
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2011, Article ID 639043, 14 pages
doi:10.1155/2011/639043

Research Article

Novel VLSI Algorithm and Architecture with Good
Quantization Properties for a High-Throughput Area
Efficient Systolic Array Implementation of DCT

Doru Florin Chiper and Paul Ungureanu

Faculty of Electronics, Telecommunications and Information Technology, Technical University “Gh. Asachi”,
B-dul Carol I, No.11, 6600 Iasi, Romania

Correspondence should be addressed to Doru Florin Chiper, chiper@etc.tuiasi.ro

Received 31 May 2010; Revised 18 October 2010; Accepted 22 December 2010

Academic Editor: Juan A. López

Copyright © 2011 D. F. Chiper and P. Ungureanu. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Using a specific input-restructuring sequence, a new VLSI algorithm and architecture have been derived for a high throughput
memory-based systolic array VLSI implementation of a discrete cosine transform. The proposed restructuring technique
transforms the DCT algorithm into a cycle-convolution and a pseudo-cycle convolution structure as basic computational forms.
The proposed solution has been specially designed to have good fixed-point error performances that have been exploited to
further reduce the hardware complexity and power consumption. It leads to a ROM based VLSI kernel with good quantization
properties. A parallel VLSI algorithm and architecture with a good fixed point implementation appropriate for a memory-based
implementation have been obtained. The proposed algorithm can bemapped onto two linear systolic arrays with similar length and
form. They can be further efficiently merged into a single array using an appropriate hardware sharing technique. A highly efficient
VLSI chip can be thus obtained with appealing features as good architectural topology, processing speed, hardware complexity and
I/O costs. Moreover, the proposed solution substantially reduces the hardware overhead involved by the pre-processing stage that
for short length DCT consumes an important percentage of the chip area.

1. Introduction

The discrete cosine transform (DCT) and discrete sine
transform (DST) [1–3] are key elements in many digital
signal processing applications being good approximations to
the statistically optimal Karhunen-Loeve transform [2, 3].
They are used especially in speech and image transform
coding [3, 4], DCT-based subband decomposition in speech
and image compression [5], or video transcoding [6].
Other important applications are: block filtering, feature
extraction [7], digital signal interpolation [8], image resizing
[9], transform-adaptive filtering [10, 11], and filter banks
[12].

The choice of DCT or DST depends on the statistical
properties of the input signal. For low correlated input

signals, DST offers a lower bit rate [3]. For high correlated
input signals, DCT is a better choice.

Prime-length DCTs are critical for a prime-factor algo-
rithm (PFA) technique to implement DCT or DST. PFA
technique can be used to significantly reduce the overall
complexity [13] that results in higher-speed processing and
reduced hardware complexity. PFA can split a N = N1 × N2

point DCT, where N1 and N2 are mutually primes, into a
two-dimensionalN1×N2 DCT. DCT is then applied for each
dimension, and the results are combined through input and
output permutations.

The DCT and DST are computationally intensive. The
general-purpose computers usually do not meet the speed
requirements for various real-time applications and also
the size and power constraints for many portable systems

2 EURASIP Journal on Advances in Signal Processing

although many efforts have been made to reduce the
computational complexity [14, 15]. Thus, it is necessary
to reformulate or to find new VLSI algorithms for these
transforms. These hardware algorithms have to be designed
appropriately to meet the system requirements. To meet the
speed and power requirements, it is necessary to appropri-
ately exploit the concurrency involved in such algorithms.
Moreover, the VLSI algorithm and architecture have to be
derived in a synergetic manner [16].

The data movement into the VLSI algorithm plays an
important role in determining the efficiency of a hardware
algorithm. It is well known that FFT, which plays in
important role in the software implementation of DFT,
is not well suited for VLSI implementation. This is one
explanation why regular computational structures such as
cyclic convolution and circular correlation have been used
to obtain efficient VLSI implementations [17–19] using
modular and regular architectural paradigm as distributed
arithmetic [20] or systolic arrays [21]. This approach leads
to low I/O cost and reduced hardware complexity, high speed
and a regular and modular hardware structure.

Systolic arrays are an appropriate architectural paradigm
that leads to efficient VLSI implementations that meet
the increased speed requirements of real-time applications
through an efficient exploitation of concurrency involved in
the algorithms. This paradigm is well suited to the character-
istics of the VLSI technology through its modular and regular
structure with local and regular interconnections.

Owing to regular and modular structure of ROMs,
memory-based techniques are more and more used in the
recent years. They offer also a low hardware complexity
and high speed for relatively small sizes compared with
the multiplier-based architectures. Multipliers in such archi-
tectures [22–25] consume a lot of silicon area, and the
advantages of the systolic array paradigm are not evident for
such architectures. Thus, memory-based techniques lead to
cost-effective and efficient VLSI implementations.

One memory-based technique is the distributed arith-
metic (DA). This technique is largely used in commercial
products due to its efficient computation of an inner-
product. It is faster then multiplier-based architecture due
to the fact that it uses precomputed partial results [26, 27].
However, the ROM size increases exponentially with the
transform length, even if a lot of work have been done to
reduce its complexity as in [28], rendering this technique
impractical for large sizes. Moreover, this structure is difficult
to pipeline.

The other main technique is the direct-ROM implemen-
tation of multipliers. In this case, multipliers are replaced
with ROlM-based look-up table (LUT) of size 2L where L is
the word length. The 2L pre-computed values of the product
for all possible values of the input are stored in the ROM.

In [16, 19], another memory-based technique that
combines the advantages of the systolic arrays with those
of memory-based designs is used. This technique will be
called memory-based systolic arrays. When the systolic array
paradigm is used as a design instrument, the advantages are
evident only when a large number of processing elements can
be integrated on the same chip. Thus, it is very important to

reduce the PE chip area using small ROMs as it is proposed
in this technique.

In this paper, a new parallel VLSI algorithm for a prime-
length Discrete Cosine Transform (DCT) is proposed. It
significantly simplifies the conversion of the DCT algorithm
into a cycle and a pseudo-cycle convolution using only a new
single input restructuring sequence. It can be used to obtain
an efficient VLSI architecture using a linear memory-based
systolic array. The proposed algorithm and its associated
VLSI architecture have good numerical properties that can
be efficiently exploited to lead to a low-complexity hardware
implementation with low power consumption. It uses a
cycle and a pseudo-cycle convolution structure that can
be efficiently mapped on two linear systolic arrays having
the same form and length and using a small number
of I/O channels placed at the two extreme ends of the
array. The proposed systolic algorithm uses an appropriate
parallelization method that efficiently decomposes DCT into
a cycle and a pseudo-cycle convolution structure, obtaining
thus a high throughput. It can be efficiently computed
using two linear systolic arrays and an appropriate control
structure based on the tag-control scheme. The proposed
approach is based on an efficient parallelization scheme
and an appropriate reordering of these sequences using
the properties of the Galois Field of the indexes and the
symmetry property of the cosine transform kernel. Thus,
using the proposed algorithm, it is possible to obtain
a VLSI architecture with advantages similar to those of
systolic array and memory-based implementations using
the benefit of the cycle convolution. Thus a high speed,
low I/O cost, and reduced hardware complexity with a
high regularity and modularity can be obtained. Moreover,
the hardware overhead involved by the preprocessing stage
can be substantially reduced as compared to the solution
proposed in [16].

The paper is organized as follows. In Section 2, the
new computing algorithm for DCT encapsulated into the
memory-based systolic array is presented. In Section 3, two
examples for the particular lengths N = 7 and N = 11
are used to illustrate the proposed algorithm. In Section 4,
aspects of the VLSI design using the memory-based systolic
array paradigm and a discussion on the effects of a finite
precision implementation are presented. In Section 5, the
quantization properties of the proposed algorithm and
architecture are analyzed analytically and by computer
simulation. In Section 6, comparisons with similar VLSI
designs are presented together with a brief discussion on the
efficiency of the proposed solution. Section 7 contains the
conclusions.

2. Systolic Algorithm for 1DDCT

For the real input sequence x(i) : i = 0, 1, . . . ,N −1, 1D DCT
is defined as

X(k) =
√

2
N
·
N−1∑
i=0

x(i) · cos[(2i + 1)k · α], (1)

EURASIP Journal on Advances in Signal Processing 3

for k = 1, . . . ,N

with α = π

2N
. (2)

To simplify the presentation, the constant coefficient
√
2/N

will be dropped from (1) that represents the definition of
DCT; a multiplier will be added at the end of the VLSI array
to scale the output sequence with this constant.

We will reformulate relation (1) as a parallel decomposi-
tion based on a cycle and a pseudo-cycle convolution forms
using a single new input restructuring sequence as opposed
to [16] where two such auxiliary input sequences were used.
Further, we will use the proprieties of DCT kernel and those
of the Galois Field of indexes to appropriately permute the
auxiliary input and output sequences.

Thus, we will introduce an auxiliary input sequence
{xa(i) : i = 0, 1, . . . ,N − 1}. It can be recursively defined
as follows:

xa(N − 1) = x(N − 1), (3)

xa(i) = (−1)ix(i) + xa(i + 1), (4)

for i = N − 2, . . . , 0.
Using this restructuring input sequence, we can reformu-

late (1) as follows:

X(0) = xa(0) + 2
N−1∑
i=0

(−1)ϕ(i)

×
[
xa
(
ϕ(i)

)− xa

(
ϕ
(
i +

(N − 1)
2

))]
,

X(k) = [xa(0) + T(k)] · cos(kα), for k = 1, . . . ,N − 1.
(5)

The new auxiliary output sequence {T(k) : k = 1, 2,
. . . ,N−1} can be computed in parallel as a cycle and pseudo-
cycle convolutions if the transform length N is a prime
number as follows:

T(δ(k)) =
(N−1)/2∑

i=1
(−1)ξ(k,i)

·
[
xa
(
ϕ(i− k)

)− xa

(
ϕ
(
i− k +

(N − 1)
2

))]

× 2 · cos(ψ(i)× 2α
)
,

T
(
γ(k)

) = (N−1)/2∑
i=1

(−1)ζ(i)

·
[
xa
(
ϕ(i− k)

)
+ xa

(
ϕ
(
i− k +

(N − 1)
2

))]

× 2 · cos(ψ(i)× 2α
)

for k = 0, 1, . . . ,
(N − 1)

2
,

(6)

where

ψ(k) =
⎧⎪⎨
⎪⎩
ϕ′(k) if ϕ′(k) ≤ (N − 1)

2
,

ϕ′(N − 1 + k) otherwise,
(7)

with

ϕ′(k) =
⎧⎨
⎩
ϕ(k) if k > 0,

ϕ(N − 1 + k) otherwise

ϕ(k) =
〈
gk
〉
N ,

, (8)

where 〈x〉N denotes the result of x modulo N and g is the
primitive root of indexes.

We have also used the properties of the Galois Field of
indexes to convert the computation of DCT as a convolution
form.

3. Examples

To illustrate our approach, we will consider two examples for
1D DCT, one with the length N = 7 and the primitive root
g = 3 and the other with the lengthN = 11 and the primitive
root g = 2.

3.1. DCT Algorithm with Length N = 7. We recursively
compute the following input auxiliary sequence {xa(i) : i =
0, . . . ,N − 1} as follows:

xa(6) = x(6),

xa(i) = (−1)ix(i) + xa(i + 1), for i = 5, . . . , 0.
(9)

Using the auxiliary input sequence {xa(i) : i = 0, . . . ,N − 1},
we can write (6) in a matrix-vector product form as

⎡
⎢⎢⎢⎣
T(4)

T(2)

T(6)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
−[xa(3)− xa(4)] −[xa(2)− xa(5)] −[xa(6)− xa(1)]

[xa(6)− xa(1)] xa(3)− xa(4) −[xa(2)− xa(5)]

xa(2)− xa(5) −[xa(6)− xa(1)] xa(3)− xa(4)

⎤
⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎣
c(2)

c(1)

c(3)

⎤
⎥⎥⎥⎦,

(10)

4 EURASIP Journal on Advances in Signal Processing

⎡
⎢⎢⎢⎣
T(3)

T(5)

T(1)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
xa(3) + xa(4) xa(2) + xa(5) xa(6) + xa(1)

xa(6) + xa(1) xa(3) + xa(4) xa(2) + xa(5)

xa(2) + xa(5) xa(6) + xa(1) xa(3) + xa(4)

⎤
⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎣
c(2)

−c(1)
−c(3)

⎤
⎥⎥⎥⎦,

(11)

where we have noted c(k) for 2 · cos(2kα).
The index mappings δ(i) and γ(i) realize a partition into

two groups of the permutation of indexes {1, 2, 3, 4, 5, 6}.
They are defined as follows:

{δ(i) : 1 −→ 4, 2 −→ 2, 3 −→ 6},{
γ(i) : 1 −→ 3, 2 −→ 5, 3 −→ 1

}
.

(12)

The functions ξ(k, i) and ζ(i) define the sign of terms in
(10), respectively, as follows:

ξ(k, i) is defined by the matrix
[
1 1 1
0 0 1
0 1 0

]
and

ζ(i) is defined by the vector [0 1 1].

Finally, the output sequence {X(k) : k = 1, 2, . . . ,N − 1} can
be computed as

X(1) = [xa(0) + T(1)] · cos[α],
X(2) = [xa(0) + T(2)] · cos[2α],
X(3) = [xa(0) + T(3)] · cos[3α],
X(4) = [xa(0) + T(4)] · cos[4α],
X(5) = [xa(0) + T(5)] · cos[5α],
X(6) = [xa(0) + T(6)] · cos[6α],

X(0) = xa(0) + 2
3∑
i=1

(−1)ϕ(i)

×
(
xa
(
ϕ(i)

)− xa

(
ϕ
(
i +

(N − 1)
2

)))
.

(13)

3.2. DCT Algorithm with Length N = 11. We recursively
compute the following input auxiliary sequence {xa(i) : i =
0, . . . ,N − 1} as follows:

xa(10) = x(10),

xa(i) = (−1)ix(i) + xa(i + 1) for i = 9, . . . , 0.
(14)

Using the auxiliary input sequence {xa(i) : i = 0, . . . ,N − 1}
we can write (6) in a matrix-vector product form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T(2)

T(4)

T(8)

T(6)

T(10)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xa(2)− xa(9) −(xa(4)− xa(7)) xa(8)− xa(3) xa(5)− xa(6) xa(10)− xa(1)

xa(10)− xa(1) −(xa(2)− xa(9)) −(xa(4)− xa(7)) −(xa(8)− xa(3)) −(xa(5)− xa(6))

−xa(5)− xa(6) −(xa(10)− xa(1)) −(xa(2)− xa(9)) −(xa(4)− xa(7)) xa(8)− xa(3)

xa(8)− xa(3) xa(5)− xa(6) −(xa(10)− xa(1)) −(xa(2)− xa(9)) xa(4)− xa(7)

xa(4)− xa(7) −(xa(8)− xa(3)) xa(5)− xa(6) −(xa(10)− xa(1)) xa(2)− xa(9)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c(4)

c(3)

c(5)

c(1)

c(2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T(9)

T(7)

T(3)

T(5)

T(1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xa(2) + xa(9) xa(4) + xa(7) xa(8) + xa(3) xa(5) + xa(6) xa(10) + xa(1)

xa(10) + xa(1) xa(2) + xa(9) xa(4) + xa(7) xa(8) + xa(3) xa(5) + xa(6)

xa(5) + xa(6) xa(10) + xa(1) xa(2) + xa(9) xa(4) + xa(7) xa(8) + xa(3)

xa(8) + xa(3) xa(5) + xa(6) xa(10) + xa(1) xa(2) + xa(9) xa(4) + xa(7)

xa(4) + xa(7) xa(8) + xa(3) xa(5) + xa(6) xa(10) + xa(1) xa(2) + xa(9)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c(4)

−c(3)
−c(5)
−c(1)
c(2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(15)

EURASIP Journal on Advances in Signal Processing 5

where we have noted c(k) for 2 · cos(2kα). The index
mappings δ(i) and γ(i) realize a partition into two groups
of the permutation of indexes {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. They
are defined as follows:

{δ(i) : 1 −→ 2, 2 −→ 4, 3 −→ 8, 4 −→ 6, 5 −→ 10},{
γ(i) : 1 −→ 9, 2 −→ 7, 3 −→ 3, 4 −→ 5, 5 −→ 1

}
.

(16)

The functions ξ(k, i) and ζ(i) define the sign of terms in
(10) and (11), respectively

ξ(k, i) is defined by the matrix

⎡
⎣ 0 1 0 0 0

0 1 1 1 1
1 1 1 1 0
0 0 1 1 0
0 1 0 1 0

⎤
⎦ and

ζ(i) is defined by the vector [0 1 1 1 0].

Finally, the output sequence {X(k) : k = 1, 2, . . . ,N − 1} can
be computed as follows:

X(1) = [xa(0) + T(1)] · cos[α],
X(2) = [xa(0) + T(2)] · cos[2α],
X(3) = [xa(0) + T(3)] · cos[3α],
X(4) = [xa(0) + T(4)] · cos[4α],
X(5) = [xa(0) + T(5)] · cos[5α],
X(6) = [xa(0) + T(6)] · cos[6α],
X(7) = [xa(0) + T(7)] · cos[7α],
X(8) = [xa(0) + T(8)] · cos[8α],
X(9) = [xa(0) + T(9)] · cos[9α],
X(10) = [xa(0) + T(10)] · cos[10α],

X(0) = xa(0) + 2
5∑
i=1

(−1)ϕ(i)

×
(
xa
(
ϕ(i)

)− xa

(
ϕ
(
i +

N − 1
2

)))
.

(17)

4. Hardware Realization of the VLSI Algorithm

In order to obtain the VLSI architecture for the proposed
algorithm, we can use the data-dependence graph-method
(DDG). Using the recursive form of (6), we have obtained
the data dependence graph of the proposed algorithm. The
data dependence graph represents the main instrument in
our design procedure that clearly puts into evidence themain
elements involved in the proposed algorithm. Using this
method, we can map the proposed VLSI algorithm into two
linear systolic arrays. Then, a hardware sharing method to
unify the two systolic arrays into a single one with a reduced
complexity can be obtained as shown in Figure 1.

Using a linear systolic array, it is possible to keep all
I/O channels at the boundary PEs. In order to do this, we
can use a tag based control scheme. The control signals
are also used to select the correct sign in the operations

executed by PEs. The PEs from the cycle and pseudo-cycle
convolution modules, that represent the hardware core of the
VLSI architecture, execute the operations from relation (6).

The structure of the processing elements PEs is presented
in Figures 2(a) and 2(b).

Due to the fact that (6) have the same form and the
multiplications can be done with the same constant in each
processing element, we can implement these multiplications
with only one biport ROM having a dimension of 2L/2 words
as can be seen in Figures 2(a) and 2(b).

The function of the processing element is shown in
Figures 3(a) and 3(b).

The bi-port ROM serves as a look-up table for all possible
values of the product between the specific constant and a
half shuffle number formed from the bits of the input value.
The two partial values are added together to form the result
of the multiplication. One of the partial sums is hardware
shifted with one position before to be added as shown in
Figures 2(a) and 2(b). This operation is hardwired in a very
simple manner and introduces no delay in the computation
of the product. These bi-port ROMs are used to significantly
reduce the hardware complexity of the proposed solution at
about a half. The two results of the product are one after
the other added with y1i and y2i to form the two results of
each processing element. The control tag tc appropriately
select the input values that have to be apply to the bi-
port ROM. The sign of the input values are selected using
the control tags tc1 as shown in Figures 2(a) and 2(b).
Excepting the adder at the end of bi-port ROM, all the other
adders are carry-ripple adders that are slow and consume
less area. As can be seen in Figure 2, the processing element
is implemented as four pipeline stages. The clock cycle T is
determined by max(TMem,TA). The actual value of the cycle
period is determined by the value of the word length L and
the implementation style for ROM and adders.

In order to implement (13) and to obtain the output
sequence in the natural order a postprocessing stage has
to be included as shown in Figure 4. The postprocessing
stage contains also a permutation block. It consists of a
multiplexer and some latches and can permute the auxiliary
output sequence in a fully pipelinedmode. Thus, the I/O data
permutations are realized in such a manner that there is no
time delay between the current and the next block of data.

The preprocessing stage is used to obtain the appropriate
form and order for the auxiliary input sequences. It has been
introduced to implement (3) and (4) and to appropriately
permute the auxiliary input sequence. The preprocessing
stage contains an addition module that implements (4)
followed by a permutation one. Thus, the input sequence is
processed and permuted in order to generate the required
combination of data operands.

5. Discussion on Quantization Errors
of a Fixed-Point Implementation

The proposed algorithm and its associated VLSI implemen-
tation have good numeric properties as it results from Figures
10 and 11. In our analysis, we have compared the numerical
properties of our solution for a DCT VLSI implementation

6 EURASIP Journal on Advances in Signal Processing

xa2 (0)
xa2 (0)
xa2 (0)

xa1 (0)
xa1 (0)
xa1 (0)

c (a)
c (5a)
c (3a)
c (a)
c (5a)
c (3a)

11
10
01
11
10
01

c (6a)
c (2a)
c (4a)

c (2a)
c (4a)

c (6a)

∗ ∗
∗
1

1

1

11
0

0
0

0

0
0

0
0

1
1
1

0

0

0

0
0

c(3) c(2)c(1)
Post

processing
stage

t = 1

t = 7

xa1(6.1)
xa1(2, 5)

xa1(6 1)
xa1(2,

,
5)

xa1(3, 4)

xa3(3, 4)

xa2 (3, 4)

xa2 (3, 4)

xa2 (6, 1)
xa2 (2, 5)

xb1(6, 1)
xb1(2, 5)
xb1(3, 4)
xb1(6, 1)
xb1(2, 5)
xb3(3, 4)

xb2 (3, 4)
xb2 (6, 1)

Y2(0)

Y1(0)

Y2 (1)
Y2 (5)
Y2 (3)
Y1 (1)
Y1 (5)
Y1 (3)

Y2 (6)
Y2 (2)
Y2 (4)
Y1 (6)
Y1 (2)
Y1 (4)

xb2 (2, 5)
xb2 (3, 4)

xak(i, j) = xk(i) + xk(j) and xbk(i, j) = xk(i)− xk(j) with a = α

-

Figure 1: Systolic array architecture for DCT of length N = 7.

M
U
X

M
U
X

M
U
X

M
U
X

x1i

x1i

tc

tc1

x2i

x2i

−1

L/2

L/2

Biport

A
D
D

A
D
D

A
D
D

>>

D
E
M
U
X

Y1o

Y2o

y1i

y2i

ROM

(a)

ROM

M
U
X

M
U
X

M
U
X

M
U
X

x1i

x1i

tc

tc1

x2i

x2i

−1

−1

L/2

L/2

Biport

A
D
D

A
D
D

A
D
D

>>

D
E
M
U
X

Y1o

Y2o

y1i

y2i

(b)

Figure 2: The structure of the first processing element PE in Figure 1. The structure of the other processing elements PE in Figure 1.

EURASIP Journal on Advances in Signal Processing 7

x2i
x2i
x1i
x1i

y2i
y1i
tc

x2o
x2o

x1o

y2o
y1o
tc

tc1

c

x1o

x1o <= x1i; x2o <= x2i;
x1o <= x1 ı́; x2o <= x2i;

tc <= tc;
if tc = 1 then

if tc1 = 1 then
y1o <= y1i − x1i∗c;

else
y1o <= y1i + x1i∗c;

end
y20 <= y2i + x2i∗c;

else
if tc1 = 1 then
y1o <= y1i− x1i∗c;

else
y1o <= y1i + x1i∗c;

end
y20 <= y2i + x2i∗c;

end

(a)

x2i
x2i
x1i
x1i

y2i
y1i
tc

x2o
x2o

x1o

y2o
y1o
tc

tc1

c

x1o

x1o <= x1i; x2o <= x2i;
x1o <= x1 ı́; x2o <= x2i;

tc <= tc;
if tc = 1 then

if tc1 = 1 then
y1o <= y1i− x1i∗c;

else
y1o <= y1i + x1i∗c;

end
y20 <= y2i− x2i∗c;

else
if tc1 = 1 then

y1o <= y1i− x1i∗c;
else

y1o <= y1i + x1i∗c;
end

y20 <= y2i− x2i∗c;
end

(b)

Figure 3: Functionality of the processing element PE in Figure 2(a). Functionality of the processing element PE in Figure 2(b).

xa c1 tc1 c2

x

x

y2
y1

y2
y1

y0

xi

Post pro-
cessing stage

xi

tc

y1 <= [xa + 2y1]∗c1; y2 <= [xa + 2y2]∗c2;
if tc = 1 then

xc <= x;
else

xc <= x;
end

if tc1 = 00 then
xi <= xa + 2xc ; y <= 0;

else if tc1 = 01
xi <= xi + 2xc ; y <= 0;

else
xi <= xi + 2xc ; y <= xi;

end

Figure 4: Functionality of a post-processing element in Figure 2.

8 EURASIP Journal on Advances in Signal Processing

with lengths N = 7 and N = 11 with those of the
algorithm proposed by Hou [29] and with a direct-form
implementation [30].

5.1. Fixed-Point Quantization Error Analysis. We will analyze
the fixed-point error for the kernel of our architecture
represented by the VLSI implementation of (6). This part
contributes decisively to the hardware complexity and the
power consumption of the VLSI implementation of the DCT.
We will show analytically and by computer simulation that
it has good quantization properties that can be exploited
to further reduce the hardware complexity and the power
consumption of our implementation.

We can write (6) in a generic form

T(k) =
(N−1)/2∑

i=1
(−1)δ(k,i) · u(i− k)× cos

(
ψ(i)× 2α

)
. (18)

Let

u(i− k) = ũ(i− k) + Δu(i− k), (19)

where ũ(i − k) is the fixed-point representation of the input
data and Δu(i − k) is the error between the actual value and
its fixed-point representation. Thus

T(k) =
(N−1)/2∑

i=1
(−1)δ(k,i)

· [ũ(i− k) + Δu(i− k)]× cos
(
ψ(i)× 2α

)
.

(20)

We suppose that the process that governs the errors is linear
and, thus, we can utilize the superposition property.

Thus, (20) become

T(k) =
(N−1)/2∑

i=1
(−1)δ(k,i) · ũ(i− k)× cos

(
ψ(i)× 2α

)

+
(N−1)/2∑

i=1
(−1)δ(k,i) · Δu(i− k)

× cos
(
ψ(i)× 2α

)
.

(21)

We can write

ũ(i− k)× cos
(
ψ(i)× 2α

)
= −ũ(i− k)02

0 × cos
(
ψ(i)× 2α

)

+
L−1∑
j=1

ũ(i− k) j2
− j × cos

(
ψ(i)× 2α

)
.

(22)

The sums (22) for all combinations of {u0,u1, . . . ,uL−1}
are computed using a floating-point representation for
coefficients cos(ψ(i) × 2α); then, the result is truncated and
stored in a ROM.

Thus, we can use the following error model for the
constant multiplication (22), where ũ is the quantization of
the input and Q(·) is the truncation operator

We can write

ũ cos(i) = Q(ũ · cos(i)) + Δũ cos(i), (23)

where: Δũ cos(i) is the truncation error.
Thus, we can write

T(k) =
(N−1)/2∑

i=1
(−1)δ(k,i)[Q(ũ(i− k)× cos

(
ψ(i)× 2α

))

+Δ
(
ũ cos

(
ψ(i)× 2α

))]

+
(N−1)/2∑

i=1
(−1)δ(k,i) · Δu(i− k)× cos

(
ψ(i)× 2α

)
,

T(k) =
(N−1)/2∑

i=1
(−1)δ(k,i)Q(ũ(i− k)× cos

(
ψ(i)× 2α

))

+
(N−1)/2∑

i=1
(−1)δ(k,i)Δ(ũ cos(ψ(i)× 2α

))

+
(N−1)/2∑

i=1
(−1)δ(k,i) · Δu(i− k)× cos

(
ψ(i)× 2α

)
,

e(k)=T(k)−
(N−1)/2∑

i=1
(−1)δ(k,i)Q(ũ(i− k)× cos

(
ψ(i)×2α))

e(k) =
(N−1)/2∑

i=1
(−1)δ(k,i)Δ(ũ cos(ψ(i)× 2α

))

+
(N−1)/2∑

i=1
(−1)δ(k,i) · Δu(i− k)× cos

(
ψ(i)× 2α

)
.

(24)

We will compute the second-order statistics σ2T of the error
term. This parameter describes the average behavior of the
error and is related to MSE (mean-squared error) and SNR
(signal-to-noise ratio).

We assume that the errors are uncorrelated and with zero
mean.

We have

σ2T = E
{
e2(k)

}

= E

⎧⎨
⎩
⎡
⎣(N−1)/2∑

i=1
(−1)δ(k,i)Δ(ũ cos(ψ(i)× 2α

))

+
(N−1)/2∑

i=1
(−1)δ(k,i) · Δu(i−k)×cos(ψ(i)×2α)

⎤
⎦
2
⎫⎪⎬
⎪⎭

=
(N−1)/2∑

i=1
E
{
Δ2(ũ cos(ψ(i)× 2α

))}

+
(N−1)/2∑

i=1
E
{
Δ2u(i− k)

}
cos2

(
ψ(i)× 2α

)
.

(25)

EURASIP Journal on Advances in Signal Processing 9

M
U
X

M
U
X

D
E
M
U
X

A
D
D

C = 0011

Permut
and

split stage

xa(·)
Add

Latch

x(i)

x(N − 1)

Sgn[(−1)i]

C

±

Figure 5: The structure of the preprocessing stage for DCT of length N = 7.

cos (i)

Q (·) Q (u cos(i))ũ

Figure 6: Truncation error model for a ROM-based multiplication.

It results

σ2T =
(N−1)/2∑

i=1
σ2Δ + σ2Δu

⎛
⎝(N−1)/2∑

i=1
cos2

(
ψ(i)× 2α

)⎞⎠

= (N − 1)
2

· σ2Δ + σ2Δu

⎛
⎝(N−1)/2∑

i=1
cos2(i× 2α)

⎞
⎠.

(26)

It can be easily seen that

σ2T <
(N − 1)

2
· (σ2Δ + σ2Δu

)
. (27)

We can assume that

σ2Δ =
2−2M

12
, σ2Δx =

2−2L

12
. (28)

We will verify the relation (26) by computer simulation using
SNR parameter [31].

In performing the fixed-point round-off error analysis,
we will use the following assumptions:

(i) the input sequence x(i) is quantized using L bits,

(ii) the output of each ROM-based multiplier is quan-
tized usingM bits,

(iii) the errors are uncorrelated with one another and with
the input,

(iv) the input sequence x(i) is uniformly distributed
between (−1, 1) with zero mean,

(v) the round-off errors at each multiplier is uniformly
distributed with zero mean.

The SNR parameter is computed as

SNR = 10 log10
σ2O
σ2T

, (29)

where σ2O is the variance of the output sequence and σ2T is
the variance of the quantization error at the output of the
transform.

Using the graphic representation shown in Figures 7–
9, we can see that the computed values agree with those
obtained from simulations. Thus, the computed values of
SNR have similar values with those computed using relations
(26) and (29) represented using snrDfcT plots. In Figure 7,
we have shown the dependence of the SNR in our solution
on the transform length N = 7 and N = 11 as a function
of the number of bits L and M used in the quantization
of the input sequence and the output of each ROM-based
multiplier, respectively, when M = L. In Figure 8 we show
the dependence of the SNR for our solution with N = 7 as a
function of L, whenM = 10, 12, and 14, respectively, and in
Figure 9, we have the same dependence for our solution with
the transform length N = 11.

Thus, we have obtained analytically and we have verified
by simulation the dependence of the variance of the output
round-off error with the quantized error of the input
sequence σ2Δx. This is a significant result especially for our
architecture as we can choose appropriately the value of
L with L < M. It can be used to significantly reduce
the hardware complexity of our implementation as the
dimension of the ROM used in the implementation of a
multiplier in our architecture is given byM ·2L and increases
exponentially with the number of bits L used to quantize the
input u(i) for each multiplier. It can be seen that if L > M
the improvement of the SNR is insignificant. Using these
dependences, we can easily chose L significantly less thanM.

Using the method proposed in [30], where the analysis is
made for the direct-form IDCT, we can also obtain for the
direct-form DCT, the round-off error variance (σ2N)i(

σ2N
)
i = (N − 1)σ2R for 0 ≤ i ≤ N − 1. (30)

As compared with a direct-form method implementation,
known to be robust to the fixed-point implementation and
thus used by many chip manufactures [30], the round-off
error variance σ2T for the kernel of our solution given by
relation (26) is significantly better as we will also see by
computer simulations.

Note that in [30] the analysis is made for direct-form
IDCT but it is similar for the direct-form DCT.

10 EURASIP Journal on Advances in Signal Processing

20

30

40

50

60

70

80

90

6 8 10 12 14 16

snrDfcT

SNR

snrDfc7

(a)

30

40

50

60

70

80

90

100

6 8 10 12 14 16

snrDfc11
snrDfcT

SNR

(b)

Figure 7: SNR variation function ofM whenM = L.

6 8 10 12 14 16
45

50

55

60

SNR

snrDfcT

65

70

snrDfc7

(a) M = 10

SNR

snrDfcT

6 8 10 12 14 16

40

50

60

70

30

80

snrDfc7

(b) M = 12

SNR

snrDfcT

6 8 10 12 14 16
40

50

60

70

80

90

snrDfc7

(c) M = 14

Figure 8: SNR variation function of L for our solution with N = 7.

6 8 10 12 14 16
35

40

45

50

55

60
SNR

snrDfc11
snrDfcT

(a) M = 10

SNR

6 8 10 12 14 16

snrDfc11
snrDfcT

40

50

60

70

30

80

(b) M = 12

SNR

6 8 10 12 14 16

snrDfc11
snrDfcT

30

40

50

60

70

80

90

(c) M = 14

Figure 9: SNR variation with L for our solution with N = 11.

EURASIP Journal on Advances in Signal Processing 11

In the case we are using hardwired multipliers instead of
LUT based multipliers, there is another error term due to the
quantization of multiplier coefficients cos(ψ(i) × 2α) of the
form

(N−1)/2∑
i=1

E
{
ũ(i− k)2

}
× [Δcos(ψ(i)× 2α

)]2, (31)

where [Δ cos(ψ(i) × 2α)] is the quantization error of the
multiplier coefficient. Thus, the quantization error will be
significantly greater for a similar hardwired multiplier based
architecture for DCT reported in [32]. It follows that the
proposed ROM-based architecture will have better numerical
properties as compared with similar hardwired multiplier
based architectures for DCT.

Let us also observe that instead of the quantization of
the result of relation (22), we can store in the ROMs the
rounded value of that result. The rounding error will be less
than the truncation error. Thus, the numerical properties of
the proposed solution can be further increased.

This result shows that the kernel of our implementation
based on (6) has good quantization properties, the error due
to a fixed-point representation being small, one of the best
results for DCT implementations as will be shown also using
computer simulations. Thus, our proposed algorithm and
architecture is a very robust solution for a fixed point imple-
mentation of DCT. This property can be exploited to further
reduce the hardware complexity and the power consumption
of themain part of our architecture represented by the above-
mentioned kernel. This kernel has the main contribution to
the hardware complexity of our architecture and to its power
consumption.

5.2. Comparison with Other Relevant Implementations of
DCT. In our computer simulations in order to demonstrate
the good quantization properties of the proposed solution
in comparison with some relevant other ones, we have used
several significant parameters as PSNR (peak-signal-to-noise
ratio) and the following measures:

(i) overall MSE defined as

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

[
I f init

(
i, j
)− I

(
i, j
)]2, (32)

(ii) peak error defined as

PPE =Max
i

(
Max

j

)∣∣I finit
(
i, j
)− I

(
i, j
)∣∣. (33)

The numbers for the root of MSE and the value of PPE
for different values of the word length L when L = M are
represented in the Figures 10 and 11.

The values of PSNR are presented in Figure 12 in dB for
different values of the word length L when M = L. It can
be easily seen that the values for PSNR are better for our
algorithm than those reported in Hou [29] and for the direct
form.

6 8 10 12 14 16
0

0.0025

0.005

0.075

0.01

0.0125

0.015

Bits number (M = L)

Hou N = 8
Porposed N = 7

Proposed N = 11
Direct form N = 8

Figure 10: Mean square error.

8 10 12 14 16
0

0.01

0.02

0.03

0.04

0.05

Bits number (M = L)

Hou N = 8
Proposed N = 7

Proposed N = 11
Direct form N = 7

Figure 11: Peak error.

The obtained numerical properties of the proposed algo-
rithm and its associated VLSI architecture can be exploited
to significantly decrease the hardware complexity. Thus, in
the proposed architecture, the dimension of the ROMs used
to implement the multipliers depends exponentially on the
word length L used for a fixed-point representation of the
input operands. Consequently, we can use small-size ROMs
with a short access time to reduce the hardware complexity
and to improve the speed. It results that the overall hardware
complexity will be significantly reduced due to these good
numerical properties and also the power consumption.

This improvement is explained besides the inner proper-
ties of the proposed algorithm by two design decisions that
will be explained below.

12 EURASIP Journal on Advances in Signal Processing

6 8 10 12 14 16
30

40

50

60

70

80

90

100

110

Bits number (M = L)

Hou8
DFC7

DFC11
FD7

Figure 12: Peak-signal-to-noise ratio (PSNR).

8 10 12 14 16
0

1000

2000

3000

4000

5000

6000

7000

DCT length N

Proposed
[16]
[34]

Figure 13: ROM words.

First, we can increase the precision used in representing
the data in relations (3) and (4) without significantly
increasing the hardware complexity.

Then, we can use a high precision for the coefficients c(i)
in the computing of the partial results stored in the ROMs
that implement the multiplication with this coefficients.

6. Comparison

The throughput of the VLSI architecture that can be obtained
using the proposed algorithm is 2/(N−1) similar to [16, 33],
but doubled compared to [34]. The pipeline period (average
computation time) is (N − 1)T/2 as in [16, 33] but the clock

7 11 17

24

49

85

92.5

101

DCT length N

Prososed
[16] [24]

[34]

Figure 14: I/O channels.

period T is significant different in these three cases. In the
proposed design T = max(TMem,Ta) is significantly less than
in [16], where T = TMem +Ta and in [33], where T = TMul +
3Ta and [34], where T = TMul + Ta.

We have used the following notations: TMem-multi-
plication time, Ta-adder time, and TMem-access time. Thus,
the proposed design is significantly faster.

If we compare with [24], we can see that (10) can
be computed in parallel and thus the throughput can be
doubled with respect to [24], where we do not have such
a parallelization. Moreover, due to the fact that the two
equations have a similar form and the same length, they can
be mapped on the same linear systolic array with the ROMs
used to implement the shared multipliers. Thus, a significant
increase of the throughput can be obtained without doubling
the hardware as compared with [24]. The number of control
bits is significantly reduced for a double computation (10) as
compared with [24].

In order to illustrate the advantages of our proposal, we
will consider a numerical example with the length N = 37
and the number of bits for the input of multipliers L = 10.
In this case, the number of multipliers for our proposed
solution [16, 34] is very small being 2 and 1. Instead, our
proposed solution uses 576 words of ROM, [16] uses 1152
words, [28] uses 22 528 words, and [34] have 9 473 000
words. The number of adders is 57 for our solution, 77 for
[16], 54 for [33], 107 for [34], and only 20 for [24]. But
[24, 34] have only a half of the throughput of [16, 33] and our
solution. The number of bits for I/O channels is 88 for our
proposed solution, 107 for [24], and 71 for [16]. In [33, 34],
we have only 41, respectively, 20 bits for I/O channels.

The comparison between our solution and other VLSI
implementations for DCT is presented in Table 1.

Comparing the hardware complexity, we can see from
Table 1 that the number of ROM words is half in our design
as compared with [16] and significantly less than in [34]

EURASIP Journal on Advances in Signal Processing 13

Table 1: Comparison of hardware complexity of various dct designs.

Structures Multipliers Adders ROM (words) MUXs Cycle-time Throughput ACT I/O channels

Proposed 2 3(N + 1)/2 [(N − 1)/2] · 2L/2 3(N − 1) max(Tmem,Ta) 2/(N − 1) (N − 1)T/2 7L +N/2

[16] 2 2N + 3 [(N − 1)/2] · 2(L/2+1) 7/2(N − 1) + 11 Tmem + Ta 2/(N − 1) (N − 1)T/2 7L + 1

[33] (N − 1)/2 3(N − 1)/2 (N − 1) Tmul + 3Ta 2/(N − 1) (N − 1)T/2 4L + 1

[34] 1 3N N(2N/2 + 2) Tmul + Ta 1/N 2L

[24] (N − 1)/2 + 2 (N − 1)/2 + 2 2(N + 1) Tmul + Ta 1/(N − 1) (N − 1)T 7L +N

for long length N . In Figure 13, we have illustrated the
variation of the number of ROM words with respect to the
transform length N when L = 10. Also, in Figure 14, we have
represented the number of bits used by I/O channels with
respect to the transform length N when also L = 12. Note
that L for other design could be larger as our solution has
better quantization properties. It can be seen that the number
of bits for the I/O channels in our solution increases slightly
with the transform length N .

It is also another important aspect to note. The hardware
complexity of the preprocessing stage is significantly reduced
at about one half in our design as compared with [16] as
shown in Figure 5. For relatively, short-length transforms
the chip area used by the preprocessing stage represents an
important percentage. Also, the hardware complexity of our
design of 2 multipliers, 3(N + 1)/2 adders and (N − 1)/2 · 2L
ROM words is significantly reduced as compared with (N −
1)/2 multipliers, 3(N − 1)/2 adders in [33].

7. Conclusions

In this paper, a new memory-based design approach that
leads to a reduced hardware complexity and a high-
throughput VLSI implementation based on a new refor-
mulation of DCT having good quantization properties is
presented. It uses a parallel VLSI algorithm using parallel
cycle and pseudo-cycle convolutions for a memory-based
VLSI systolic array implementation. This approach using
a new input-restructuring sequence leads to an efficient
VLSI implementation with a substantially reduction of the
hardware overhead involved by the preprocessing stage of the
VLSI array. Moreover, the proposed VLSI algorithm and its
associated architecture have good numerical properties that
can be efficiently exploited to further reduce the hardware
complexity and to obtain a low power implementation. We
have shown analytically and by computer simulations that
the proposed solution has one of the best quantization prop-
erty for DCT that is better than that of the direct-method
implementation known to be robust and frequently used
in commercial products. The convolution structures can be
efficiently implemented using a memory-based systolic array
architecture paradigm. The differences in the sign can be
efficiently managed using a tag-control scheme. Also, the
proposed ROM-based implementation has better numerical
properties compared to similar hardwired multiplier-based
DCT implementations. It can thus be obtained a new VLSI
implementation with a high degree of parallelism and good

architectural topology with a high degree of regularity and
modularity and an efficient fixed-point implementation that
is well adapted for a VLSI realization. Thus, a new memory-
based VLSI systolic array with a high-throughput and a
substantially reduced hardware complexity can be obtained.

Acknowledgments

The authors thank the reviewers for their useful comments
that have been used to improve the paper. This work
was supported by the CNCSIS-UEFISCSU, PNII project
ID 310/2008.

References

[1] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine
transform,” IEEE Transactions on Computers, vol. 23, no. 1, pp.
90–94, 1974.

[2] A. K. Jain, “A fast Karhunen-Loeve transform for a class of
random processes,” IEEE Transactions on Communications,
vol. 24, no. 9, pp. 1023–1029, 1976.

[3] A. K. Jain, Fundamentals of Digital Image Processing, Prentice-
Hall, Englewood Cliffs, NJ, USA, 1989.

[4] D. Zhang, S. Lin, Y. Zhang, and L. Yu, “Complexity con-
trollable DCT for real-time H.264 encoder,” Journal of Visual
Communication and Image Representation, vol. 18, no. 1, pp.
59–67, 2007.

[5] Y. Y. Chen, “Medical image compression using DCT-based
subband decomposition and modified SPIHT data organiza-
tion,” International Journal of Medical Informatics, vol. 76, no.
10, pp. 717–725, 2007.

[6] K. T. Fung and W. C. Siu, “On re-composition of motion
compensated macroblocks for DCT-based video transcoding,”
Signal Processing: Image Communication, vol. 21, no. 1, pp. 44–
58, 2006.

[7] D. V. Jadhav and R. S. Holambe, “Radon and discrete
cosine transforms based feature extraction and dimensionality
reduction approach for face recognition,” Signal Processing,
vol. 88, no. 10, pp. 2604–2609, 2008.

[8] Z. Wang, G. A. Jullien, and W. C. Miller, “Interpolation
using the discrete sine transform with increased accuracy,”
Electronics Letters, vol. 29, no. 22, pp. 1918–1920, 1993.

[9] Y. S. Park and H. W. Park, “Arbitrary-ratio image resiz-
ing using fast DCT of composite length for DCT-based
transcoder,” IEEE Transactions on Image Processing, vol. 15, no.
2, pp. 494–500, 2006.

[10] S. C. Pei and C. C. Tseng, “Transform domain adaptive linear
phase filter,” IEEE Transactions on Signal Processing, vol. 44, no.
12, pp. 3142–3146, 1996.

14 EURASIP Journal on Advances in Signal Processing

[11] K. Mayyas, “A note on “performance analysis of the DCT-LMS
adaptive filtering algorithm”,” Signal Processing, vol. 85, no. 7,
pp. 1465–1467, 2005.

[12] S. W. A. Bergen, “A design method for cosine-modulated
filter banks using weighted constrained-least-squares filters,”
Digital Signal Processing, vol. 18, no. 3, pp. 282–290, 2008.

[13] B. G. Lee, “Input and output index mappings for a prime-
factor-decomposed computation of discrete cosine trans-
form,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 37, no. 2, pp. 237–244, 1989.

[14] X. Shao and S. G. Johnson, “Type-II/III DCT/DST algorithms
with reduced number of arithmetic operations,” Signal Pro-
cessing, vol. 88, no. 6, pp. 1553–1564, 2008.

[15] P. P. Zhu, J. G. Liu, and S. K. Dai, “Fixed-point IDCT without
multiplications based on B.G. Lee’s algorithm,” Digital Signal
Processing, vol. 19, no. 4, pp. 770–777, 2009.

[16] D. F. Chiper, M. N. S. Swamy, M. O. Ahmad, and T.
Stouraitis, “Systolic algorithms and a memory-based design
approach for a unified architecture for the computation of
DCT/DST/IDCT/IDST,” IEEE Transactions on Circuits and
Systems I, vol. 52, no. 6, pp. 1125–1137, 2005.

[17] C. M. Rader, “Discrete Fourier transform when the number of
data samples is prime,” Proceedings of the IEEE, vol. 56, no. 6,
pp. 1107–1108, 1968.

[18] Y.-H. Chan and W.-C. Siu, “On the realization of discrete
cosine transform using the distributed arithmetic,” IEEE
Transactions on Circuits and Systems I, vol. 39, no. 99, pp. 705–
712, 1992.

[19] J. I. Guo, C. M. Liu, and C. W. Jen, “Efficient memory-based
VLSI array designs for DFT and DCT,” IEEE Transactions on
Circuits and Systems II, vol. 39, no. 10, pp. 723–733, 1992.

[20] S. A. White, “Applications of distributed arithmetic to digital
signal processing: a tutorial review,” IEEE ASSP Magazine, vol.
6, no. 3, pp. 4–19, 1989.

[21] H. T. Kung, “Why systolic architectures,” Computer, vol. 15,
no. 1, pp. 37–46, 1982.

[22] L. W. Chang and M. C. Wu, “A unified systolic array for
discrete cosine and sine transforms,” IEEE Transactions on
Signal Processing, vol. 39, no. 1, pp. 192–194, 1991.

[23] S. B. Pan and R. H. Park, “Unified systolic arrays for
computation of the DCT/DST/DHT,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 7, no. 2, pp.
413–419, 1997.

[24] J. I. Guo, C. M. Liu, and C. W. Jen, “New array architecture for
prime length discrete cosine transform,” IEEE Transactions on
Signal Processing, vol. 41, no. 1, pp. 436–442, 1993.

[25] D. F. Chiper, “Novel systolic array design for discrete cosine
transform with high throughput rate,” in Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS
’96), pp. 746–749, Atlanta, Ga, USA, May 1996.

[26] S. Yu and E. E. Swartzlander, “DCT implementation with
distributed arithmetic,” IEEE Transactions on Computers, vol.
50, no. 9, pp. 985–991, 2001.

[27] M. T. Sun, T. C. Chen, and A. M. Gottlieb, “VLSI implementa-
tion of a 16× 16 discrete cosine transform.,” IEEE transactions
on circuits and systems, vol. 36, no. 4, pp. 610–617, 1989.

[28] P. K. Meher, “Unified systolic-like architecture for DCT
and DST using distributed arithmetic,” IEEE Transactions on
Circuits and Systems I, vol. 53, no. 12, pp. 2656–2663, 2006.

[29] H. S. Hou, “A fast recursive algorithm for computing the
discrete cosine transform,” IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 35, no. 10, pp. 1455–1461,
1987.

[30] I. D. Yun and S. U. Lee, “On the fixed-point error analysis of
several fast IDCT algorithms,” IEEE Transactions on Circuits
and Systems II, vol. 42, no. 11, pp. 685–693, 1995.

[31] C. Y. Hsu and J. C. Yao, “Comparative performance of fast
cosine transform with fixed-point roundoff error analysis,”
IEEE Transactions on Signal Processing, vol. 42, no. 5, pp. 1256–
1259, 1994.

[32] D. F. Chiper, M. N. S. Swamy, and M. O. Ahmad, “An
efficient unified framework for implementation of a prime-
length DCT/ IDCT with high throughput,” IEEE Transactions
on Signal Processing, vol. 55, no. 6, pp. 2925–2936, 2007.

[33] C. Cheng and K. K. Parhi, “A novel systolic array structure for
DCT,” IEEE Transactions on Circuits and Systems II, vol. 52, no.
7, pp. 366–369, 2005.

[34] J. I. Guo and C. C. Li, “A generalized architecture for the
one-dimensional discrete cosine and sine transforms,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
11, no. 7, pp. 874–881, 2001.

	1. Introduction
	2. Systolic Algorithm for 1D DCT
	3. Examples
	3.1. DCT Algorithm with Length
	3.2. DCT Algorithm with Length

	4. Hardware Realization of the VLSI Algorithm
	5. Discussion on Quantization Errors of a Fixed-Point Implementation
	5.1. Fixed-Point Quantization Error Analysis.
	5.2. Comparison with Other Relevant Implementations of DCT.

	6. Comparison
	7. Conclusions
	Acknowledgments
	References

