically distributed. Matrixes
P and Q contain the weights revealing the influence of
individual Xz and c-variables, respectively.
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3. Experimental Setup

The proposed methodology for automatic identification of
pathologies, based on analysis of stochastic features that are
extracted from TFR, appraises the next stages: (a) prepro-
cessing, (b) biosignal TFR-based enhancement, (c) feature
selection and extraction embracing dimension reduction of
time-variant parameters derived from TFR, and (d) OSA
detection. Figure 1 shows experimental outline of OSA
detection and the methods subject to investigation. Testing
of proposed methodology for relevance analysis is carried
out on stochastic features that are calculated for Heart-Rate-
Variability (HRV) time series, which are computed from
electrocardiographic recordings (ECG).

3.1. Database and Preprocessing. This collection of ECG
recordings was downloaded from PhysioNet [7]. Database
consists of 30 ECGs (modified lead V2); each one includes
a set of reference annotations obtained from the study of
simultaneously recorded respiration signals, and added every
minute of the recording that indicate either the presence or
absence of apnoea during each segment of time. Labels are
divided into two groups: class apnea, having 100 min with
sleep apnea and class normal, with only 5min or less with
sleep apnea (no apnea). These recordings were obtained from
men and women between the ages 27 through 63 years old,
with weights ranging from 53 to 135kg. Biosignal recording
were digitized at 100 Hz with 16 bit resolution. It must be
quoted that training conditions for this database are selected
as recommended in [8]. Histograms of ECG recording length
are depicted for both considered classes in Figure 2, and it
can be seen that their values mostly range within (50-80)
heart-per-minute interval, that is, having a no considerable
variation from the length mean value.

Basically, automatic OSA diagnosis requires for the
extraction of HRV time series from each ECG recording,
which in turn can be estimated precisely if an accurate
recognition of the QRS complex fiducial point is achieved.
In this work, complex detection is carried out by method
proposed in [9] that includes linear filtering, followed by
a non linear transformation, and adaptive decision rules,
as well. Further smoothing of anomaly valued peaks of
assembled RR time series is achieved [8]. Then, the HRV time
serie is normalized, termed x'(I), as recommended in [10]

2(x(l) — E{x})

maxy;{x} — miny;{x}’

X() = leT.  (13)

3.2. TEFR Enhancement and Feature Generation. Figure 3
shows examples of estimated ¢-f representations, performed
for both typical normal and pathological HRV time series.
Parameter tuning for a considered TFR is achieved by the
procedure developed for biosignals, discussed in [5]. In the
beginning, the STFT-based quadratic spectrogram, which
has been assumed as the TFR baseline, is computed by
sliding Hamming windows of 32.5ms length and 50% of
overlapping, based on the above-explained spectral HRV
properties. Regarding to WT alternative, the respective TFR
is performed using Morlet wavelet mother function that is
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Preprocessing TFR enhancement Gineriion of Relevance analysis Detection
stochastic features
| id Time/adapted Classification
STET Spectral centroids linear decomposition Validion
Normalization WT Centroids energy PCA
Cepstral coefficients PLS
x'(t) Sx(t; f) (1) 8(Xs,Z,1) k-nn

FIGURE 1: Schematic representation of an automated system for pathology diagnosing based on analysis of stochastic features.
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FIGURE 2: Histogram of ECG recording lengths for both considered
class labels (normal and pathologic).

likely to be an efficient means for HRV studies [11]. Based on
the dominant frequency components of the underlying HRV
signal, the number of WT decomposition levels is chosen
within the interval (2-512), where the value 2 is regarded
to the highest assumed frequency value, while value of 512
reflects the lowest frequency.

As result, the input data space includes the following
52 time-variant features to be studied: the first 20 spectral
centroids and their respective energy (see (4)) are estimated
by using Hamming filters with 30% overlap and linear
response distribution. In case of cepstral coefficients, their
first 12 vectors are considered, being computed by 32
triangular response filters with 50% overlap.

3.3. Training Based on Stochastic Relevance Analysis

3.3.1. Estimation of Relevance Weights by Time-Adapted
Multivariate Approach. As said before, each time-dependent
feature is assumed to have a relative associated weight
of relevance; the largest weight, the most relevant the
parameter. However, any estimate of relevance weight is
conditioned by the given stochastic feature set taken for its

calculation. For the concrete case of OSA diagnosing, the
best set of selected parameters can be achieved using, at
least, two different combining approaches of comparison:
firstly, when taking a partially divided set that comprises just
a single type of performed stochastic features, having the
same principle of generation (see §II-A). Secondly, when
the best set is chosen among the whole set of features,
no matter of their physical meaning. Even that the former
approach is more commonly used because of the convenient
physical interpretation of selected set, and tuning of training
procedures is provided throughout this work based on
the latter combining way. Both combining approaches of
stochastic feature selection are studied in terms of accuracy
performance and reduction dimension, as well.

Figure 4(a) illustrates the attained estimates of normal-
ized relevance weights. Estimation is provided after removing
redundant stochastic features in accordance to (6). Weights
are ordered by ordinal contour number, which are calculated
when taking a partially divided set. Next, Figure 4(b) displays
in detail weights, ordered by decreasing relevance, computed
when taking into account the whole set of stochastic features.
All 45 referred stochastic features in Figure 4 are nonzero
weighted, meaning that the other 7 left parameters are totally
redundant. So, the number of selected features for case of
STFT enhancement is 35 whereas for wavelet-based TFR,
that number becomes 30. As seen, estimation of weights
evidences no big variations on dependence on the achieved
TFR enhancement.

As explained above, further improvement for stochastic
features selection might be reached by considering the
advantage of the extra information given by the label class set,
that is, if using PLS, when relevance weights are calculated
according to eigenvalue estimation, given in (12). As a result,
the assessed number of selected features selected is around
42 for both considered cases of TFR enhancement, which
is higher that the reached amount of features estimated for
PCA.

3.3.2. Classification Performance Outcomes. Tuning of the
different schemes of considered parameterizations through-
out this training procedure is carried out by using the average
classification accuracy for the automatic OSA detection,
which is estimated using a simple k-nearest neighbor k-
nn classifier, followed by the well-known cross-validation
methodology. Several reasons account for the widespread
use of this classifier: it is straightforward to implement, it
generally leads to a good recognition performance (thanks



Frequency (Hz)(log)

0 20 40 60 80 100 120 140 160 180
Time (s)

(a) Normal—by STFT enhancement

Frequency (Hz)(log)

100 120 140
Time (s)

(¢) Normal—by WT enhancement

EURASIP Journal on Advances in Signal Processing

Frequency (Hz)(log)

0 20 40 60 80 100 120 14 160 180
Time (s)

(b) Apnoea—by STFT enhancement

o0
o
=
=
N
jen)
=
oy
=}
El
o
o
=
&)

(d) Apnoea—by WT enhancement

FiGURre 3: Examples of TFR on dependence on considered enhancement (STFT and WT) that are estimated for HRV recordings with labels:

normal and apnoea.

to the nonlinearity of its decision boundaries), and its
complexity is assumed to be independent of the number of
classes. So, the tuning of k-nn classifier is carried out by
calculating the optimal number of neighbors in the sense of
accuracy performance. In particular, Figure 5 illustrates how
the estimated performance changes when ranging from 1 to
30 the number of considered principal components, which
are mutually linear independent combination of original
variables. Some fluctuations are also observed when varying
the number of neighbors within the interval from 1 to 21.
As seen for both compared cases of TFR enhancement, an
adequate number on neighbors as much as 7 can be adjusted,
which is estimated based on the amount of explained
variance, when high-order components are not greatly
contributing. But, certain differences are noted between both

used feature extraction approaches. Explicitly, the number
of latent components needed in case of STFT-based TFR is
just 22 (reaching an accuracy value of some close to 92%),
while if using WT the component amount is 8, (for reached
accuracy close to 91%). Therefore, even than the STFT-based
TFR reaches slightly better accuracy, at the same time WT
performs better dimension reduction.

Regarding to comparison among partially divided sets
of stochastic features, Figure 6 depicts estimated accuracy
values of time-dependent parameters, which are computed
when adding one by one their weights ordered by decreasing
relevance. From Figures 6(a) and 6(b), attained for both
considered methods of TFR enhancement, STFT and WT,
respectively, it can be seen that the subset of centroid coef-
ficients achieves the better accuracy performance, regardless
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FIGURE 4: On computing relevance weights for considered combin-
ing approaches for stochastic feature selection.

of their exhibited lower values of relevance. At the same
time, coefficients of centroid energy turn to have the worse
accuracy, no matter of their reached before higher relevance
weights.

In addition, detailed observation of Figure 6 makes clear
that after certain number of added weights the assessed
accuracy performance tends to an asymptotical value. For
this case of training when taking a partially divided set, the
best performance value achieved is 88,7%, if using STFT, and

7
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5 10 15 20 25 30
Number of PCA components
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(a) STFT
092 |- FE DS
&
g
=]
3
<
0.82 ; ; ; ; ;
5 10 15 20 25 30

Number of PCA components

— 1l-nn — 13-nn
— 3-nn — 15-nn
— 5-nn — 17-nn
— 7-nn — 19-nn
— 9-nn — 21-nn
— 11-nn

(b) WT

FIGURE 5: Accuracy performance depending upon the number of
k-nn neighbors when varying the number of used principal compo-
nents, for both considered cases of feature extraction enhancement.
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FIGURE 6: Accuracy performance for partially divided sets of
selected dynamic features.

89.8% if using WT; both values are lower that their respective
estimates computed for a whole set of features. Yet, even that
the accuracy is lower, the reduction on computational load is
higher for last studied approach of selecting weights. In the
end, achieved minute-by-minute classification accuracy for
either case of HRV-based training are comparable to those
outcomes referred in previous works (90% [12], 90.16%
[13], and 93% [14]), being attained for similar training
conditions.
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FIGURE 7: Improvement of accuracy performed by using PLS
technique.

Lastly, Figure 7 that resumes the accuracy performed by
PLS shows that the estimation of accuracy tends to be more
stable, thus, pointing out on the robustness of the suggested
methodology using stochastic features. In fact, the achieved
performance when using k-nn classifier is summarized in
Table 1.

4. Discussion

It should be remarked that the main goal of the present paper
is to use a complex of signal processing algorithms for pathol-
ogy diagnosing, where features are computed from biosignal
recordings, and therefore taking advantage from extracting
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TaBLE 1: Achieved sensitivity and specificity for training for
improved methodology for performed accuracy of classification.

Feature set Sensibility [%] Specificity [%] Precision [%]

PCA—total set 89.00 91.00 91.00
PCA—parcial set 88.60 94.20 91.83
PLS—total set 89.00 93.00 93.00
PLS—parcial set 81.60 92.83 92.66

additional relevant information about the ongoing corre-
lated process. Thus, there are investigated clue aspects of
proposed methodology that is based on analysis of relevance,
given a set of stochastic features that are extracted from
t-f representation. Although this approach had been used
previously for detection of other pathologies from biosignal
recordings [3, 5], the present study is framed on analysis of
relevance of stochastic processes derived from filter-bank-
based TFR features. Discussed training methodology lies on
the hypothesis that each time-dependent parameter holds a
relative associated relevance weight, and in this connection,
the results also evidence the following aspects to take into
consideration.

(i) The enhanced feature estimation that is carried out
by introducing #-f representation should be regarded as a
remarkable factor for adequate generation of any studied
set of stochastic features. Here, feature enhancement is
performed by means of nonparametric TFR that had been
reported to be appropriate for the analysis of nonstationary
biological signals. Nonetheless, results of Figure 5 make
evident that even that the STFT-based TFR reaches slightly
better accuracy, and still WT performs better dimension
reduction. Yet, since the WT decomposition of signals
requires an adequate, regular, and localized mother wavelet
function [15], whose selection is out of the scope of the
present work, an additional improvement of pathology
detection performance should be expected in this regard.

(ii) Several studies have established the discriminating
capability of frequency bands of biological activity between
normal and pathological signals, thus the set of considered
TFR-based dynamic measures are to be related to the
time-variant features suitable estimated by spectral subband
methods. Namely, linear frequency cepstral coefficients,
spectral centroids, and their energy contours have been
considered. Besides, since more efforts should be done to
define the features carrying fundamental information for the
classification of pathologies, as quoted in [12], then the set of
considered features could fulfilwith this requirement because
of their easier interpretation.

(iii) With regard to feature selection, proposed method-
ology for analysis of stochastic relevance is based on time-
adapted linear component approach. At this point, two main
issues are to be considered: the same measure associated to a
given relevance function and the multivariate transformation
through the time axis, which is assumed to maximize
the measure of relevance present in the contours by their
projection onto a new space. As a measure of relevance, the
maximum variance is assumed. Specifically, time-adapted
versions of both linear transformations, PCA and PLS, are

used throughout this paper as unsupervised and supervised
methods, respectively, to perform dimensionality reduction.
Results of accuracy, showed in Figure 7, point out on clear
advantage of the extra information given by the label class
set, that is, relevance weights that are recomputed, according
to PLS-based eigenvalue estimation by (12), become more
evident, and thus explaining their better performed accuracy.
(iv) Two different combining approaches for selecting the
best set of contours are studied: firstly, when taking a partially
divided set that comprises a single type of stochastic features,
having the same principle of generation. Secondly, when the
best contours are chosen among the whole set of features, no
matter on their physical meaning. Achieved performance, for
both considered methods of feature extraction, leads to the
conclusion that latter approach of selecting contours brings
higher accuracy though the former approach might be also
contemplated because of the convenient physical interpre-
tation of selected feature set. In either case, attained results
can be oriented in research focused on finding alternative
methods minimizing the parameters used for pathology
diagnosing, but strongly requiring biosignal interpretation.

5. Conclusions

The training methodology for detection of pathologies is
explored, which is based on relevance analysis of stochastic
features extracted from nonparametric ¢-f representation.
Achieved results related to performed accuracy and dimen-
sion reduction are comparable with respect to another
outcomes, reported in the literature and clearly showing that
proposed methodology can be focused on finding alternative
methods minimizing the parameters used for pathology
diagnosing. Therefore, discussed training approach of fea-
ture selection that is capable of capturing the stochastic
information, which lies on the hypothesis that each time-
dependent characteristic holds a relative associated relevance
weight, is proved to be valid for considered cases of pathology
diagnosing from biosignal recordings. In this line of analysis,
based on simple multivariate techniques, like PCA or
PLS, the implementation of time-adapted linear component
approach turns to be adequate to maximize the measure
of relevance present in the stochastic features. Regarding
to the same assumed measure of relevance—the maximum
variance—some lacks of its estimation are fixed. Therefore,
exploring studies of more robust measures (information
entropy, mutual information, correntropy, etc.) are to be
further carried out.

Another aspect worthy of mention is the enhanced
feature estimation carried out by using the STFT-based
quadratic spectrogram, as a baseline TFR, and by wavelet
transform. Even that both TFR had been previously reported
to be an efficient means for biosignal analysis, no sub-
stantial differences on performance are measured. However,
additional improvement of pathology detection performance
should be expected if properly tuning the WT decomposi-
tion.

As future work, further efforts on testing different mea-
sures of relevance, should be focused on extended studies to
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corroborate the potential of another approaches in conjunc-
tion with biosignals analysis and pathology diagnosing.
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