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Motivated by the fact that in computer vision data samples are matrices, in this paper, we propose a matrix-variate probabilistic
model for canonical correlation analysis (CCA). Unlike probabilistic CCA which converts the image samples into the vectors, our
method uses the original image matrices for data representation. We show that the maximum likelihood parameter estimation
of the model leads to the two-dimensional canonical correlation directions. This model helps for better understanding of two-
dimensional Canonical Correlation Analysis (2DCCA), and for further extending the method into more complex probabilistic
model. In addition, we show that two-dimensional Linear Discriminant Analysis (2DLDA) can be obtained as a special case of
2DCCA.

1. Introduction

Recently, a probabilistic interpretation of statistical dimen-
sion reduction algorithms has been proposed by several
authors. Tipping and Bishop have derived a latent variable
model for principal component analysis (PPCA) and have
shown that how the principal subspace of the set of data
vectors can be obtained within a maximum likelihood
framework [1]. Lawrence has proposed another probabilis-
tic model for Principal Component Analysis (PCA); he
integrated out the weights and optimized the positions of
the latent variables in the q dimensional latent space [2].
Roweis has presented an expectation-maximization (EM)
algorithm for PCA. The algorithm allows a few eigenvectors
and eigenvalues to be extracted from large collections of
high dimensional data [3]. Unlike PCA, which works with
a single random vector and maximizes the variance in
the projected space, Canonical Correlation Analysis (CCA)
works with a pair of random vectors (or in general with
a set of m random vectors) and maximizes correlation
between sets of projections. In [4], a latent variable model
for CCA has been proposed by Bach and Jordan. Other
probabilistic models are also known [5–8]. In general,

the probabilistic models have many advantages including the
following:

(i) the potential to extending the scope of the methods
into the mixture models [9],

(ii) extending the methods so as to handle the missing
data values [1],

(iii) automatic model selection can be applied by combin-
ing the likelihood with a prior [10],

(iv) Extending the model into supervised or semi super-
vised cases [5].

One major drawback of aforementioned methods is
that they only work for data vectors while in computer
vision research, samples are often multidimensional arrays
such as matrix or tensor. Hence, in the preprocessing
step, the image matrices should be converted into the
long vectors. This results in losing the spatial structure of
the image and consequently the huge covariance matrices,
high computational cost, and small sample size problem.
Recently, some statistical methods that directly perform on
the image matrices without the image to vector conversion
procedure have been proposed. These methods make use of
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Figure 1: Probabilistic graphical model for CCA.

the spatial information in the image structure and reduce
the computational cost to a great extent. General Low Rank
Approximation of Matrix (GLRAM) [11], Two-Dimensional
Canonical Correlation Analysis (2DCCA) [12, 13], and Two-
Dimensional Linear Discriminant Analsis (2DLDA) [14]
are some well-known matrix-based algorithms constructed
based on this idea. Some other researchers have applied
multilinear algebra and have extended this concept to higher-
order tensor data [15–20].

Because of the success of the matrix-based methods, re-
cently some researchers have developed probabilistic model
for matrix and tensor extensions of PCA [21–24]. However,
they do not show the maximum likelihood relationship
between their models and corresponding PCA.

Armed with probabilistic principal component analysis
[1] and probabilistic canonical correlation analysis [4], in
this paper, we propose a matrix-variate factor analysis model
that has the property that its maximum likelihood solution
extracts the canonical correlation directions of two random
matrices. In addition, we show that 2DCCA can be converted
to 2DLDA by considering special kind of random matrices.
This means that 2DLDA can be interpreted as 2DCCA
between appropriately defined random matrices.

The remaining part of the paper is organized as follows:
in Section 2, we review CCA and its probabilistic interpre-
tation. Two-Dimensional CCA is described in Sections 3,
and 4 introduces our probabilistic model and derivation
of canonical directions using maximum likelihood esti-
mation. The relationship between 2DCCA and 2DLDA is
discussed in Section 5. Finally, conclusions are presented in
Section 6.

2. Probabilistic CCA

Canonical Correlation Analysis determines the linear rela-
tionship between two multidimensional variables t1 ∈ �m

and t2 ∈ �n. It finds a pair of linear transforms u1 and u2
such that correlations between transformed variables uT1 t1 an
uT2 t2 are maximized. The objective function of CCA can be
written as

argmax
u1,u2

cov
〈
uT1 t1,u

T
2 t2
〉

√
var
〈
uT1 t1

〉√
var
〈
uT2 t2

〉 . (1)

The solutions to this problem can be obtained as u1 = Σ̃1/2
11 q1

and u2 = Σ̃1/2
22 q2, where q1 and q2 contain left-right singular

vectors of (Σ̃11)
−1/2

Σ̃12(Σ̃22)
−1/2

and Σ̃i j denotes the sample
covariance matrix of ti and t j random vectors. A latent
variable model for CCA has been proposed in [4] whose
graphical model is depicted in Figure 1. The model is defined
as follows:

x ∼ N(0, Id), min{m,n} ≥ d ≥ 1,

t1 | x ∼ N(W1x,Ψ1), W1 ∈ �m×d, Ψ1 � 0,

t2 | x ∼ N(W2x,Ψ2), W2 ∈ �n×d , Ψ2 � 0,

(2)

where we assume that the data is centered. The negative log
likelihood of the data is equal to

L = (m + n)N
2

log(2π) +
N

2
log|Σ| + N

2
tr
(
Σ−1Σ̃

)
, (3)

where N is the number of the samples, Σ =(
W1W

T
1 +Ψ1 W1W

T
2

W2W
T
1 W2W

T
2 +Ψ2

)
, and Σ̃ =

(
Σ̃11 Σ̃12

Σ̃21 Σ̃22

)
denotes the

(m + n) × (m + n) sample covariance matrix obtained from

data t
j
1, t

j
2, j = 1, . . . ,N .

The maximum likelihood solution is given by

Ŵ1 = Σ̃1/2
11 Q1dP

1/2
d ,

Ŵ2 = Σ̃1/2
22 Q2dP

1/2
d ,

(4)

where the columns of Q1d and Q2d are the first d left-

right singular vectors of thematrix (Σ̃11)
−1/2

Σ̃12(Σ̃22)
−1/2

, and
Pd is the diagonal matrix containing the singular values of

(Σ̃11)
−1/2

Σ̃12(Σ̃22)
−1/2

.

3. 2-Dimensional CCA

The main difference between classical CCA and 2DCCA
lies in the way the data are represented. Unlike classical
CCA which uses the vectorized representation, 2DCCA
works with the data in matrix representation. Therefore,
2DCCA preserves some implicit structural information
among elements of the original images. It also overcomes
the singularity problem of scatter matrices resulting from the
high dimensionality of vectors [12, 13].

2DCCA considers two random matrices T1 ∈ �m1×n1
and T2 ∈ �m2×n2 and seeks left transforms L1 ∈ �m1×m′

,
L2 ∈ �m2×m′

and right transforms R1 ∈ �n1×n′ , R2 ∈ �n2×n′

such that the following criteria is maximized:

argmax
L1,L2,R1,R2

tr
(
cov
〈
LT1 T1R1,LT2 T2R2

〉)
√
tr
(
var
〈
LT1 T1R1

〉)√
tr
(
var
〈
LT2 T2R2

〉) . (5)

There is no closed form solution for maximizing all pro-
jection matrices simultaneously. Hence, 2DCCA adopts an
iterative algorithm for finding the local optimal projections.
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At first left transforms L1, L2 are assumed known and the
following covariance matrices are defined:

cov
〈
Tl
1,T

l
2

〉
= Σ̃l

12 =
1

Nm′Σ
N
n=1T

l
1,n

(
Tl
2,n

)T
,

var
〈
Tl
1

〉
= Σ̃l

11 =
1

Nm′Σ
N
n=1T

l
1,n

(
Tl
1,n

)T
,

var
〈
Tl
2

〉
= Σ̃l

22 =
1

Nm′Σ
N
n=1T

l
2,n

(
Tl
2,n

)T
,

(6)

where Tl
1 = TT

1 L1 and Tl
2 = TT

2 L2 are left projected sample
matrices. Then, the formula (1) becomes

argmax
R1,R2

tr
(
RT
1 Σ̃

l
12R1

)
√
tr
(
RT
1 Σ̃

l
11R1

)√
tr
(
RT
2 Σ̃

l
22R2

) . (7)

The optimal projection can be obtained as follows:

R1 =
(
Σ̃l
11

)−1/2
Ql

1,

R2 =
(
Σ̃l
22

)−1/2
Ql

2,

(8)

where Ql
1 and Ql

2 contain n′ first left-right singular vector of
(Σ̃l

11)
−1/2Σ̃l

12(Σ̃
l
22)

−1/2.
Alternatively, we can rewrite (5) as

argmax
L1,L2

tr
(
LT1 Σ̃

r
12L1

)
√
tr
(
LT1 Σ̃

r
11L1

)√
tr
(
LT2 Σ̃

r
22L2

) , (9)

where,

cov
〈
Tr
1,T

r
2

〉 = Σ̃r
12 =

1
Nn′

ΣN
n=1T

r
1,n

(
Tr
2,n

)T
,

var
〈
Tr
1

〉 = Σ̃r
11 =

1
Nn′

ΣN
n=1T

r
1,n

(
Tr
1,n

)T
,

var
〈
Tr
2

〉 = Σ̃r
22 =

1
Nn′

ΣN
n=1T

r
2,n

(
Tr
2,n

)T
,

(10)

where Tr
1 = T1R1 and Tr

2 = T2R2 are right-projected sample
matrices. The optimal solution can be obtained as

L1 =
(
Σ̃r
11

)−1/2
Qr

1,

L2 =
(
Σ̃r
22

)−1/2
Qr

2,

(11)

where Qr
1 and Q

r
2 containm′ first left-right singular vector of

(Σ̃r
11)

−1/2
Σ̃r
12(Σ̃

r
22)

−1/2
. left projections (L1 and L2) and right

projections (R1 and R2) are determined by iteratively solving
(7) and (9) until convergence.

4. Matrix-Variate Probabilistic Model for CCA

In this section, we propose an extension of probabilistic
canonical correlation model to deal with 2D data. One
limitation of probabilistic canonical correlation model is
that, in this method, samples are represented by vectors
while in computer vision research, data (images) are often
matrices, and structural information can be used for improv-
ing the conventional model. We show that the estimating
the parameters of the proposed model leads to the two-
dimensional canonical correlation analysis directions.

We relate the random matrices T1 ∈ �m1×n1 and T2 ∈
�m2×n2 with the latent matrix X ∈�m′×n′ as follows:

T1 = U1XV
T
1 + Ξ1,

T2 = U2XVT
2 + Ξ2,

(12)

where U1 ∈ �m1×m′
, V1 ∈ �n1×n′ , U2 ∈ �m2×m′

, and
V2 ∈ �n2×n′ are the factor loading matrices. Ξ1 and Ξ2 are the
noise sources, and every entry of them follows from N(0,ψ1)
and N(0,ψ2), respectively. Let θ = {U1,U2,V1,V2,ψ1,ψ2} be
the parameter of the model. The observations T1 and T2 are
conditionally independent given the value of latent matrix X;
so, we have

P(T1,T2 | X, θ) = P(T1 | X, θ)P(T2 | X, θ). (13)

Marginal distribution of observed variables is then given by
the integrating out the latent variable as

P(T1,T2 | θ) =
∫
P(T1 | X, θ)P(T2 | X, θ)P(X)dX. (14)

Maximum likelihood is one method for setting the values
of these parameters which involves consideration of the log
probability of the observed data set given the parameters, that
is,

L(D1,D2 | θ) = ln p(D1,D2 | θ) =
N∑

n=1
ln P

(
T1;n,T2;n | θ

)
,

(15)

where Di = {Ti;n}Nn=1 and i ∈ {1, 2} consist of N data
matrix. One difficulty here is that all the projection matrices
{Ui,Vi}2i=1 should be obtained simultaneously and there is
no closed-form solution for it. Therefore, two probabilistic
models are proposed so as to obtain each projection direction
separately and from an alternating optimization procedure.

We assume that the value of Ui, i = 1, 2 is known and
proceed to project the observations over these matrices. The
left probabilistic model is defined as

Tl
i = ViX

l + Ξl
i, i = 1, 2, (16)

where Tl
i = TT

i Ui, Xl = XT , and Ξl
i is the noise in this

model. We define the left probabilistic function P(Tl
1,T

l
2) as

the marginal distribution over the latent variables, that is,

P
(
Tl
1,T

l
2 | θl

)
=
∫
P
(
Tl
1,T

l
2 | Xl , θl

)
P
(
Xl
)
dX, (17)
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where θl = {Vi,Ψl
i}|

2
i=1. The projected observations Tl

1 and
Tl
2 are conditionally independent given the value of latent

matrix Xl ; so, we have

P
(
Tl
1,T

l
2 | Xl , θl

)
=

2∏

i=1
P
(
Tl
i | Xl , θli

)
. (18)

One major problem here is that the probabilistic distribu-
tions are defined over vectors but in this case observed data
are matrices.

Suppose that tli, j ∈ �ni be the jth column of the projected

matrices Tl
i ∈ �ni×m′

, then the probabilistic function P(Tl
i )

is defined as

P
(
Tl
i

)
= Πm′

j=1p
(
tli, j
)
, i = 1, 2. (19)

x-conditional probability distribution over tli, j space is given
by

p
(
tli, j | xlj

)
∼ N

(
Vix

l
j ,Ψ

l
i

)
, Ψl

i � 0, i = 1, 2, (20)

where xlj ∈ �n′ is defined as the jth column vector of Xl

and marginal distribution of xj is N(0, I). Therefore, the
marginal distribution for the observed data tli, j is readily
obtained by integrating out the latent variables, giving

p
(
tli, j
)
∼ N

(
0,Vi(Vi)

T +Ψl
i

)
, i = 1, 2. (21)

Suppose that τlj = [(tl1, j)
T
(tl2, j)

T
]
T
∈ �(n1+n2), V =

[(V1)
T(V2)

T]
T ∈ �(n1+n2)×n′ , Ψl =

(
Ψl

1 0

0 Ψl
2

)
, and Σl =

VVT +Ψl. Therefore, P(τlj) can be obtained as follows:

P
(
τlj
)
= N

(
0,Σl

)
, (22)

where Σl = VVT +Ψl. It can be shown that the negative log
likelihood of the left projected data is equal to

L = ΣN
n=1Σ

m′
j=1 log P

(
τln, j
)
. (23)

After some manipulations, equation (23) becomes

L = (n1 + n2)Nm′

2
log(2π) +

Nm′

2
log
∣∣∣Σl
∣∣∣

+
1
2
ΣN
n=1Σ

m′
j=1 tr

((
Σl
)−1

τln, j
(
τln, j
)T)

= (n1 + n2)Nm′

2
log(2π) +

Nm′

2
log
∣∣∣Σl
∣∣∣

+
Nm′

2
tr
((

Σl
)−1

Σ̃l
)
,

(24)

where Σ̃l = (1/Nm′)ΣN
n=1Σ

m′
j=1τ

l
n, j(τ

l
n, j)

T
is the sample

covariance matrix of left projected data, and |A| denotes
the determinant of matrix A. For log likelihood not become
infinite, we assume Σl � 0. Figure 2(a) depicts the left
probabilistic graphical model.

In this stage, we should maximize L with differentiating
with respect to V , Ψl

1, and Ψl
2, where the solutions is

straightforward. As shown in [4], the solutions can be
obtained as

Ṽ1 =
(
Σ̃l
11

)1/2
Ql

1

(
Pl
)1/2 = Σ̃l

11R1

(
Pl
)1/2

,

Ṽ2 =
(
Σ̃l
22

)1/2
Ql

2

(
Pl
)1/2 = Σ̃l

22R2

(
Pl
)1/2

,

(25)

where Ql
1 and Ql

2 are composed of n′ first left-right

singular vectors of the matrix, (Σ̃l
11)

−1/2
Σ̃l
12(Σ̃

l
22)

−1/2
with

corresponding singular values on the diagonal of the matrix,
Pl ∈ �n′×n′ , and the matrices R1 and R2 are composed of
first n′ canonical directions. Note that the size of matrix
(Σ̃l

11)
−1/2

Σ̃l
12(Σ̃

l
22)

−1/2
is n1 × n2 which is much smaller than

the size of the matrix (Σ̃11)
−1/2

Σ̃12(Σ̃22)
−1/2 ∈ �m1n1×m2n2 in

classical probabilistic CCA.
After computing V1 and V2, the observations are pro-

jected onto these matrices. The right probabilistic model is
defined as

Tr
i = Xr + Ξr

i , i = 1, 2, (26)

where Tr
i = TiVi. Xr = X is the latent matrix and

Ξr
i represents the noise source in this model. Similar to

left probabilistic model, we define tri, j ∈ �mi , and xrj ∈
�m′

as the jth column vector of Tr
i and Xr , respectively,

where the marginal distribution of xrj is N(0, I). Let τrj =
[(tr1, j)

T(tr2, j)
T]

T ∈ �(m1+m2), U = [(U1)
T(U2)

T]
T ∈

�(m1+m2)×m′
, Ψr =

(
Ψr

1 0
0 Ψr

2

)
, and Σr = UUT +Ψr . Therefore,

P(τrj ) = N(0,Σr). The negative log likelihood of the right
projected data is equal to

L = (m1 +m2)Nn′

2
log(2π) +

Nn′

2
log|Σr|

+
1
2
ΣN
n=1Σ

n′
j=1 tr

(
(Σr)−1τrn, j

(
τrn, j
)T)

= (m1 +m2)Nn′

2
log(2π) +

Nn′

2
log|Σr|

+
Nn′

2
tr
(
(Σr)−1Σ̃r

)
,

(27)

where Σ̃r = (1/Nn′)ΣN
n=1Σ

n′
j=1τ

r
n, j(τ

r
n, j)

T is the sample covari-
ance matrix of right projected data samples, and assume
Σr � 0. The solution to this optimization can be obtained
as

Ũ1 =
(
Σ̃r
11

)1/2
Qr

1(P
r)1/2 = Σ̃r

11L1(P
r)1/2,

Ũ2 =
(
Σ̃r
22

)1/2
Qr

2(P
r)1/2 = Σ̃r

11L2(P
r)1/2,

(28)

where in this case L1 and L2 contain the first m′ canonical
directions, Qr

1 and Qr
2 are composed ofm′ first left-right sin-

gular vectors of (Σ̃r
11)

−1/2
Σ̃r
12(Σ̃

r
22)

−1/2
, and Pr ∈ �m′×m′

con-
tains the corresponding singular values on the diagonal. The
right graphical probabilistic model is shown in Figure 2(b).
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ψl
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1

ψr
2

Nn′
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Figure 2: Probabilistic graphical model for 2DCCA, (a) left model and (b) right model.

It can be seen that the left and right canonical directions
of 2DCCA can be obtained by maximizing the likeli-
hood function. Posterior expectations can be obtained as
follows:

E
(
xlj | τlj

)
=
((

Pl
)1/2)T

LT1 τ
l
j ,

E
(
xrj | τrj

)
=
(
(Pr)1/2

)T
RT
1 τ

r
j .

(29)

5. Relationship of 2DCCA and 2DLDA

In this section, we show that 2DCCA and 2DLDA [11]
are closely related. 2DLDA uses original sample matrices
for constructing between-class and within-class covariance
matrices. It adapts an iterative algorithm where, in each
iteration one projection direction is assumed known, and
other projection is obtained by solving generalized eigen-
value problem. Let Xl

j ∈ �r′×c, j = 1, . . . ,N the N image
samples which are projected onto the left projection matrix,
and L ∈ �r×r′ . These samples are clustered into C classes
with yj ∈ {1 · · ·C} class label where ith class has ni

data samples. Define X
l
i ∈ �r′×c as the mean of ith class,

π as a vector where its ith element is πi = ni/N , and
N = ΣC

j=1nj .

Lemma 1. In 2DLDA, between class scatter matrix is obtained
as SBl = MPMT , where P = (diag(π) ⊗ Ir′ − (π ⊗
Ir′)(π ⊗ Ir′)

T), Ml = ((X
l
1)

T
, . . . , (X

l
C)

T
) ∈ �c×(r′C), ⊗ is the

kronecker product, diag(π) is a diagonal matrix with πi’s on its
diagonal, and I is the identity matrix.

The proof of lemma is shown in Appendix A. Consider

two sets of multivariate data, {T j
1 = (Xl

j)
T ∈ Rc×r′ , j =

1, . . . ,N} and {T j
2 = [Q1, . . . ,QC]

T ∈ RCr′×r′ , j = 1, . . . ,N}
which are realizations of random matrices T1 and T2,
respectively. Where Qi = Ir′ if yj = i, and otherwise Qi = 0r′ .

For example, for image matrix Xl
1 with class label y1 = 2,

T1
1 and T1

2 are defined as follows:

T1
1 =

(
Xl
1

)T
, T1

2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0r′

Ir′

0r′

...

0r′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(r′C)×r′

, (30)

where 0r′ is a r′ × r′square matrix of all zeros. The following
lemma shows the relationship between two methods.

Lemma 2. 2DCCA finds the optimal correlation directions of

T1 = (Xl)
T
and T2 = [Q1, . . . ,QC]

T random matrices by
solving the generalized eigenvalue problem SBlu = (λ/1 −
λ)SWlu, where SBl and SWl are between-class and within-
class covariance matrices, respectively.

The proof is shown in Appendix B. As we know, The right
projection vector of 2DLDA is computed using generalized
eigenvalue problem SBlw = λSWlw, while in Lemma 2, we
proved that the canonical correlation direction of 2DCCA
for (T1,T2) is obtained by solving the generalized eigenvalue
problem SBlu = (λ/1− λ)SWlu. These show the relationship
between two methods. Therefore, the proposed probabilistic
model can also be used for modeling 2DLDA technique.

6. Conclusion

Conventional probabilistic model only works for vectors data
while the data samples in computer vision applications are
matrices. In this paper, we presented a probabilistic inter-
pretation of matrix-based canonical correlation analysis. We
introduced a model and expressed that two-dimensional
canonical correlation directions could be archived using
maximum likelihood parameter estimation. This model can
be applied for extending the matrix based CCA. We also
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showed that matrix-based Linear Discriminant Analysis can
be obtained by setting the input random matrices of CCA.

Appendices

A. Proof of Lemma 1

SBl =
C∑

i=1
πi
(
Xi − X

)(
Xi − X

)T

=
C∑

i=1
πi
(
Xi

)(
Xi

)T − X
C∑

i=1
πi
(
Xi

)T −
C∑

i=1
πi
(
Xi

)(
X
)T

+
C∑

i=1
πi
(
X
)(

X
)T

.

(A.1)

By substituting X = ∑C
i=1 πi(Xi) and

∑C
i=1 πi = 1 in to above

equation, we have

SBl =
C∑

i=1
πi
(
Xi

)(
Xi

)T −
(
X
)(

X
)T

. (A.2)

The following equations can be easily obtained:

X =M(π ⊗ Ir′),

C∑

i=1
πi
(
Xi

)(
Xi

)T =M
(
diag(π)⊗ Ir′

)
MT.

(A.3)

So, we have

SBl =M
(
diag(π)⊗ Ir′

)
MT −M(π ⊗ Ir′)(π ⊗ Ir′)

TMT

=M
((
diag(π)⊗ Ir′

)− (π ⊗ Ir′)(π ⊗ Ir′)
T
)
MT

=MPMT.
(A.4)

B. Proof of Lemma 2

Joint sample covariance matrix of T1 and T2 is computed as

Σ =
⎛
⎝SB

l + SWl MP

PMT P

⎞
⎠. (B.1)

2DCCA obtains the optimal canonical directions by
finding the eigenvectors of Σ−1/211 Σ12Σ

−1
22 Σ21Σ

−1/2
11 which by

some computations, we have

Σ−1/211 Σ12Σ
−1
22 Σ21Σ

−1/2
11 =

(
SBl + SWl

)−1/2
MPMT

×
(
SBl + SWl

)−1/2

=
(
SBl + SWl

)−1/2
SBl
(
SBl + SWl

)−1/2

(B.2)

which is equivalent to solving the generalized eigenvalue
problem SBlu = λ(SBl + SWl)u which is equal to SBlu =
(λ/1− λ)SWlu.
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