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We consider transmit beamforming for single-carrier frequency-division multiple access (SC-FDMA) transmission over
frequency-selective multiple-input multiple-output (MIMO) channels. The beamforming filters are optimized for minimization
of the sum of the mean-squared errors (MSEs) of the transmitted data streams after MIMO minimum mean-squared error linear
equalization (MMSE-LE), and for minimization of the product of the MSEs after MIMO MMSE decision-feedback equalization
(MMSE-DFE), respectively. We prove that for SC-FDMA transmission in both cases eigenbeamforming, diagonalizing the overall
channel, together with a nonuniform power distribution is the optimum beamforming strategy. The optimum power allocation
derived for MMSE-LE is similar in spirit to classical results for the optimum continuous-time transmit filter for linear modulation
formats obtained by Berger/Tufts and Yang/Roy, whereas for MMSE-DFE the capacity achieving waterfilling strategy well known
from conventional single-carrier transmission schemes is obtained. Moreover, we present a modification of the beamformer design
to mitigate an increase of the peak-to-average power ratio (PAPR) which is in general associated with beamforming. Simulation
results demonstrate the high performance of the proposed beamforming algorithms.

1. Introduction

Single-carrier frequency-division multiple access (SC-
FDMA) transmission, also referred to as discrete Fourier
transform (DFT) spread orthogonal frequency-division mul-
tiple access (OFDMA), has been selected for the uplink of
the E-UTRA Long-Term Evolution (LTE) mobile communi-
cations system [1]. In comparison to standard OFDMA, SC-
FDMA enjoys a reduced peak-to-average power ratio (PAPR)
enabling a low-complexity implementation of the mobile
terminal [2]. SC-FDMA is employed along with multiple-
input multiple-output (MIMO) techniques in LTE in order
to further improve coverage and capacity. Another advantage
of SC-FDMA is that relatively simple frequency-domain
minimum mean-squared error linear equalization (MMSE-
LE) techniques [3, 4] can be applied for signal recovery at
the base station, if a frequency-selective MIMO channel
is present and introduces intersymbol interference (ISI).
Incorporating additional MMSE noise (error) prediction,
tailored for single-carrier transmission techniques with cyclic

convolution, compare with for example, [5], an MMSE
decision-feedback equalization (MMSE-DFE) structure re-
sults with enhanced performance compared to MMSE-LE.

In order to fully exploit the potential benefits of MIMO
transmission, closed-loop transmit beamforming should be
employed, compare with for example, [6, 7], where a prag-
matic eigenbeamforming algorithm using unitary precoding
matrices in conjunction with uniform power allocation
across all subcarriers has been introduced for SC-FDMA
MIMO transmission with MMSE-LE. However, in this work,
we show that eigenbeamforming with uniform power allo-
cation is suboptimum. We prove that beamforming filters,
minimizing the mean-squared error (MSE) after MMSE-LE,
lead to eigenbeamforming with a nonuniform power alloca-
tion across the subcarriers. The optimum power allocation
policy is derived and shown to be similar in spirit to classical
results for the optimum continuous-time transmit filters
for a conventional single-carrier transmission, compare with
[8], that is, it is given by an inverse waterfilling scheme.
For MMSE-DFE, it is shown that also eigenbeamforming
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together with a nonuniform power allocation across the
subcarriers is optimal in general. Here the optimum power
allocation policy is proved to be given by classical capacity
achieving waterfilling, again similar to conventional single-
carrier transmission, compare with [9].

Simulation results demonstrate the high performance of
the proposed beamforming schemes and show that beam-
forming introduces a certain increase in the peak-to-average
power ratio (PAPR). For PAPR reduction, symbol amplitude
clipping has been proposed in [7], which is known to intro-
duce in-band signal distortion. Therefore, in this work,
a modified version of the selected mapping (SLM) method
[10, 11] is used, which can be incorporated without loss of
optimality into the beamformer design to keep the increase
of the PAPR at a minimum.

This paper is organized as follows. In Section 2, the
underlying system model for a single-user MIMO SC-FDMA
transmission is described. MMSE-LE and MMSE-DFE for
MIMO SC-FDMA transmission are introduced in Sections
3 and 4, respectively. MMSE beamforming for MMSE-LE
and MMSE-DFE are derived in Sections 5 and 6, respectively,
and a method for PAPR reduction is proposed in Section 7.
Numerical results for beamforming and the proposed PAPR
reduction method are presented in Section 8, and some
conclusions and suggestions for future work are provided in
Section 9.

Notation 1. E{·}, (·)T , and (·)H denote expectation, trans-
position, and Hermitian transposition, respectively. Bold
lowercase letters and bold uppercase letters stand for col-
umn vectors and matrices, respectively. An exception are
frequency-domain vectors for which also bold upper case
letters are used. [A]m,n denotes the element in the mth
row and nth column of matrix A; IX is the X × X identity
matrix, 0X×Y stands for an X × Y all-zero matrix, and
diag{x1, x2, . . . , xn} is a diagonal matrix with elements
x1, x2, . . . , xn on the main diagonal. tr(·) and det(·) refer
to the trace and determinant of a matrix, respectively. WX

denotes the unitary X-point DFT matrix and ⊗ denotes
cyclic convolution.

2. SystemModel

We consider single-user SC-FDMA transmission over a fre-
quency-selective MIMO channel. Here, we assume Nt = 2
transmit antennas, which is the most realistic setting for
the LTE uplink, and Nr ≥ 2 receive antennas. The derived
solution can be generalized in a straightforward way to any
number of transmit antennas Nt > 2.

Figure 1 shows the considered SC-FDMA transmitter.
After channel encoding of binary symbols and interleav-
ing, Gray mapping to a quadrature amplitude modulation
(QAM) signal constellation is applied. The corresponding
symbols of both transmit branches ai[k], i ∈ {1, 2},
k ∈ {0, 1, . . . , M − 1} of variance σ2

a = E{|ai[k]|2}
are independent and identically distributed (i.i.d.), where
M symbols form one block. An M-point DFT is applied
to each block ai � [ai[0]ai[1] · · · ai[M − 1]]T leading
to vector Ai � WMai in the frequency domain with
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Figure 1: Transmitter with SC-FDMA signal processing and beam-
forming.

Ai = [Ai[0]Ai[1] · · ·Ai[M − 1]]T . Subsequently, the fre-
quency domain symbols are mapped onto N subcarriers,
resulting in frequency domain vectors Bi of size N . Hereby,
mapping is done by the assignment to M consecutive
subcarriers beginning from the ν0th subcarrier, which can be
represented as

Bi = KAi (1)

with the assignment matrix

K �
[

0T
ν0×MITM0T

(N−M−ν0 )×M
]T

. (2)

Using an N-point inverse (I)DFT, time-domain transmit
vectors bi with elements bi[κ], κ ∈ {0, 1, . . . , N − 1}, are
computed, that is, bi �WH

NBi.
If additional beamforming is employed at the transmitter

side, a cyclic 2 × 2 matrix filter is applied to input vector
[b1[κ]b2[κ]]T in each time step. This can be implemented
also in the M-point DFT domain by forming sequences
Ã1[μ] and Ã2[μ] via

[
Ã1
[
μ
]
Ã2
[
μ
]]T = P

[
μ
][
A1
[
μ
]
A2
[
μ
]]T (3)

with a 2 × 2 beamformer frequency response matrix P[μ] as
shown in Figure 1. For the subcarrier assignment, sequences
Ãi[μ] instead of Ai[μ] are used in (1), that is, Ai is replaced
by a vector Ãi constructed from sequence Ãi[μ].

A cyclic prefix of length Lc is added to vectors bi and the
sequences bi,c[κ] corresponding to bi,c � [bi[N − Lc] bi[N −
Lc + 1] · · · bi[N − 1] bT

i ]T , that is, bi,c[0] = bi[N − Lc],
bi,c[1] = bi[N − Lc + 1], . . . ,bi,c[N + Lc − 1] = bi[N − 1],
form an SC-FDMA transmit symbol. (Here, index “c” stands
for the additional cyclic prefix.) The signal at the lth receive
antenna, l ∈ {1, 2, . . . , Nr}, is

rl,c[k] =
2∑

i=1

L−1∑

λ=0

hl,i[λ]bi,c[κ− λ] + nl[κ], (4)

where the discrete-time subchannel impulse response hl,i[λ]
of length L characterizes transmission from the ith transmit
antenna to the lth receive antenna including transmit and
receiver input filtering. (Symbols from the preceding SC-
FDMA symbol can be ignored in the model because they
do not contribute after removal of the cyclic prefix.) During
the transmission of each slot consisting of several vectors
(SC-FDMA symbols) bi,c, the MIMO channel is assumed
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to be constant but it may change randomly from slot to
slot. nl[κ] denotes spatially and temporally white Gaussian
noise of variance σ2

n . In the receiver, the cyclic prefix is
first removed, eliminating interference between adjacent SC-
FDMA symbols if Lc ≥ L − 1, and after an N-point DFT
the received frequency domain vector Rl at antenna l can be
represented as

Rl =
2∑

i=1

Hl,iBi + Nl, (5)

corresponding to a cyclic convolution in the time domain,
where Hl,i = diag{Hl,i[0], Hl,i[1], . . . , Hl,i[N − 1]} with
Hl,i[ν] �

∑L−1
λ=0 hl,i[λ]e− j(2π/N)νλ, and Nl is the frequency-

domain noise vector.

3. MMSE-LE for SC-FDMA

MMSE-LE for a MIMO SC-FDMA transmission has been
outlined for example, in [4, 6]. The optimum filtering
matrix for joint processing of vectors Rl is given by [4, (8)],
delivering estimates yi[k], i ∈ {1, 2}, with yi[k] = ai[k] +
ei[k], where the error sequences ei[k] have variances σ2

e,i,
i ∈ {1, 2}. Essentially, MMSE equalization can be realized
by frequency-domain MIMO MMSE filtering with matrix

F
[
μ
] =

(
HH

[
μ
]

H
[
μ
]

+ ζI2

)−1
HH

[
μ
]
, (6)

where [H[μ]]l,i � Hl,i[ν0 + μ] and ζ � σ2
n/σ

2
a , applied

independently to each relevant frequency component μ,
and subsequent IDFT operations, compare with for exam-
ple, [4, 6]. For beamforming filter design, the covariance
matrix of the error vector e[k] � [e1[k] e2[k]]T , Φee �

E{e[k] eH[k]}, is needed and calculated in the following.
Defining the equalizer output vector y[k] � [y1[k] y2[k]]T

and using the above-mentioned representation of the MMSE
equalizer, we obtain

y[k] = 1√
M

M−1∑

μ=0

(
HH

[
μ
]

H
[
μ
]

+ ζI2

)−1
HH

[
μ
]

× (H
[
μ
]

A
[
μ
]

+ N
[
μ
])

e j(2π/M)kμ,

(7)

with A[μ] � [A1[μ] A2[μ]]T and an i.i.d. frequency domain
vector N[μ] with independent components of variance σ2

n .
Equivalently, y[k] can be written as

y[k] = 1√
M

M−1∑

μ=0

(
HH

[
μ
]

H
[
μ
]

+ ζI2

)−1

×
(

HH
[
μ
]

H
[
μ
]

+ ζI2

)
A
[
μ
]
e j(2π/M)kμ

+
1√
M

M−1∑

μ=0

(
HH

[
μ
]

H
[
μ
]

+ ζI2

)−1

×
(

HH
[
μ
]

N
[
μ
]− ζI2A

[
μ
])

e j(2π/M)kμ.

(8)
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Figure 2: Structure of MIMO DFE receiver.

Thus, the error vector of MMSE equalization is given by

e[k] = 1√
M

M−1∑

μ=0

(
HH

[
μ
]

H
[
μ
]

+ ζI2

)−1

×
(

HH
[
μ
]

N
[
μ
]− ζI2A

[
μ
])

e j(2π/M)kμ.

(9)

Taking into account the statistical independence of terms for
different discrete frequencies μ in the sum of the right hand
side of (9) and the mutual independence of A[μ] and N[μ],
the error correlation matrix can be expressed as

Φee = E
{

e[k]eH[k]
}

= 1
M

M−1∑

μ=0

(
HH

[
μ
]

H
[
μ
]

+ ζI2

)−1

×
(
σ2
nHH

[
μ
]

H
[
μ
]

+ ζ2σ2
a I2

)(
HH

[
μ
]

H
[
μ
]

+ ζI2

)−1

= σ2
n

M

M−1∑

μ=0

(
HH

[
μ
]

H
[
μ
]

+ ζI2

)−1
.

(10)

After MMSE-LE, a bias which is characteristical for MMSE
filtering (This bias arises because the error signal ei[k]
contains a part depending on ai[k].) is removed and soft
output for subsequent channel decoding is calculated from
the equalized symbols yi[k] [4].

In case of additional beamforming, H[μ] has to be
replaced by the overall transfer matrix H[μ]P[μ] in all
expressions for MMSE filter and error covariance matrix
calculation.

4. MMSE-DFE for SC-FDMA

To enhance the performance of MMSE-LE, a MIMO noise
(error) prediction-error filter may be inserted after the
MMSE linear equalizer as shown in Figure 2 and applied
to y[k] � [y1[k] y2[k]]T , y[k] = a[k] + e[k], a[k] �
[a1[k] a2[k]]T . The introduced postcursor intersymbol
interference is removed by decision feedback after the quan-
tizer Q producing decisions â[k] for a[k], resulting in an
MMSE-DFE structure, where the feedback filter coefficient
matrices are identical to those of the prediction filter T[k],
compare with, for example, [5].

The signal after prediction-error filtering is described by

up[k] = Te[k]⊗ a[k] + wp[k], (11)



4 EURASIP Journal on Advances in Signal Processing

where Te[k] are the coefficients of the prediction-error filter,
Te[0] = I2, Te[k] = −T[k], k ∈ {1, 2, . . . , qp} (T[k]:
predictor coefficient matrices, qp : predictor order), Te[k] =
02×2, k ∈ {qp + 1, . . . ,M−1}, and wp[k] is the error signal of
the MMSE-LE output filtered with the prediction-error filter.

The optimum predictor coefficients are obtained from
the multichannel Yule Walker equations [4, 5]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A[0] A[1] · · · A
[
qp − 1

]

A[−1] A[0] · · · A
[
qp − 2

]

...
...

. . . A[1]

A
[
−qp + 1

]
A
[
−qp + 2

]
· · · A[0]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

TH[1]

TH[2]

...

TH
[
qp
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

AT[−1] AT[−2] · · ·AT
[
−qp

]]T
,

(12)

with the cyclic autocorrelation matrix sequence of the error
signal of MMSE–LE (with corresponding periodical exten-
sion)

A[k] = σ2
n

M

M−1∑

μ=0

(
HH

[
μ
]

H
[
μ
]

+ ζI2

)−1
e j(2π/M)kμ. (13)

4.1. Case (qp = M − 1). We now consider the limit case of
the maximum possible prediction order, qp = M − 1. Here,
from a closer inspection of (12),

A[k]⊗ TH
e [−k] = 0, k ∈ {1, 2, . . . , M − 1} (14)

can be deduced for the optimum prediction-error filter.
(For evaluation of the cyclic convolution arising in (14),
the matrix sequences are periodically extended beyond the
set k ∈ {0, 1, . . . ,M − 1}.) Solving (14) in the frequency
domain and taking into account the constraint Te[0] = I2,
the frequency response S[μ] of the optimum prediction-error
filter can be expressed as

S
[
μ
]
=
⎛
⎝ 1
M

M−1∑

λ=0

(
HH[λ]H[λ] + ζI2

)
⎞
⎠
−1

·
(

HH
[
μ
]

H
[
μ
]

+ ζI2

)
.

(15)

After some further straightforward calculations, the covari-
ance matrix of the prediction error wp[k], Φwpwp �

E{wp[k]wH
p [k]}, is obtained as

Φwpwp = σ2
n

⎛
⎝ 1
M

M−1∑

λ=0

(
HH[λ]H[λ] + ζI2

)
⎞
⎠
−1

, (16)

and its power density spectrum as

σ2
n

⎛
⎝ 1
M

M−1∑

λ=0

(
HH[λ]H[λ] + ζI2

)
⎞
⎠
−1

×
(

HH
[
μ
]

H
[
μ
]

+ ζI2

)

·
⎛
⎝ 1
M

M−1∑

λ=0

(
HH[λ]H[λ] + ζI2

)
⎞
⎠
−1

.

(17)

The frequency response in (15) may be viewed as that of
a multichannel extension of an interpolation-error filter,
compare with [12]. This is because for qp = M − 1 all
other available error vectors, that is, future and past vectors,
are contributing to the estimation of the current error
vector, and the filter no longer acts as a predictor but as
an interpolator. Also (16) and (17) may be interpreted as
multichannel cyclic generalizations of corresponding results
in [12]. It is important to note that an interpolation error
is not white, in contrast to the prediction error produced
by an optimum causal prediction filter, compare with also
[13]. In fact, it can be shown that the cascade of MMSE-
LE and an interpolation-error filter has a frequency response
proportional to HH[μ], that is, a matched filter results
requiring a DFE feedback filter with equally strong causal and
noncausal coefficients.

4.2. Case (qp = (M − 1)/2). In a system with cyclic con-
volution, a predictor with qp = (M − 1)/2 (M odd)
may be viewed as the counterpart of a classical, causal
prediction filter of infinite order with linear convolution.
Therefore, it can be expected that for sufficiently large M,
results for infinite prediction order and linear convolution
hold well for the considered case. In [9], it has been
shown that for a multichannel MMSE-DFE, the optimum
filters minimizing tr(Φwpwp) (arithmetic MSE) minimize
also det(Φwpwp ) (geometric MSE), that is, both criteria are
equivalent, and an expression for the minimum determinant
has been given [9, (37)]. Adapting this expression to our
notation and discretizing the integral,

det
(
Φwpwp

)

= exp

⎛
⎝ 1
M

M−1∑

μ=0

ln
(

det
(
σ2
n

(
HH

[
μ
] ·H

[
μ
]

+ ζI2

)−1
))⎞
⎠

(18)

is obtained. Elaborating further on (18) yields

det
(
Φwpwp

)
= (σ2

n

)2 M

√√√√√
M−1∏

μ=0

det
((

HH
[
μ
]

H
[
μ
]

+ ζI2
)−1

)
.

(19)

Again, for the case of additional beamforming H[μ] has to be
replaced by H[μ]P[μ] in all expressions.
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5. OptimumBeamforming and Power
Allocation forMMSE-LE

If knowledge of the MIMO transmission channel is available
at the transmitter, this can be exploited to make the transmit
signal more robust to distortions during transmission.
Therefore, in this section, a beamformer is presented which is
optimal in the MMSE sense when MMSE linear equalization
is applied at the receiver side.

5.1. Design of MMSE Beamforming Filter. For the design of
the beamforming matrices P[μ], μ ∈ {0, 1, . . . ,M − 1},
the error variances σ2

e,i, i ∈ {1, 2}, after MMSE-LE are
considered. Here, the optimum beamformer is defined as
the beamformer minimizing σ2

e,1 + σ2
e,2, that is, tr(Φee) for

a given transmit power. ( An alternative optimization
criterion would be the average bit error rate (BER) after
MMSE-LE of both transmit streams instead of the sum of
MSEs. However, there seems to be no closed-form solution
for minimum BER beamforming.) Thus, considering (10)
and replacing H[μ] by H[μ]P[μ], the cost function to be
minimized can be expressed as

J = tr

⎛
⎝σ2

n

M

M−1∑

μ=0

(
PH
[
μ
]

HH
[
μ
]

H
[
μ
]

P
[
μ
]

+ ζI2

)−1

⎞
⎠. (20)

Hence,the optimum beamformer is given by the solution of
the optimization problem

min
P[0],P[1],...,P[M−1]

J

s.t. tr

⎛
⎝
M−1∑

μ=0

P
[
μ
]

PH
[
μ
]
⎞
⎠ ≤ 2M

P

σ2
a

,
(21)

where P denotes the prescribed average transmit power per
subcarrier and i.i.d. data sequences have been assumed for
the power constraint. Using the eigenvalue decomposition

HH
[
μ
]

H
[
μ
] = V

[
μ
]
ΛH

[
μ
]

VH
[
μ
]

(22)

with a 2×2 unitary matrix V[μ] and a diagonal matrix ΛH[μ]
with entries d2

1[μ], d2
2[μ] on its main diagonal, where d1[μ],

d2[μ] are nonnegative, and the property

tr
(

(IX + AB)−1
)
= tr

(
(IX + BA)−1

)
(23)

for square matrices A and B, we obtain

J = σ2
n

Mζ

M−1∑

μ=0

tr

((
1
ζ
Λ1/2
H

[
μ
]

VH
[
μ
]

P
[
μ
]

PH
[
μ
]

×V
[
μ
]
Λ1/2
H

[
μ
]

+ I2

)−1
)

,

(24)

compare with also [14], where an OFDM MMSE beamform-
ing problem has been considered. Inserting the singular value
decomposition (SVD) of P[μ],

P
[
μ
] = L

[
μ
]
ΛP
[
μ
]

KH
[
μ
]
, (25)

with 2 × 2 unitary matrices L[μ], K[μ] and diagonal matrix
ΛP[μ] with nonnegative entries c1[μ], c2[μ] on its main
diagonal, into (24) yields

J = σ2
n

Mζ

×
M−1∑

μ=0

tr

⎛
⎝
(

1
ζ
Λ1/2
H

[
μ
]

C
[
μ
]
Λ2
P

[
μ
]

CH
[
μ
]
Λ1/2
H

[
μ
]

+ I2

)−1
⎞
⎠

(26)

with C[μ] � VH[μ]L[μ]. K[μ] has an influence neither
on the cost function nor on the power constraint in (21).
Therefore, K[μ] = I2 can be chosen without any loss
of generality. However, K[μ] has an influence on the
peak power and can be used to reduce the PAPR of the
transmit signal, compare with Section 7. The matrix U[μ] �
Λ1/2
H [μ]C[μ]Λ2

P[μ]CH[μ]Λ1/2
H [μ] in (26) is Hermitian and an

eigenvalue decomposition

U
[
μ
] = Q

[
μ
]
ΛU
[
μ
]

QH
[
μ
]

(27)

exists with a 2 × 2 unitary matrix Q[μ]. Then, the cost
function can be written as

J = σ2
n

Mζ

M−1∑

μ=0

tr

⎛
⎝
(

1
ζ

Q[μ]ΛU
[
μ
]

QH
[
μ
]

+ I2

)−1
⎞
⎠. (28)

In (28), J is influenced only by the matrix of eigenvalues
ΛU[μ] but not by the modal matrix Q[μ]. Therefore, we
restrict ourselves to beamformers with Q[μ] = I2 which
implies that U[μ] is diagonal and C[μ] = I2, that is, L[μ] =
V[μ], corresponding to an eigenbeamforming solution. In
fact, for any beamforming filter resulting in matrices U[μ]
according to (27) an equivalent eigenbeamforming filter
Peig[μ] with SVD matrices Leig[μ] = V[μ] and ΛP,eig[μ] =
Λ−1/2
H [μ]Λ1/2

U [μ] exists resulting in the same cost function.
Now it remains to be shown that the eigenbeamforming
solution does not affect the power constraint. For this, we
consider P[μ]PH[μ] in (21),

tr
(

P
[
μ
]

PH
[
μ
])

= tr
(

V
[
μ
]

VH
[
μ
]

P
[
μ
]

PH
[
μ
])

= tr
(

VH
[
μ
]

P
[
μ
]

PH
[
μ
]

V
[
μ
])

= tr
(
Λ−1/2
H

[
μ
]
Λ1/2
H

[
μ
]

VH
[
μ
]
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×V
[
μ
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[
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[
μ
])

= tr
(
Λ−1
H

[
μ
]

Q
[
μ
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[
μ
]

QH
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μ
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≥ tr
(
Λ−1
H

[
μ
]
ΛU
[
μ
]) = tr

(
Λ2
P,eig

[
μ
])

(29)

= tr
(

Peig
[
μ
]

PH
eig

[
μ
])

, (30)

where tr(A B) = tr(B A) has been used and the step from
(29) to (30) follows from majorization theory, compare with
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[14, 15]. Hence, we have proved that there is always an
eigenbeamformer which exhibits the same cost function
as a given arbitrary beamformer at equal or even lower
transmit power. Therefore, eigenbeamforming is optimum
and considered further in the following.

5.2. MSEMinimizing Power Allocation for Eigenbeamforming.
For eigenbeamforming, it is straightforward to show that the
error correlation matrix in (10) is given by

Φee = σ2
n

M

M−1∑

μ=0

diag

{
1

p1
[
μ
]
d2

1

[
μ
]

+ ζ
,

1
p2
[
μ
]
d2

2

[
μ
]

+ ζ

}
,

(31)

where pi[μ] � c2
i [μ] is the power allocation coefficient for

transmit antenna i and subcarrier μ. Optimization problem
(21) simplifies for eigenbeamforming to

min
p1[·],p2[·]

σ2
n

M

M−1∑

μ=0

2∑

i=1

1
pi
[
μ
]
d2
i

[
μ
]

+ ζ

s.t. pi
[
μ
] ≥ 0 ∀μ, i ∈ {1, 2},

M−1∑

μ=0

2∑

i=1

pi
[
μ
] = 2M

P

σ2
a
.

(32)

Convex optimization problems of the form (32) have been
considered for example, in [16, 17]. Via the Karush-Kuhn-
Tucker (KKT) optimality conditions [16], the following solu-
tion can be obtained:

pi
[
μ
] = 2MP/σ2

a + ζ
∑2

i=1

∑
λ∈Si

1/d2
i [λ]

∑2
i=1

∑
λ∈Si

(1/di[λ])

1
di
[
μ
]

− ζ
1

d2
i

[
μ
] , i ∈ {1, 2}, μ ∈ Si,

(33)

pi
[
μ
] = 0, i ∈ {1, 2}, μ /∈ Si. (34)

Here, the subsets Si ⊆ {0, 1, . . . , M − 1} are determined
as follows. First, for each i the indices μ with di[μ] = 0
are determined and deleted from {0, 1, . . . , M − 1} to have
initial choices for Si. Then, if some pi[μ] according to (33)
are negative, the smallest value di[μ], i ∈ {1, 2}, μ ∈ Si

is determined and the corresponding subcarrier index μ
is deleted from the respective subset Si. This procedure is
repeated until all pi[μ] according to (33) are nonnegative.
The resulting coefficients may be viewed as a modified
waterfilling solution for LE, in contrast to the classical
capacity-achieving waterfilling solution [17].

5.3. Further Discussion. By setting ζ = 0 in all derivations
for beamforming for MMSE-LE, corresponding results for
zero-forcing (ZF) LE can be obtained as a special case in
a straightforward way. The optimum power allocation fac-
tors for eigenbeamforming are then given by pi[μ] = C/di[μ]
with some constant C and Si = {0, 1, . . . ,M − 1}, i ∈ {1, 2},
compare with (33). Note that di[μ] > 0, for all i, for all μ has

to be fulfilled as a condition for the existence of a stable ZF
equalizer. Thus, the frequency response of the beamforming
filter is given by

P
[
μ
] = V

[
μ
] · diag

⎧⎪⎨
⎪⎩

√
C√

d1
[
μ
] ,

√
C√

d2
[
μ
]

⎫⎪⎬
⎪⎭. (35)

Using an SVD of H[μ], it is straightforward to show that the
frequency response of the ZF linear equalizer, FZF-LE[μ] =
(H[μ]P[μ])−1, can be expressed as

FZF-LE
[
μ
] = diag

⎧⎪⎨
⎪⎩

1/
√
C√

d1
[
μ
] ,

1/
√
C√

d2
[
μ
]

⎫⎪⎬
⎪⎭ ·MH

[
μ
]
, (36)

where M[μ] is a unitary matrix. It can be observed that fac-

tors 1/
√
di[μ] are employed for both beamforming filtering

and ZF-LE, that is, beamforming acts as a kind of pre-
equalization and the channel equalizer is split in equal (up
to a scaling and unitary matrices) transmitter and receiver
parts.

It is interesting to note that our results for beamforming
for SC-FDMA with LE are similar in spirit to the classical
results of Berger and Tufts [8] and Yang and Roy [18] who
developed the optimum continuous-time transmit filters
assuming LE at the receiver for transmission with con-
ventional linear modulation over single-input single-output
(SISO) and MIMO channels, respectively.

The computational complexity of beamforming filter
calculation is governed by the complexity of the eigenvalue
decompositions of M matrices HH[μ]H[μ] of size 2 × 2
(O(M)) and by the number of iterations needed to find the
optimum coefficients pi[μ], i ∈ {1, 2} according to (33) and
(34).

6. OptimumBeamforming and Power
Allocation forMMSE-DFE

6.1. Case (qp = M − 1). First, we consider the maximum
possible prediction order and replace H[μ] by H[μ]P[μ]
in (16). Assuming an eigenbeamforming solution, P[μ] =
V[μ]ΛP[μ], with a diagonal matrix ΛP[μ] with nonnegative
entries c1[μ], c2[μ] on its main diagonal, the sum of signal-
to-prediction-error ratios of both data streams can be written
as

σ2
a

σ2
wp,1

+
σ2
a

σ2
wp,2

= σ2
a

Mσ2
n

M−1∑

μ=0

2∑

i=1

(
pi
[
μ
]
d2
i

[
μ
]

+ ζ
)
, (37)

where pi[μ] � c2
i [μ] is again the power allocation coefficient

for transmit antenna i and subcarrier μ. It is easy to see
that an optimum power allocation policy puts all available
transmit power in that stream i and subcarrier μ with
maximum d2

i [μ]. This, however, results in a widely spread
impulse response of overall channel and corresponding
DFE feedback filter, that is, the MMSE-DFE is likely to be
affected by severe error propagation. It should be noted that
such a feedback filter fed by hard decisions can be only
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employed in the last iterations of an iterative DFE, when
reliable past and future decisions are available [19]. However,
beamforming should be adjusted to the situation in the first
iteration where a causal feedback filter has to be applied.
Because of this and other practical constraints, the scheme
with qp = M − 1 is mainly of theoretical interest and not
considered for our numerical results for noniterative DFE
schemes (Iterative DFE schemes are beyond the scope of this
paper).

6.2. Case (qp = (M−1)/2). With a transmit power constraint
the optimum beamformer minimizing the geometric MSE
(19) of MMSE-DFE is given by the solution of the optimiza-
tion problem

min
P[0],P[1],...,P[M−1]

J

s.t. tr

⎛
⎝
M−1∑

μ=0

P
[
μ
]

PH
[
μ
]
⎞
⎠ ≤ 2M

P

σ2
a

,
(38)

where the cost function J is given by

J =
M−1∏

μ=0

det
((

PH
[
μ
]

HH
[
μ
]

H
[
μ
]

P
[
μ
]

+ ζI2

)−1
)

(39)

and P denotes again the prescribed average transmit power
per subcarrier.

In [17, pages 136-137], it has been shown that for prob-
lems of the form (38), (39), eigenbeamforming, P[μ] =
V[μ] ΛP[μ], is optimum, resulting in the power allocation
task

min
p1[·],p2[·]

M−1∏

μ=0

2∏

i=1

1
pi
[
μ
]
d2
i

[
μ
]

+ ζ

s.t. pi
[
μ
] ≥ 0 ∀μ, i ∈ {1, 2},

M−1∑

μ=0

2∑

i=1

pi
[
μ
] = 2M

P

σ2
a
.

(40)

Via the Karush-Kuhn-Tucker (KKT) optimality condi-
tions [16], the well-known classical waterfilling solution is
obtained,

pi
[
μ
] =

(
ω− ζ

1
d2
i

[
μ
]
)

, i ∈ {1, 2}, μ ∈ Si,

pi
[
μ
] = 0, i ∈ {1, 2}, μ /∈ Si.

(41)

The determination of water level ω and subsets Si ⊆
{0, 1, . . . , M − 1} is well investigated, compare with for
example, [17]. It should be noted that the cost function J in
(39) characterizes the MMSE-DFE performance exactly only
for M → ∞ and qp = (M − 1)/2, however, it is still a very
good performance approximation for practically relevant M
and qp and therefore suitable for beamformer optimization
also in these cases.

Unlike linear equalization, the capacity-achieving water-
filling power allocation solution is obtained for MMSE-DFE,

which is in agreement with results for systems with linear
convolution, compare with for example, [9]. It should be
noted that for linear equalization power has to be allocated
mainly to subcarriers where the channel frequency response
is weak, whereas for DFE mainly the strong subcarriers are
used. Only for σ2

n → 0, a flat transmit spectrum results.
Regarding the computational complexity of beamform-

ing filter calculation, similar remarks as for LE hold, compare
with last paragraph of Section 5.

7. PAPR Reduction

In the previous analysis, we chose for simplicity K[μ] in (25)
to be the identity matrix. As a unitary K[μ] has no influence
on the cost functions (20) and (39) and the power constraint
in (38), in this section K[μ] is exploited for PAPR reduction.
For this purpose the SLM method, proposed in [10] and
extended for MIMO systems in [11], is invoked and adjusted
to our problem. First, we define Nset subsets of subcarriers
Uι, ι = 1, . . . ,Nset, where Uι contains a specified subcarrier
arrangement for both transmit antennas. Subsequently,
a phase rotation θι ∈ Θ, where Θ contains Nθ allowed
rotation angles, is included into the beamforming filter for
each subset Uι, exploiting unused degrees of freedom in filter
design, compare with Section 5.1. Thus, the modified MMSE
optimum eigenbeamformer for μ ∈Uι is given by

P
[
μ
] = V

[
μ
]

diag
{√

p1
[
μ
]
,
√
p2
[
μ
]}

KH
rot

[
μ
]
,

with Krot
[
μ
] =

⎡
⎣cos(θι) − sin(θι)

sin(θι) cos(θι)

⎤
⎦,

(42)

where Krot[μ] is the adopted unitary rotation matrix, p1[μ]
and p2[μ] are the MMSE power allocation coefficients
according to (33) and (34) or (41), depending on whether
MMSE-LE or MMSE-DFE is used, and V[μ] is the unitary
matrix obtained by the eigenvalue decomposition (22).
We choose that combination of θιs that minimizes the PAPR
defined as

PAPR =
maxi,κ

{
|bi[κ]|2

}

(1/2N)
∑2

i=1

∑N−1
κ=0 |bi[κ]|2

, (43)

which is calculated for every combination of rotation angles
θι in time domain. This procedure is repeated for each
SC-FDMA symbol. Note that with increasing number of
angles in Θ and increasing number of subsets, the number
of possible combinations increases according to NNset

θ and,
hence, the computational complexity to find the best θιs
increases. In order to take into account the rotation operation
in equalizer design at the receiver side appropriately, the
Nset chosen θιs have to be transmitted to the receiver as
side information, as is typically done in SLM type of PAPR
reduction schemes, compare with [10, 11].
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Figure 3: BLER for linear MMSE equalization (LE), LE with beam-
forming (LE-BF), and LE with beamforming and power allocation
(LE-PA) for Pedestrian B channel.

8. Numerical Results

8.1. Assumptions for Simulations. For the presented simu-
lation results, parameters based on the LTE FDD standard
[1] are adopted. Here, Turbo coding with code rate Rc and
following channel interleaving is applied over a block of
two slots, each containing 7 SC-FDMA symbols. For parallel
transmission each of the two slots is assigned to one antenna.
The DFT sizes are chosen to M = 300 and N = 512,
where ν0 = 60. The MIMO subchannels are assumed to
be mutually independent, and the receivers and transmitters
with beamforming have ideal channel knowledge.

8.2. Results for MMSE-LE. Figures 3 and 4 show the block
error rate (BLER) after channel decoding versus Eb/N0

(Eb: average received bit energy, N0: single-sided power
spectral density of the continuous-time noise) for code rates
Rc ∈ {1/3, 1/2, 2/3} and for transmission over a MIMO
channel with ITU Pedestrian B and A subchannels [1],
respectively. For each channel type, the performance of
conventional linear equalization without beamforming (LE),
linear equalization with eigenbeamforming and uniform
power allocation (LE-BF), and linear equalization with
eigenbeamforming and optimal power allocation (LE-PA) is
shown. For Rc = 1/3 and Rc = 1/2 a significant gain can
be achieved by applying LE-BF only, but using additionally
the proposed power allocation yields a further performance
improvement for both channels. However, for Rc = 2/3 we
observe a degradation of LE-BF relative to the BLER of LE
for both channel profiles. By applying the optimal power
allocation, the loss introduced by eigenbeamforming can be
compensated, showing better results than LE. To investigate
this behaviour more in detail the MSEs of the substreams
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Figure 4: BLER for linear MMSE equalization (LE), LE with beam-
forming (LE-BF), and LE with beamforming and power allocation
(LE-PA) for Pedestrian A channel.
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Figure 5: MSE at Eb/N0 = 7 dB for LE, LE-PA, and LE-BF for
transmit antenna 1 (a) and transmit antenna 2 (b), respectively, for
different realizations of Pedestrian B channel impulse responses.

are analyzed. Figure 5 shows the MSE of LE, LE-PA, and
LE-BF for transmit antenna 1 (Figure 5(a)) and transmit
antenna 2 (Figure 5(b)), respectively. The MSE is captured
over a set of realizations of the Pedestrian B channel at
Eb/N0 = 7 dB, and depicted versus the index of the channel
realization. For calculation of the MSE of a given channel
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Figure 6: PAPR for SC-FDMA transmission without power
allocation (solid gray), SC-FDMA transmission with beamforming
and power allocation for LE (Eb/N0 = 7 dB) (dash-dotted), and
OFDMA transmission (solid black) for a Pedestrian B channel
profile.

realization, (10) has been used, where H[μ] has been replaced
by H[μ]P[μ] in case of beamforming. Compared to the
MSE of LE, eigenbeamforming reduces the MSE for transmit
antenna 1 significantly while for transmit antenna 2 the MSE
is boosted, that is, there is always one strong subchannel with
reliable transmission and one weak subchannel delivering
unreliable symbols. If Turbo coding with low code rates is
employed, this improves the BLER as for strong encoding
there are sufficiently many reliable symbols to perform error
correction. However, for Rc = 2/3, with the same amount
of reliable information the decoder is not able to recover all
symbols well. If MSE optimal power allocation is applied,
the gap between the two subchannels is reduced, allowing
a higher MSE at transmit antenna 1 and reducing the MSE
at transmit antenna 2. Hence, the degradation introduced by
eigenbeamforming is compensated so that LE-PA gives the
best results for the considered code rates.

Finally, the PAPR of the proposed beamforming scheme
is investigated. For simulations, the Nset = 2 subsets are
defined by U1 = {μ = 0, 1, . . . ,M/2 − 1} and U2 =
{μ = M/2,M/2 + 1, . . . ,M − 1} and the considered angles
of rotation are given by Θ = {2kπ/Nθ | k = 0, 1, . . . ,Nθ − 1}.
Note, that Nθ = 1 corresponds to MMSE beamforming
without any rotation operation. Figure 6 shows the com-
plementary cumulative density function of the PAPR for
SC-FDMA transmission without beamforming, with MMSE
beamforming for LE (Eb/N0 = 7 dB) and different Nθ , and
OFDMA transmission. As is well known, pure SC-FDMA
transmission has a lower PAPR than OFDMA transmission
which can also be observed here. But applying MMSE
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Figure 7: BLER for conventional MMSE-LE (dash-dotted line,“o”),
MMSE-LE with eigenbeamforming (dash-dotted line, “�”),
MMSE-LE with eigenbeamforming and MMSE power allocation
(dash-dotted line, “+”), conventional DFE (solid line, “o”), DFE
with eigenbeamforming (solid line, “�”), and DFE with eigen-
beamforming and MMSE power allocation (solid line, “+”).
Pedestrian B channel profile.

beamforming with Nθ = 1 increases the PAPR, nearly
bridging the gap between OFDMA and SC-FDMA. With
increasing Nθ the PAPR for MMSE beamforming can be
decreased, where we note that additional PAPR reduction
is diminishing for Nθ > 8. From Figure 6 we can see that
already Nθ = 4 is sufficient to reduce the PAPR significantly,
also meaning that the increase in computational complexity
due to the proposed PAPR reduction scheme can be kept
low. Recall, that in contrast to symbol amplitude clipping as
considered in [7], the proposed PAPR reduction technique
does not have any effects on the BLER performance.

8.3. Results for MMSE-DFE. For DFE a code rate of Rc = 1/3
is used, and qb = 60 symbols are fed back, where we assume
ideal feedback. Note that the performance of DFE with
ideal feedback can be achieved with Tomlinson-Harashima
precoding (up to a small transmit power increase) [20] or
alternatively by an interleaving scheme that allows the use of
decoded bits to generate the feedback symbols [5, 21].

Figures 7 and 8 show the BLER after channel decoding
versus Eb/N0 for different channel profiles. Hereby, the per-
formance of DFE without beamforming, DFE with eigen-
beamforming, and DFE with eigenbeamforming and MMSE
power allocation is compared to that of the conventional LE,
LE with eigenbeamforming, and LE with MMSE beamform-
ing, respectively.

For the simulation results shown in Figure 7, the Pedes-
trian B channel profile has been used for the MIMO sub-
channels. It can be seen clearly, that each of the DFE schemes
exhibits a lower BLER than the corresponding LE scheme and
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ing (solid line, “�”), and DFE with eigenbeamforming and MMSE
power allocation (solid line, “+”). Exponentially decaying channel
profile, σ2

n[κ] ∼ e−κ/4, κ ∈ {0, 1, . . . , 20}.

the performance of DFE can be boosted significantly with
the proposed MMSE power allocation. Compared to pure
LE, even a gain of more than 2 dB can be observed for DFE
with MMSE power allocation.

For the results in Figure 8, the subchannels of the MIMO
channel are given by an impulse response with order qh =
20, where the corresponding variance of the taps σ2

h[κ]
decays exponentially, σ2

h [κ] ∼ e−κ/4, κ ∈ {0, 1, . . . , 20}. With
this highly frequency-selective channel profile DFE with an
MMSE power distribution yields again the best result, out-
performing conventional DFE, DFE with eigenbeamforming
(both show similar BLER), and LE.

A further analysis of the MSEs of the transmit streams
after equalization (results not depicted) has shown that the
application of eigenbeamforming leads from a balanced error
level for both substreams in case of no beamforming to an
unbalanced MSE pattern, where there is one strong sub-
stream and one weaker substream with unreliable symbols.
Additional MMSE power distribution even tends to enlarge
the difference between the substreams, which is preferable
for a scheme with strong channel coding, as the reliable
symbols can be exploited for error correction of less reliable
symbols. On the other hand, if weak or no channel coding
is applied, the weaker substream dominates the performance
of the DFE. Hence, in this case MMSE beamforming leads to
a higher BLER.

Finally, Figure 9 shows the complementary cumulative
density function of the PAPR for SC-FDMA transmission,
SC-FDMA with MMSE power distribution for DFE (Eb/N0 =
7 dB) and different Nθ , and orthogonal frequency-division
multiple access (OFDMA) transmission. Nset = 2 has been
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Figure 9: PAPR for SC-FDMA transmission without power allo-
cation (solid gray), SC-FDMA transmission with beamforming
and power allocation for DFE (Eb/N0 = 7 dB) (dash-dotted), and
OFDMA transmission (solid black) for a Pedestrian B channel
profile.

selected. Similar to LE, already Nθ = 4 is sufficient to reduce
the PAPR significantly.

9. Conclusion and FutureWork

In this paper, we have investigated the application of beam-
forming to spatial multiplexing MIMO systems with SC-
FDMA transmission. The transmitter was optimized for
MMSE-LE and MMSE-DFE, respectively, at the receiver side.
With the MMSE as optimality criterion, the derivations lead
to an eigenbeamformer with nonuniform power allocation.
Here, minimization of the arithmetic MSE for LE results in
a power distribution scheme, where more power is assigned
to poor frequencies which is in contrast to the classical capac-
ity achieving waterfilling scheme resulting for minimization
of the geometric MSE in case of DFE. This proves that
eigenbeamforming with uniform power allocation, which
was proposed in other work on beamforming for SC-
FDMA, is suboptimum. Simulation results confirmed these
derivations. Because perfect feedback has to be assumed for
a satisfactory performance of the beamforming scheme with
DFE, the combination of Tomlinson-Harashima precoding
and beamforming at the transmitter side should be investi-
gated in more detail.

To mitigate the increase of the PAPR, which is caused by
beamforming in general, the beamformer design was modi-
fied exploiting unused degrees of freedom without compro-
mising optimality. Without affecting the BLER performance,
rotations were introduced, where for transmission the com-
bination of rotations with the lowest PAPR was chosen.
It was shown that a small set of different angles of rotation
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is sufficient to obtain a significant PAPR reduction, hence,
the additional computational complexity can be kept low.
However, the angles of rotation used in the transmitter need
to be communicated to the receiver for derotation after
reception. Although a slight increase of the PAPR still
remains, this seems to be acceptable considering the per-
formance gain that can be achieved with beamforming and
optimal power allocation.

In this work, we have assumed the availability of the exact
beamforming matrices at the transmitter. In practice this is
not possible, as it would cause a high overhead to feed back
these matrices. Therefore, quantized beamforming matrices
are fed back from the receiver to the transmitter in a real
system, which reduces the transmission overhead but also
leads to a channel mismatch. The impact of quantization on
the performance remains to be determined in future work.
Another open issue is to determine an optimization criterion
that is more suitable for weak channel coding. It is known
that for high code rates the weaker subchannel dominates
the BLER performance. Therefore, a Min-Max optimization,
where the maximum MSE of the substreams is minimized,
seems to be a promising approach in this case.
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