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We propose the use of Amplitude-Modulation Frequency-Modulation (AM-FM) methods for tree growth analysis. Tree growth is
modeled using phase modulation. For adapting AM-FM methods to different images, we introduce the use of fast filterbank filter
coefficient computation based on piecewise linear polynomials and radial frequency magnitude estimation using integer-based
Savitzky-Golay filters for derivative estimation. For a wide range of images, a simple filterbank design with only 4 channel filters is
used. Filterbank specification is based on two different methods. For each input image, the FM image is estimated using dominant
component analysis. A tree growth model is developed to characterize and depict quarterly and half-seasonal growth of trees using
instantaneous phase. Qualitative evaluation of inter- and intraring reconstruction is performed on 20 aspen images and a mixture
of 12 tree images of various types. Qualitative scores indicate that the results were mostly of good to excellent quality (4.4/5.0 and

4.0/5.0 for the two databases, resp.).

1. Introduction

Tree ring analysis can provide significant insights into climate
change [1-3]. Tree ring data has been used to reconstruct
temperatures [4], precipitation patterns [5], drought [6]
sea-level pressure [7], and a range of other environmental
phenomena [2].

One of the main motivations for using a database of
aspen (or populus) samples in this paper is because aspen
has been identified as an ideal candidate for below-ground
carbon sequestration due to its extensive lateral root growth
system. Consequently, scientists have been attempting to
combine genetic and morphologic information obtained
from various populus phenotypes as a means to identify
suitable variants for hybridized development of optimal
candidates [8—13]. Identifying the appropriate genetic vari-
ants of populus for hybridization is a major obstacle in
developing optimal clones for bioenergy conversion or
carbon sequestration.

In what follows, we want to propose a nonstationary
model for tree ring image analysis. To appreciate the
complexities involved in processing these images, we present
three examples in Figure 1 (data acquisition is described
in Section 2.5). In Figure 1(a), we have tree rings from a
Spruce image example. This represents one of the best quality
images made available to us. Here, it is clear that we have
significant interring variations. These are characterized by
dark, white, and gray patches distributed throughout the
image. The image of Figure 1(b) is of far less image quality.
In this example, tree ring boundaries are very noisy, and it
appears that the image is corrupted by significant levels of
structural noise. Even worse, in the image of Figure 1(c), we
also have significant gaps that require nonstationary image
interpolation.

In analyzing tree growth, we note that the size, shape
and packing of water-conducting cells (vessels and tracheids)
differ over the growth season and also between different tree
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FIGURE 1: Wood-core image examples: (a) Spruce image
example from the Grissino Mayer database. (b) Good quality
populus image sample. (c) Low quality populus image with
significant interring variations and structural artifacts. Figure 1(a)
obtained from (http://web.utk.edu/~grissino/Site/gallery/galleries/
Tree%20Ring%20Gallery%201/images/pinaleno%?20spruce.jpg)
and Figures 1(b) and 1(c) obtained from Oak Ridge National
Laboratory populus database (see text for details).

species. The vascular system of diffuse-porous trees such as
maple, birch, beech, and aspen is characterized by vessels
produced at regular intervals during the growing season
and spread evenly throughout the sapwood [1-3]. This is
the basis for the growth model in this paper, where the
assumption is that growth is uniform with respect to the
phase. In diffuse porous wood, the demarcation between
rings is not always clear and in some cases, ring demarcation
is almost invisible to the unaided eye [1, 3].

Another type of wood structure is found in conifers—
such as pine, spruce, fir, larch, and juniper—which have
well-defined ring boundaries and very regularly arranged
rectangular to semirounded tracheids [1, 14]. For this group,
each season’s growth is well defined and the pores appear in
concentric rings. These structures vary in size from large in
the early portion of the growth season to small at the end of
the growth season [1, 3] and are often termed early and late
wood, respectively [1].

Using the frequency modulated (FM) image model, our
goal is to have a clear ring demarcation that will facilitate
easy extraction of annual growth rings. For example, vessels
in ring-porous trees—such as oak, chestnut and elm—are
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generally larger and concentrated in the outermost layer of
sapwood [1, 3, 8, 14, 15].

We will next introduce the basic AM-FM model starting
from the general, multicomponent case, and then reduce
it to a single FM image that is relevant to the current
paper. For any general image, the multicomponent AM-FM
representation is expressed using

M
I(x,)/) ~ zﬂn(x,)/)COS%(x,)’), (1)

n=1

where a,(x, y) represents the nth instantaneous amplitude
function, ¢,(x, y) represents the nth instantaneous phase
function, and n = 1,2,...,M indexes the different AM-
FM components. Here, we will refer to cos¢,(x, y) as the
nth Frequency Modulation (FM) component. For each phase
component, we associate the corresponding instantaneous
frequency (IF) component using the gradient of the phase
Vu(x, y).

For nonstationary images dominated by ridge patterns,
we consider a curvilinear coordinate system that has one
coordinate aligned with the ridges [16-18]. As discussed in
[17], this leads us to consider a Fourier series expansion
over a curvilinear coordinate system where the ridges are
captured using the phase equi-intensity lines. Similar to the
Fourier Series expansion, AM-FM harmonics are expressed
in terms of a fundamental phase component. In this case,
the fundamental phase component is given in terms of the
coordinate transformation function ¢(x,y). The AM-FM
harmonics will then have instantaneous phase components
that satisty ¢, (x, y) = n¢(x, y) [17]. Furthermore, we expect
that ¢(x,y) = =1 to capture the peaks and valleys in
the ridges (see [16] for a fingerprint example). Thus, for
capturing tree growth, we will only consider the single-
component AM-FM representation given by

I(x,y) = a(x,y) cosp(x, y). (2)

The use of a single-component for approximating an image
is often referred to as dominant component analysis (see
[19, 20]). More recently, [21] introduced new methods for
extracting dominant components from multiple scales.

AM-FM models have seen several applications in image
analysis. An earlier example in shape from shading is
reported in [22]. The use of a single-component AM-FM
image for modeling fingerprints is given in [16], while some
more general theory on multidimensional Frequency Mod-
ulation is described in [18]. An example of image retrieval
in digital libraries is described in [23]. In [17], the authors
describe an application to segment abnormal structures
in electron microscopic muscle images. An application in
image in-painting is presented in [24]. An application of
multiscale AM-FM demodulation for Diabetic Retinopathy
screening is provided in [25]. In video image analysis, an
early application is introduced by Fleet and Jepson in [26]. In
related recent work, motion estimation and reconstruction
are discussed in [27].

The basic AM-FM analysis system is outlined in Figure 2.
It will be described in detail in Section 2. Here, we will
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FIGURE 2: Tree image growth analysis system diagram. Here, IA
denotes the instantaneous amplitude, IP denotes the instantaneous
phase, and IF denotes the instantaneous frequency.

provide a brief summary of the new components introduced
in this system. Our primary motivation here is to provide for
an effective approach that can help us deal with significant
levels of structural noise that we found in the tree images.

In the new system, we are interested in the evaluation of
different filter-bank designs. Here, we will consider the use
of two custom filter-bank designs that are based on simple
estimates of the variability in interring spacing. We will
consider a filter bank based on uniform wavelength spacing,
followed by a variable frequency spacing approach. For
effective AM-FM demodulation, we require flat passbands
as discussed in [21]. This is accomplished in a straight-
forward fashion using a frequency-domain piecewise-linear
approximation as discussed in [28]. This approach avoids
the need for MinMax optimization used in [21]. Instead, the
piecewise-linear approximation allows us to derive closed-
form expressions for the linear-phase filter coefficients lead-
ing to straightforward implementations (see Pseudocode 1).
This is different than relying on having to solve constrained
optimization methods for designing the filters (e.g., MinMax
filter design). The piecewise-linear approximation is optimal
in the mean-squared error sense and will not suffer from the
possibility of a lack of convergence (as in the application of
the Parks-McClellan algorithm for unrealistic specifications).
It leads to a very effective and highly reconfigurable approach
that can readily adapt to any filter specification.

In the basic dominant component analysis [19, 20],
the first step is to generate estimates of the instantaneous
amplitude (IA), phase (IP), and frequency (IF). We will
provide more details on how this is done in Section 2. Then,
at each pixel, we compare the IAs from all the channels. The
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F1GURE 3: Phase modulation model along radial direction. (a) AM-
FM signal for modeling growth. (b) First half period growth model
based on phase values: 7 < ¢ < 27. Phase values that satisfy this
condition are plotted with a dotted line. (c¢) Second half period
growth model based on 0 < ¢ < 7.

channel that gives the highest 1A is designated as the (local)
dominant channel.

We then select the dominant channel estimates as the
dominant component estimates as shown in Figure 2. For
the noisy tree images of our application, this approach
will suffer significant artifacts near the edges and over
structural noise patches. We are thus led to consider an
extension of the dominant component analysis approach,
where the dominant channels are further processed. This
is accomplished by using median filters to postprocess the
dominant component channel (integer) ids. Thus, median
filtering is used for selecting which dominant components
should be used in the estimation. To explain this, consider
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filt = design bp one sided

half len = floor (filt size/2);

% Design positive side :
n = 1: half len;

% Zeroth coefficients

bn(0) = 0;

% Other coefficients
an(n) = -1 /(n"2%pi)* - --

bn(n)

—1/(n"2*pi)* - .-
((1/Dw)*(sin(n*(wl — Dw)) -

filt (1:half len)
filt (0) =an (0);

(filt size, sig size, wl, w2, Dw)

(filt size, sig size, wl, w2, Dw)

designed filter, zero-padded, and shifted for zero-phase

%

% [filt] = design bp one sided

%

% Input :

% filt size: number of coefficients
% sig size: number of signal coefficients
% wl, w2: passband from wl to w2
% Dw: transition bandwidth

% Output :

% filt:

% fft implementation.

% Determine the sizes needed for an FFT implementation
fft size = 2" nextpow2 (sig size + filt size — 1);

an(0) = (Dw+w2—wl)/(2*pi); % Area of a trapezoid!

((1/Dw)*(cos(n*(wl — Dw)) -
—cos(n*wl) — cos(n*w2) + cos(n* (w2+Dw))));

—sin(n*wl) — sin(n*w2) + sin(n*(w2 + Dw))));
0.5%(an (2 : half len+1) + 1i*bn (2: half len+1));

% Use Symmetry for the negative coefficients
filt (fft size — 1: —1 : fft size-half len) = conj (filt(1 : 1 : half len));

% note 1/n"2 decay

.- % All jumps byl/Dw
% note 1/n"2 decay

% All jumps byl/Dw

Pseupocopk 1: Pseudocode for computing the impulse response for a one-dimensional bandpass filter from a piecewise linear
approximation. For fast implementations using 1D FFTs, the code zero-pads the filter coefficients to a power of two. Furthermore, to allow
for direct implementation using ifft(fft(sig).*fft(filt)), the input coefficients are mirrored at the end.

the case where a local tear or discontinuity causes estimation
over a frequency channel that is different from the dominant
vertical frequency channel used in the neighborhood of
the tear. The application of median filtering to the integer
channel ids will force the selection of the vertical frequency
channel that is dominating the neighborhood pixels. Thus,
this will eliminate frequency components that do not
correspond to tree growth.

The paper is focused on the extraction of growth rings
and the development of growth models for diffuse porous
samples of aspen as well as for samples of the pinus family.
We also expect the proposed approach to be applicable to
the better demarcated ring-porous, tree species. As part
of a separate, earlier study, a fully automated algorithm
was developed that incorporated the AM-FM techniques
described here to count individual annual growth rings [29].
Results were obtained using 20 individual aspen (Populus
tremuloides) tree core samples that were imaged with an X-
ray microCT (uCT) and reconstructed at 108 ym resolution.
Improved ring boundary contrast was demonstrated when
AM-FM processing was applied to yCT images before tree

ring extraction. It was found that the mean error of the

algorithm using AM-FM and filterbanks on the 20 populus
samples was 1.51% compared to the commercial tree ring
counting software winDENDRO [30] which gave a mean
error of 32%.

The focus of the current paper is to go beyond
tree ring counting to provide a qualitative assessment of
the reconstructed inter- and intraring quality. We assess
reconstruction image quality by counting the number of
discontinuities in the FM image. The basic idea is to have
each reconstructed FM ring to match an actual, (manual)
ground truth ring, without exhibiting any discontinuity in
the agreement. Based on 5 manual trials, we also report
intrareader variability for this new metric.

The rest of the paper is organized as follows. We present
the AM-FM image analysis system in Section 2. We present
results in Section 3, and conclusions are given in Section 4.
In Section 3, we show that seasonal growth modeling can be
used to reliably estimate half-seasonal and quarter-seasonal
growth.
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Image
training set

Compute inter-ring spacings (wavelengths).

Compute four wavelength intervals between the estimated
minimum and maximum wavelengths.

Compute the stopbands, passbands, and transition bands

corresponding to the wavelengths.

FiGUure 4: Filterbank specification from image training set. For
uniform wavelength spacing design, the four passbands are set equal
to 1/4th of the spacing between the minimum frequency (maximum
wavelength) and the maximum frequency (minimum wavelength).
For variable frequency spacing, we look at the distribution of the
interring spacings in the training set. The basic idea is to search
for three jumps (edges) in the interring spacing histogram. Starting
from the minimum frequency we select the first interval to the first
jump (edge), and so forth, until the maximum frequency.

2. Methods

2.1. Modeling Tree Growth Using an AM-FM Representation.
From the introduction, recall that the vascular system of
diffuse-porous trees such as maple, birch, beech, and aspen
is characterized by vessels produced at regular intervals
during the growing season and spread evenly throughout the
sapwood [1-3]. This leads to the assumption that growth is
uniform with respect to the phase. The basicmodel presented
here is also closely related to previous AM-FM representation
models in [16-18].

We begin with a review of the AM-FM model developed
in [16-18]. The tree image is modeled as (section 2 in [16])

I(x,y) = a(x, y) f(¢1(x, ), $2(x, ), (3)

where a(x, y) is a slowly-varying amplitude that is used
to capture variations in the minima and maxima of the
image, and (x, y) — (¢1(x, ¥), $2(x, y)) denotes a curvilinear
coordinate system applied to a periodic function f. Here,
¢1(x, y) is aligned with the ridges while ¢, (x, y) is aligned
with the model image equi-intensity lines. In other words,
I(x, y)/a(x, y) remains approximately constant along the ¢,-
coordinate. We have

f(@1(x7),62(x ) = f(¢1 (%)) (4)

by abuse of notation. For tree images in the current paper, we
note that ¢; (x, y) only changes along the radial direction. In
the discussion that follows, we will drop the subscript from
d1(x, ).

To demonstrate the model, refer to Figure 3. The 1D
image profiles of Figure 3 refer to image intensity changes

¢
Compute FM function

exp (j¢)

J

Extract radial
line through the
true image

Estimate derivative
using S-G filtering

Estimate IF by dividing derivative
by FM function and multiply the

answer by —j.

1

FiGure 5: Instantaneous frequency magnitude estimation along
the radial direction. For robust estimation, we use an S-G filter
to estimate the derivative of the FM function. This is used in
estimating the instantaneous frequency (IF) (see (9) for details).

along the radial direction. The beginning of the growth
season is marked by a dark tree ring. In the AM-FM model,
this is captured by the FM requirement for cos ¢(x, y) = —1
which gives

d(x,y) =m+2nm = 2n+ 1w, (5)

where n = 1,2,..., M corresponds to the different growth
seasons. This is illustrated graphically in Figure 3(a). In
Figure 3(a), the valleys denote the end of a growth season and
the beginning of the next growth season.

Clearly, a full season growth is captured by a phase
increase of 2m. Since a full growth season is normally
associated with a calendar year, we see that a phase change of
27 corresponds to a full year. Having said this, it is important
to note that tree growth is not uniform over actual time.
Here, our assumption is one of relatively uniform growth
over the growing season (as opposed to the entire calendar
year).

For simplicity, we will consider the wrapped phase
function restricted to [0,27). Thus, for wrapped phase
functions, we capture the start of the growth season using
¢(x,y) = m. Then, for the first half of the growth season,
we require a change from n to 2z. This is illustrated
in Figure 3(b). For a single season, the first half of the
growth season is captured between the two vertical lines
of Figure 3(b). For the remaining seasons, the pixels that
satisfy 1 < ¢ < 2m are shown with horizontal red lines
in Figure 3(b). Similarly, for the second half of the tree
growth, we require a change from 0 to 7 (see Figure 3(c)).
Additionally, for each quarter, we have (i) 7 < ¢ < 37/2 for
the first quarter, (ii) 37/2 < ¢ < 27 for the second quarter,
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FIGURE 6: Dominant component analysis example (spruce sample). Left to right: original image, FM output using low frequency
filter, FM using medium frequency filter, FM using high frequency filter, FM using very high frequency filter and dominant FM
output. Image courtesy: Henry Grissino-Mayer (http://web.utk.edu/~grissino/Site/gallery/galleries/Tree%20Ring%20Gallery%201/images/

pinaleno%20spruce.jpg).

(iii) 0 < ¢ < 7/2 for the third quarter, and (iv) 7/2 < ¢ <7
for the fourth quarter.

2.2. Tree Image Growth Analysis System. We present the
entire AM-FM analysis system in Figure 2. To describe the
process, we begin with the basic multicomponent model
givenin (1):

M
I(x,y) ~ Zan (x,y) cosdu(x, y). (6)

n=1

We then apply the extended 2D Hilbert transform using [20]
Ins(x,y) = 1(x, ) + jHap[I(x, y) ], (7)

where H,p denotes the Hilbert transform operator operating
along the columns (or rows) of the image. We implement (7)
by taking the 2D FFT of the input image and then zeroing
out all the 2D vertical frequencies with a negative frequency
component and then multiplying the result by a half. We
expect that the output will approximate

Ins(x,y) = > an(x, y) exp[jdn(x, y)]. (8)

n=1

The analytic signal is then processed through a filterbank.
In Figure 2, we present a separate filterbank specification
system that is used to provide parameters for implementing
the filterbank (shown in the upper-left part of the figure).
Here, we use a training set of 5 representative images to help
determine the relevant parameters, as outlined in Section 2.2.
The relevant parameters include specifications for the stop-
bands, transition bands, and passbands for each one of the
four 2D, separable, channel filters.

Since the channel filters are separable, an efficient imple-
mentation consists of first filtering along the rows followed
by filtering across the columns. To specify the filters, we only
need to derive impulse responses for each of the 1D filters.
Here, the impulse response for implementing each filter is
computed from its piecewise linear approximation [28].

We provide the pseudocode for computing the impulse
response of the 1D filters in Pseudocode 1. The band-pass
filters are linear phase, one sided and thus complex valued.
In Pseudocode 1, we show how the complex filter coefficients
“an’, “bn” are computed based on the specification of the
passband and transition bandwidth. Here, we note that
the passbands will always be defined for positive vertical
frequency components.

We also comment on the number of filters required
for the filterbank. First, for the application of this paper,
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FIGURE 7: Median filtering continuity correction: (a) left to right: filter outputs without median filter, using median filters of sizes 3 x 3,
5%5,9%9,19 % 19,and 69 x 69. (b) Left to right: original image (spruce sample), FM image with no median filter, FM image with median
filters of sizes 3 x 3,5 % 5,9 X 9, 19 X 19, and 69 x 69. Image courtesy: Henry Grissino-Mayer.

vertical frequency components dominate. To see this, refer will also enhance structural noise. To see this, refer to
to Figure 1. There are low-frequencies occurring in all ~ Figure 1(c). In Figure 1(c), tree rings are growing upwards.
directions in Figure 1(a). However, higher frequencies are  Filterbank channels that capture nonvertical components
clearly dominant in the vertical direction. It is important  will be introduced to the strong edges and other image
to recognize that a full filterbank, covering all directions,  discontinuities. These are clearly undesirable and should



F1Gure 8: DCA Comparison example (populus sample): (a) original
image. (b) FM image without median filter. (¢) FM image with
median filter correction (69 x 69). The red arrows indicate the
image regions where the median filter correction has significantly
improved the continuity in the reconstructed ring.

be rejected. This leads to a great reduction in the number
of filters that need to be considered. Empirically, it was
determined that no more than 4 filters are needed, (i.e., 4
total channels).

In what follows, we model the output of each channel
filter using a single AM-FM component [20]. In other words,
we assume that Ixs(x, y) * ti(x, y) = ai(x, y)exp[jyi(x, )],
where t; represents the impulse response of the ith channel
filter, and a;(x, y) exp[jyi(x, y)] represents an AM-FM func-
tion. We estimate the AM-FM component functions using

ai(x,y) = |Ias(x, ) * ti(x, ) |, o)
vi(x, y) ~ Arg[Ias(x, ) * ti(x, y)].

Based on the number of channel filters, we have 4 pairs of
estimates of the IA and the IP. At each image pixel, we select
the channel filter id (1, 2, 3, or 4) that gives the largest 1A
estimate. This is termed dominant component analysis [20].
In standard dominant component analysis, we would simply
select the estimates from this channel filter. Here, we further
process the channel filter id’s using a 2D median filter.

The 2D median filter provides local scale continuity by
not allowing random changes in the selected channel filter.
The impact of this approach is presented in the results,
together with a discussion of the choice of an appropriate
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median filter. The IA and IP estimates from the filtered
channel id’s are then selected for further processing (see
Figure 2). The estimated dominant component

I(x,y) = a(x,y) cosg(x, ) (10)

estimates the IA and IP of the tree growth model of
Section 2.1 [16-18].

2.3. Filterbank Design Specifications. To specify suitable filter
banks, we first analyzed tree ring spacings for a small number
of representative samples (see Figures 2, 4). Representative
samples were selected so as to reflect the diversity of growth
in the database. In particular, we analyzed 5 images with slow,
medium, and fast growth.

Ring spacing can vary significantly over the image.
Empirically, we have observed that ring spacing tends
to decrease with age (see Figures 1, 16). Therefore, for
the highest discrete frequency band, the interring spacing
between the two last rings (excluding the bark) was used
to estimate the minimum spacing. For determining the
passband for the lowest frequency band we need to estimate
the largest instantaneous wavelengths of interest. This is done
by inspecting the interring spacing found in the first rings
in each image (chronologically). For the entire dataset, the
minimum vertical frequency (frequency spanning from the
wood core center to the bark) was set using the minimum
from all the training images. Similarly, the maximum vertical
frequency was set by taking the maximum of all estimated
maxima.

The simplest filterbank design is to set all the passbands
equal (see Figure 4). Here, we computed four wavelength
intervals uniformly spaced between the estimated minimum
and maximum wavelengths. These intervals were then
converted to actual frequency domain filters with transition
bands of 0.0057. We refer to this approach as the uniform
wavelength spacing design.

By allowing the passbands to vary we consider a variable
frequency spacing filterbank. This is done by looking for
jumps (edges) in the interring spacing histogram. This
approach is similar to edge detection. The minima and max-
ima interring spacings are converted to passband frequencies.
We used 151 coefficients for implementing the digital filters.

2.4. Instantaneous Frequency Using 1D Savitzky-Golay (S-
G) Filtering. We provide a robust method for estimating
the instantaneous frequency magnitude along the radial
direction. As summarized in Figures 2 and 5, we first use
the instantaneous phase estimate to form the FM function.
We then extract the FM image along the radial line through
the center of the tree image. Here, we note that the radial
line runs vertically along a column of the image. Thus, no
interpolation is required for extracting this column line of
pixels. To obtain the central column, we simply take the
midpoint column of the image. The midpoint is computed
based on the number of pixels in each row of the image.

In order to estimate the IF, we need to estimate the
derivative of the extracted FM signal. In what follows, we
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FIGURE 11: Results using uniform wavelength spacing filterbank
specifications for a Populus sample: (a) original image, (b) manually
segmented ground truth, (c) FM image after application of uniform
spacing filterbank. The ground truth for this sample is 79 rings.

describe the procedure. First, we express the FM function in
terms of its real and imaginary parts:

exp(j$(r)) = cos$(r) +jsin$(r). (11)

In what follows, suppose that we are estimating the radial
derivative at r = 71y for the real part of the FM image.
The derivative for the imaginary part is computed in a
very similar way. Locally, centered at r = 1y, define the
least-squares optimization problem of fitting an nth order
polynomial into 2m + 1 > n points using

t=m
. ~ 2
Mbmgm[ folt) = cos((ro + 1)) |, (12)
where the local polynomial of degree is defined by
k=n
fot) = > but*. (13)
k=0

Here, the basic idea is that the polynomial fit estimates the
signal while rejecting additive gaussian noise [31]. It relies
on the fact that polynomials can be used to approximate
continuous and continuously differentiable functions. Then,
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we can estimate the derivative of the FM function at r = ry by
simply evaluating the derivative of fitted polynomial at t = 0:

Vocos(§m) = Pie=oy=b (8

Thus, the derivative estimate at every pixel only requires
that we estimate b,,;. This is accomplished very effectively
by simple convolution with integer Savitzky-Golay (S-G)
filter coefficients [31]. In our case, we consider a 2nd order
polynomial fit over 9 pixels (n = 2,m = 4). For computing
the derivative, we use

Vrexp(j$(ro)) ~ exp(j(/?(ro)) * d, (15)

where the derivative convolution kernel is

1
d:60[4 3210 -1 -2 -3 —4], d(0) = 0,
(16)

and is applied to both the real and imaginary parts of the FM
function.
The IF along the radial direction is then given by

V.o~ _jv'eXp(j¢). (17)

exp(j9)

2.5. Tree Datasets. Twenty tree core samples harvested from
native aspen (populus) trees in Colorado were scanned using
a MicroCAT II scanner (Imtek, now Siemens, Knoxville,
TN). Raw CT attenuation data obtained from each scan
was reconstructed at 108 ym image voxel resolution using
commercially available X-ray CT 2D slice reconstruction
software (COBRA, Exxim Corp, Alameda CA). The planar
reconstruction images were then loaded and viewed using
Amira [32]. The planar projection image that best captured
the full tree ring information was selected and saved for
further analysis.

For further testing, we also consider a mixture of 12
tree image samples of various types from the Grissino-Mayer
database (http://web.utk.edu/~grissino/). The 12 samples
consisted of the following types of trees: bristlecone pine,
zuni douglas, avalanche scarred spruce, dominican pine,
ponderosa pine, basswood, delaware hemlock, small table
mountain pine, sugar maple, foy pine, hemlock, and spruce.

3. Results

3.1. Chirp Image Example Using a Uniform Spacing Filterbank.
We use a chirp image to demonstrate the robustness of S-
G filtering. The test input image is given by a chirp image
expressed as (see Figure 10(a))

I(x,y) = cos[¢(x, ) + m(x,y) |+ ma(x,y),  (18)

where n;(x, y) and ny(x, y) are additive Gaussian noise of
variance 1.0. In this example, the uniform spacing filterbank
based on the uniform inter-spacing was used and tested.
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FIGURE 12: Examples of best and worst result samples for different filterbank specifications. Best FM for uniform spacing filterbank results are
presented in (a) to (c). (a) Original image. (b) FM image using variable frequency filterbank. (¢) FM image using uniform spacing filterbank.
The variable frequency spacing filterbank gave a 1.27% error and the uniform spacing filterbank gave a 0% error, meaning it detected all 79
rings. Worst FM for uniform spacing filterbank results are presented in (d) to (f). (d) Original image (2nd example). (e) FM image using
variable frequency spacing filterbank (f) and uniform wavelength spacing filterbank. In this second example, the variable frequency spacing
filterbank gave a 2.17% error and the uniform spacing filterbank gave a 13% error, meaning it detected only 40 out of 46 rings.

In Figure 10 the original chirp image, its noisy version,
the uniform spacing FM reconstruction, and the Structural
Similarity Index of the error (SSIM) [33] are presented. The
mean SSIM, which measures the image quality based on
structural information in the image, was found to be 0.90.
This experiment demonstrated the advantages of using the
new approach on the basis of improving continuity in the
input image.

3.2. Filterbank Design Specification Using Variable Frequency
Spacing. We present results for training sets of (i) a single
spruce image and (ii) 5 populus image samples. The variable
frequency filterbank specifications are given in Table 1 for
the 20 populus image, and for the spruce images in Table 2.
For both filterbanks, 45 filter coefficients were used. The
stopbands, passbands, and transition bands are presented.

For the spruce image (Figure 6), the minimum spacing
estimate was 2 pixels and the maximum 13 pixels (unknown
resolution). Therefore, the minimum frequency was set at
0.14m and the maximum at 0.987. A fixed transition width
was used for the spruce image. The transition widths for the
populus images were varied. In particular, a larger transition
band was used for the “very high frequency” channel filter.
The populus images were sampled at 106 microns.

TABLE 1: Variable frequency spacing filterbank specifications. The
vertical filter parameters for the four filters in the filterbank for
the 20 populus images are given in the table. Here, the training set
was 5 images and transition bands were set to 0.005. The row filter
stopband was set from —0.65 to 0.45 with 0.2 transition bands. All
separable filters used 45 coefficients.

Interring spacing in

Filter Passband pixels

Low frequency 0.15m7-0.257 8.00-13.33
Medium frequency 0.257-0.267 7.69-8.00
High frequency 0.2671-0.287 7.14-7.69
Very high frequency 0.287-0.307 6.66-7.14

The four filters covered all the rings from the pith
(center) all the way to the outermost growth ring just
inside of the bark. The horizontal filter parameters were
the same for the four filters. Here, it should be noted that
the horizontal frequency range nearly covered the entire
spectrum of possible frequencies, except for having a slightly
longer bandwidth for diagonal image frequencies towards the
upper-left as opposed to the upper-right part of the image.
However, as shown in the FM image of Figure 6, there was
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FIGUurg 13: Radial instantaneous frequency magnitude estimation example (vertical) on noise-free chirp image: (a)—(c). Instantaneous

frequency estimation based on S-G filter derivative method: (a) chirp image, (b) instantaneous phase calculated after application of uniform
wavelength spacing-based uniform spacing filterbanks. (c) Comparison of estimated radial (vertical) IF magnitude (red) versus ground truth

IF (black) for the chirp image. The discrete radial frequency magnitude is expressed in radians.

TaBLE 2: Variable frequency spacing specifications for the spruce
images. The vertical filter parameters for the four filters are given
in the table. Horizontally, for the row filter, the left stopband was
from —7 to —0.857, the passband went from —0.657 to 0.457 with
the right stopband from 0.657 to 7. All separable filters used 45
coefficients.

The use of the filterbank for estimating the FM images is
demonstrated in Figure 7. In Table 2, we define low, medium,
high, and very high frequency components. Clearly, the low
frequency components corresponded to the bottom half of
the image where there are larger spacings between the rings.
Similarly, the medium frequency filter operated right above

. Low- High- Interring the middle part of the image. It can be seen that the medium-
Filter freql:)encg Passband freqiencg Spa?m% 1 frequency filter overestimated the number of rings in the
stopban stopban prxeis lower part of the image. However, over this region, the low-
%rzguency 0-0.147  0.167-0.307  0.3271-7  6.67-12.50  frequency filter produced higher instantaneous amplitude
Medium ar-ld thus domina.ted the outputs of all other ﬁlters.. Similarly,
frequency 0-0.287  0.30m-0.507  0.52m—7 4.00-6.67 high and very-hlgh frequency components dominated the
High upper part of the image.
frequency 0-0.487  0.507-0.70m  0.727-m  2.94-4.00 For the populus samples, we used a training set of five
Very high 00,63 images. We prf)vide the results in Table 1.
frequency n 0.70m-0917  0.987-m 2.19-2.94 A comparison between the low-frequency bands for the

sufficient bandwidth to capture the early ring structure. The
vertical filter parameters are summarized in Table 2.

spruce and populus images reveals a relatively wide spread.
For higher frequency passbands, the populus images gave
rather narrow passbands. On the other hand, for the spruce
image, the passbands remained relatively large.
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FIGURE 14: Radial instantaneous phase and instantaneous frequency
magnitude using (a) variable frequency spacing method, and (b)
uniform wavelength spacing method. The input image is the
populus sample of Figure 12(a). The example shows strong IF
magnitude variation.

3.3. FM Image Continuity Improvement Using Dominant
Component Analysis and Median Filtering. The use of dom-
inant component analysis is summarized in Figures 6 and 7.
In Figure 6, we demonstrate how the individual FM analysis
outputs were combined into the dominant FM image shown
on the right. Here, at every pixel, the dominant FM image
used the outputs from the filter that produced the largest
instantaneous amplitude.

In Figure 7(a) the spatial distribution of the dominant
filters is shown. In Figure 7(a), black denotes the low-
frequency filter, while white denotes the highest frequency
filter. After a careful examination of the input image, it
was clear that the second left most image of Figure 7(b)
appeared to be noisy. Here, there were rapid changes in the
selected dominant filter. To reduce these impulsive changes
and support more continuity in the estimates, median filters
(with mirror extensions at the edges) of several sizes were
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TaBLE 3: The relationship between grade and score for the populus
samples.

Ic;Iilslégﬁfirn?lfities Grade Score
1-4 Excellent 5
5-8 Good 4
9-12 Average 3
13-16 Bad )
16-20 Very bad 1

TaBLE 4: Tree growth model quality scores for the twenty populus
samples. Here, the variable frequency spacing filterbank was used
(see Table 2 for the parameters).

. N}lmbe':r of Standard
Sample dlSCOIltlI'lLIlt.les (Mode deviation Score
of 5 trials)

1 3 0.00 5
2 2 0.00 5
3 6 0.45 4
4 3 0.00 5
5 1 0.00 5
6 10 0.45 3
7 3 0.45 5
8 3 0.45 5
9 6 0.00 4
10 6 0.00 4
11 5 0.45 4
12 7 0.89 4
13 5 0.45 4
14 11 0.45 3
15 2 0.00 5
16 2 0.00 5
17 9 0.55 3
18 3 0.00 5
19 3 0.00 5
20 3 0.00 5
Mean 4.4

used as shown in Figure 7(b). After the application of
median filtering, the dominant FM image was recomputed
as depicted in Figure 7(b). To determine an appropriate size
for the median filter, the resulting FM images of Figure 7(b)
were examined. To evaluate the improvements made by
the use of median filtering one comparative example is
presented in Figure 8. Arrows are used to illustrate where the
improvements are most noticeable.

The instantaneous frequencies (IF) were plotted over the
FM image to depict the interring and intraring density flow,
Figure 9(b). The directions of the IF vectors correspond to
the direction of change of ring density from the bark all the
way to the pith (center) of the sample. It is clear from the
IF plots that the density arrow lines were always pointed
orthogonal to the rings independent of where they were
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F1GURE 15: Tree growth estimates for hemlock sample using variable frequency spacing filterbank (sample 11 from Grissino Mayer database).
(a) Original image, (b) first-half season, and (c) second-half season. Quarterly growth estimates: (d) Ist, (e) 2nd, (f) 3rd, and (g) 4th quarters.
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FIGURE 16: Tree growth estimates for spruce sample using variable frequency spacing filterbank (sample 12 from Grissino-Mayer database).
(a) Original image, (b) first-half season, and (c) second-half season. Quarterly growth estimates: (d) 1st, (e) 2nd, (f) 3rd, and (g) 4th quarters.
The images show excellent reconstructions with few discontinuities.
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FIGURE 17: Tree growth estimates for populus sample (using variable frequency spacing filterbank): (a) original image, (b) first-half season,
and (c) second-half season. Quarterly growth estimates: (d) 1st, (e) 2nd, (f) 3rd, and (g) 4th quarters. Magnified quarterly growth examples
for 1 year: (h) 1st, (i) 2nd, (j) 3rd, and (k) 4th example.
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F1GURE 18: Tree growth estimates using uniform wavelength spacing filterbank: populus sample. (a) original image, (b) first-half season, and
(¢) second-half season. Quarterly growth estimates: (d) 1st, (e) 2nd, (f) 3rd, and (g) 4th quarters.
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FIGURE 19: Tree growth estimates for populus sample graded “average” (variable frequency spacing): (a) original image, (b) first-half season,
and (c) second-half season. Quarterly growth estimates: (d) Ist, (e) 2nd, (f) 3rd, and (g) 4th quarters.
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F1GURE 20: Tree growth estimates for spruce sample using variable frequency spacing filterbank (sample 10 from Grissino-Mayer database).
(a) First-half season, (b) second-half season. Quarterly growth estimates: (c) 1st, (d) 2nd, (e) 3rd, and (f) 4th quarters.
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TaBLE 5: Tree growth model quality scores for the twelve Grissino-
Mayer samples. Here, the variable frequency spacing filterbank was
used (see Table 2 for the parameters).

Number of
Sample discontinuities cslglzrili?;i Score
(Mode of 5 trials)

1 6 0.55 4
2 5 0 4
3 3 0 5
4 11 0.55 3
5 7 0.45 4
6 15 0.45 2
7 6 0.45 4
8 10 0.55 3
9 4 0 5
10 3 0 5
11 1 0 5
12 7 0.55 4
Mean 4.0

located. The lengths of the arrows represent the magnitude
of ring-density change. As depicted in the IF plots below,
the longer arrow lines were oriented towards the bark of
the sample, which was the region of greater ring density;
that is, more rings per unit length. The reverse relationship
was observed for the shorter arrow lines that were oriented
towards the pith (center) of the sample where there was lower
ring density.

3.4. Tree Image Analysis Example Using a Uniform Spacing
Filterbank. A comparative example for a populus (aspen)
tree core image is presented in Figure 11. The FM images
obtained using the uniform spacing filterbank method is
compared with the results of the corresponding images
produced without using a filterbank. It is clear that the
uniform spacing filterbank method produced a visually
improved FM image. The improvements were prominent for
both the lower part of the image as well as in the upper-
left regions. Here, the minimum frequency for the populus
sample was set at 0.127 and the maximum frequency at
0.447. The filter passbands were 0.127-0.157, 0.157-0.197,
0.1971-0.277, and 0.277-0.447. Based on the average of all
the samples investigated, the minimum passband frequency
was 0.0177 and the maximum at 0.487.

3.5. Comparison between Variable Frequency Spacing and
Uniform Spacing Filterbanks. In this section a compara-
tive example between the uniform spacing filterbank and
the fixed-filterbank (variable frequency spacing filterbank)
methods is presented. The filterbank changes affected by the
uniform spacing filterbank method are also presented.

The best and worst results as judged by the ability to
detect the rings on the FM images are depicted in Figure 12.
Here, in Figures 12(a) and 12(b), the continuity of the
input image allowed the uniform spacing filterbank, which
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was used with the median filter for continuity correction,
to better adapt to the input. On the other hand, the large
discontinuities of the input image in Figure 12(d) did not
help the uniform spacing filterbank method. Instead, the
use of the dominant component analysis method with the
variable frequency spacing filterbank was able to better
adjust to the discontinuities. For large discontinuities, the
median filtering continuity correction should be carefully
verified. In Figure 12(b), we can see that the uniform spacing
method also rejected the noisy variations that appeared
between rings.

3.6. Radial Instantaneous Frequency Magnitude Estimation
Using S-G Filter Derivative Method. This new method was
tested on a chirp image after calculating the instantaneous
phase from the application of uniform spacing based filter-
banks. The results of the test are shown in Figure 13. The
instantaneous phase was estimated after the application of
uniform spacing-based filter banks. The radial instantaneous
frequency magnitude was estimated based on the described
method and compared with that from the manually deter-
mined ground truth. There is a good match between the
estimated IF and ground truth IF magnitudes.

For a populus sample, we present IF results from using
both uniform wavelength spacing and variable frequency
spacing filterbanks in Figure 14. There appear to be sig-
nificant difference between the two methods. Here, based
on visual quality inspection of the output FM images, we
found that the variable frequency spacing filterbank gave
better results (see discussion below). As shown in Figure 12,
the variable frequency spacing filterbank gave significantly
improved results for some very difficult cases.

3.7. Tree Growth Estimation. Both the uniform wavelength
and the variable frequency filterbanks were used for tree
growth estimation. The half-seasonal and quarterly growth
estimates are shown in Figure 15 for hemlock, Figure 16
for spruce, Figures 17 and 19 for populus samples using
a variable frequency spacing filterbank, and Figure 18 for
populus using a uniform wavelength spacing filterbank.

To compare results from the two filterbanks we per-
formed a visual comparison between the generated FM
images and the manually segmented rings. From the com-
parison, we found that the variable frequency filterbank gave
better results. This was discussed in Figure 12. However,
we also wanted to provide expert grades for the variable
frequency spacing results. Thus, both the half-seasonal and
quarterly growth images were graded on a scale of 1 to 5
(qualitative criteria used for quantitative grading). The crite-
ria range was set based on a uniform distribution of inter and
intraring discontinuities. The number of discontinuities was
counted five times (by the same expert) and the mode and
standard deviation were computed. Based on the number
of discontinuities, a score of “1” was given if the growth
model looked “very bad”, “2” was “bad”, “3” was “average”,
“4” was “good”, and “5” was “excellent”. A growth model was
graded “excellent” if the inter- and intraring spacing had only
1 to 4 discontinuities. The examples depicted in Figures 15,
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17, and 18 are samples with an “excellent” grade. A “good”
grade was given if there were between 5 to 8 discontinuities.
The “average” score was given if there were between 9 to
12 discontinuities. The example shown in Figure 17 was a
sample with “average” grade.

The intra- and interring discontinuities are elucidated for
this example. The “bad” and “very bad” grade was given if
the samples had between 13 to 16 and 17-20 discontinuities,
respectively. Table 3 shows the relationship between the
criteria for the number of discontinuities, grade, and score.
Table 4 presents the number of discontinuities (mode of five
trials) for each populus sample along with the corresponding
standard deviation, the graded individual score, and the final
average score of all samples. The average score for all 20
samples was 4.4 on a scale of 5.0. Thus, we found that the
average results were graded as good to excellent. The same
growth modeling study was performed on 12 samples from
the Grissino-Mayer database (examples shown in Figures 15,
16, and 20). It was found that the average score for the 12
samples was 4.0 on a scale of 5.0 (see Table 5).

4. Conclusions

From the results we conclude that the use of a variable
frequency spacing filterbank provided quality FM images.
Furthermore, the continuity of the FM images can be
enhanced using median filtering provided that the input
image exhibits a reasonable level of continuity as determined
by qualitative observation, that is, for images with good
and excellent grade (1-8 discontinuities). In this case, the
resulting instantaneous frequency vector field characterizes
the interring density throughout the wood core sample.

The instantaneous phase allowed us to develop an effec-
tive growth model. Quarterly and half-seasonal tree growth
estimation models were developed and demonstrated. The
presented model does provide us with a means for deriving
growth estimates from very noisy tree images. The average
score based on qualitative criteria using quantitative grading
of the 20 populus samples was 4.4 on a scale of 5.0, ranging
from good to excellent. Independent testing on a mixture
of different tree types from the 12 Grissino-Mayer samples
gave an average grade of 4.0/5.0. In future work it will be
interesting to develop hybrid methods where the results of
image analysis are combined with standard measurements
such as the tree ring count, tree height, and girth of trunk.
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