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Block Wavelet Transforms (BWTs) are orthogonal matrix transforms that can be obtained from orthogonal subband filter
banks. They were initially generated to produce matrix transforms which may carry nice properties inheriting from wavelets, as
alternatives to DCT and similar matrix transforms. Although the construction methodology of BWT is clear, the reverse operation
was not researched. In certain cases, a desirable matrix transform can be generated from available data using the Karhunen-Loéve
transform (KLT). It is, therefore, of interest to develop a subband decomposition filter bank that leads to this particular KLT as its
BWT. In this work, this dual problem is considered as a design attempt for the filter bank, hence the wavelets. The filters of the
decomposition are obtained through lattice parameterization by minimizing the error between the KLT and the BWTmatrices. The
efficiency of the filters is measured according to the coding gains obtained after the subband decomposition and the experimental
results are compared with Daubechies-2 and Daubechies-4 filter banks. It is shown that higher coding gains are obtained as the
number of stages in the subband decomposition is increased.

1. Introduction

In signal coding, subband decomposition and block trans-
formation are popularly used in signal compression [1, 2]. In
bothmethods, the signal is projected to subspaces with better
(more efficient) representation properties. In the transform
domain, the coefficients are usually coded by nonuniform bit
allocation depending on the energy distribution.

The relation between discrete wavelet transform (imple-
mented by subband decomposition [3, 4]) and matrix
transforms is also known [5]. Particularly, orthonormal
transform matrices can be obtained by iteratively applying
shifted impulse trains (with certain periods) and observing
the constant output of the balanced subband decomposition
tree, as described in Section 2.

Karhunen-Loéve transform (KLT) is a matrix transform
constructed specifically for a group of signals with certain
covariance characteristics. It is then efficiently used for
several applications such as feature extraction. Although
orthogonal matrices (BWTs) can be obtained from subband-
based multiresolution signal decomposition [5], the analysis

of how to obtain the filter coefficients of a subband filter
bank that generates a desired transform matrix is lacking. An
attempt to obtain subband decomposition filters that lead to
an efficient (e.g., KLT) matrix as its BWT is believed to serve
well in the area of wavelet design.

The mapping from subband decomposition representa-
tion to BWT is many-to-one. Therefore, the search for a
filter bank that satisfies a certain BWT requires several other
conditions, and the solution is not unique.

Akkarakaran and Vaidyanathan [6] proved that the KLT
matrix is a principal component filter bank for a given class
C of orthonormal uniformM-channel filter banks. However,
they do not propose a method to obtain the (sub-)optimum
filter bank in cases where the KLT matrix is not included
in C. The class of BWT filter banks, say C(BWT), is a subset
of C with reduced degree of freedom and dyadic processing
constraints. Figure 1(a) shows a 4-channel decomposition
structure and Figure 1(b) shows the corresponding BWT
structure. In the BWT structure, onlyH0 is optimized subject
to producing a BWT close to the KLT matrix while in the
4-channel decomposition, H0, H1, and H2 are optimized
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Figure 1: Decomposition structures: (a) 4-channel decomposition, (b) two-stage subband decomposition.
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Figure 2: A sketch ofM-channel filter bank class, C and its dyadic
BWT subset, C(BWT). (a) KLT in C. (b) KLT not in C.

(last filter is computed using the orthonormality con-
straints). Therefore, due to a greater degree of freedom, the
4-channel decomposition has a higher probability to reach
closer to KLT. Figure 2 roughly sketches C and C(BWT). It
is proved in [6] that the KLT is the optimum filter bank if
C contains it. In case where the KLT is not included in C,
no solution is proposed for the optimum filter bank. In this
work, the inability of [6] to produce “close to KLT” results is
handled together with the limitation of dyadic and repeated
processing of 2 channel filter banks to produce BWT.

The lattice parameterization method can be used to
decrease the number of free parameters of a QMF bank and
the filter coefficients can be expressed in terms of trigono-
metric functions of the angle parameter. This effectively
reduces the search space of the filter coefficients down to
less number of angle terms. Here, the BWT decomposition
is reversed so that a desired matrix, the KLT, is obtained
using quadrature mirror filters in iterations of 2-channel
decompositions. The motivation of the study is the possi-
bility that the KLT matrix (or a matrix that is close) can be
obtained by BWT decomposition since both the KLT matrix
and the BWTmatrix are orthonormal matrices. Although the
channel decomposition structure in Figure 1(a) can be used
in this process, the BWT structure in Figure 1(b) is preferred
because the number of filters to be optimized is less in the
iterated 2-channel BWT structure.

The proposed design method here is a filter bank design
method which uses a given block transform matrix (the
KLT matrix) as the optimization function, and it is least
squares optimal with respect to the autocorrelation, while
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Figure 3: A two-channel QMF bank.

previous methods (i.e., [6]) seek for an optimization through
similarity to a set of basis functions. Thus, the adopted
strategy may provide an insight and arise an interest in this
new design approach.

A numerical search algorithm that provides finite extent
quadrature mirror filters (QMFs) was previously studied [7]
and the performance of QMF banks obtained from KLT
matrices of size 4× 4 are compared with Daubechies-2 filter
banks [8]. In this paper, the method proposed in [8] is
improved and it is extended to 8× 8 KLT matrices obtained
from row- and column-KLT matrices of several test images.

In the following sections, BWT, KLT, and the lattice
parameterization will be explained briefly. Then, the pro-
posed method, BWT Inversion, will be developed analytically
for the 4× 4 case and experimentally for the 8× 8 case. The
efficiency of the generated filter banks will be compared with
Daub-2 and Daub-4 filter banks by using the coding gain
expression. Finally, the conclusion and the future works will
be discussed.

2. BlockWavelet Transform

Let H0(ω) and H1(ω) be the low-pass and high-pass filters,
respectively, of a perfect reconstruction subband decom-
position filter bank. In a two-band (or, equivalently, one
stage) partition, as shown in Figure 3, the input signal x[n]
is filtered by h0[n] and h1[n] and the resultant signals
are downsampled by a factor of two. In this way, two
subsignals, u1[n] and u2[n], are obtained. These subsignals
contain the approximation and detail information of the
input signal. In many signal and image coding methods,
this signal decomposition operation is repeated in a tree-
like structure, and the resultant subsignals are compressed
by various coding schemes [1, 2].
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Figure 1(b) shows the two-stage subband decomposition
tree. Here, the approximation and detail signals obtained
from one-stage decomposition are decomposed by using the
same filters and four subsignals are obtained.

The framework of BWT states that, using the scheme in
Figure 3, a transform matrix of size 2× 2 can be generated,
and using Figure 1(b), a transform matrix of size 4× 4 can
be generated. In general, if l stages are considered (meaning
that there are N = 2l subbands), then a transform matrix of
size N ×N can be generated.

The BWT matrix of size 2× 2 is generated by applying
two 2-periodic signals, x1[n] and x2[n] whose samples in
one period are [0, 1] and [1, 0], respectively, to the system
shown in Figure 3. Indeed, x2[n] is the shifted version of
x1[n]. When x1[n] and x2[n] are convolved with h0[n] and
h1[n], the resultant signals are also 2-periodic. If these signals
are down-sampled by 2, 1-periodic signals are obtained in
the sub-bands. The samples which repeat themselves are the
sub-band signals construct the BWT matrix.

For the 4× 4 case, four 4-periodic signals, x1[n],
x2[n], x3[n], and x4[n] whose samples in one period are
[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1] are
applied to the two-stage decomposition structure shown in
Figure 1(b). Convolving each input signals with h0[n] and
h1[n] and then down-sampling the results by two gives
2-periodic signals. Convolving the output signals of the
first stage by h0[n] and h1[n] and down-sampling by 2
yields 1-periodic signals at the end of the second stage. The
repeating samples construct the 4× 4 BWT matrix. The four
repeating samples obtained when x1[n] is applied to the
system construct the first column on the BWT matrix; the
repeating samples for the case when x2[n] is applied to the
system construct the second column of the BWTmatrix, and
so on.

In general case of N × N , where N is a power of 2, that
is, N = 2l, N input signals each of which are N-periodic are
applied to the l-stage decomposition tree and the repeating
samples of the sub-band signals obtained after the last stage
of the structure construct the BWT matrix.

BWTs that are obtained in this manner are orthogonal
transforms, that is, AN

TAN = IN where AN is the BWT
matrix of size N ×N and IN is theN ×N identity matrix and
the matrix coefficients can be computed by fast (O(N logN))
algorithms [5].

When the input signals of size N ×1, used for computing
the BWT matrix, are written into the columns of an N × N
matrix, the identity matrix is obtained. It is shown that
the BWT matrix remains orthogonal when any orthonormal
input vectors are used as the input signals [9]. It means that
using −1 instead of 1 in any input signal does not affect the
orthogonality of the BWT matrix, but it changes the signs of
the elements of the corresponding row.

Eigenvector matrices, such as the ones obtained by
the KLT, are automatically orthogonal. Since the transform
matrix obtained by the BWT is also orthogonal, it is thought
that eigenvector matrices of the KLTmatrix can be generated
by the BWT filter banks. If a BWT filter bank with finite filter
coefficients can be found, then this filter bank can be used

for compressing the signals and images sharing the similar
correlation characteristics.

3. Karhunen-Loéve Transform

Correlated signals need to be compacted (or decorrelated)
for an efficient representation (typically through quantiza-
tion and entropy coding). This compaction process is either
by transformation or by predictive coding. Therefore, a
transform that can be fine-tuned according to the statistical
properties of a particular signal is of interest. Hotelling [10]
was the first researcher who showed that a transform matrix
could be computed by using the statistical information of
a given random process. A similar transformation on the
continuous functions was obtained by Karhunen [11] and
Loéve [12]. Such transformations were firstly used by Kramer
and Mathews [13] and Huang and Schultheiss [14] and
they are named as Karhunen-Loéve Transform (KLT) in the
literature.

The rows of the KLT matrix are computed from the
eigenvectors of the autocorrelation matrix of the given ran-
dom process in the descending order of the corresponding
eigenvalues. The development of the transform is via a
minimization of the chopped signal representation over a set
of basis signals. Consider an N-element discrete time signal
(a vector) which is represented as a linear combination of N
basis vectors:

x[n] =
N∑
k=1

ykek[n], (1)

where yk are the representation coefficients and ek[n] are the
basis signals (vectors). Considering a reduced set of the same
representation:

x̃[n] =
M∑
k=1

ykek[n]. (2)

The error of the representation becomes ε[n] =∑N
k=M+1 ykek[n]. An optimal basis can be determined

by minimizing the norm of this error signal with respect to
the basis signals subject to the fact that the basis signals must
obey the orthonormality condition

∂

∂ek
|ε[n]| = 0, s.t. |ek| = 1 ∀k. (3)

This constrained optimization is expressed in the form of a
Lagrange multiplier:

min

⎡
⎣∑

k

{
∂

∂ek
|ε[n]| + λk(|ek| − 1)

}⎤⎦, ∀k. (4)

Minimization of (4) directly produces the eigenvectors of
the autocorrelation matrix produced from the input signal
whose ordering is determined by the corresponding eigen-
value as the basis signals. Due to the above optimization,
KLT is known to compact the maximum amount of signal
power to the first elements of the new representation.
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Similarly, due to containing columns from the eigenvectors
of the autocorrelation matrix, the transform diagonalizes the
autocorrelation, hence it is also called the “decorrelation”
operation.

The KLT matrix obtained in this manner automatically
minimizes the geometric mean of the variance of the
transform coefficients by making the energy distribution
as unbalanced (in favor of the first coefficient places) as
possible. Coding gain is calculated by the arithmetic mean
of variances divided by the geometric mean of the variances,
and it is commonly used to measure the compression
capability of the transforms [15]. Since the arithmetic mean
of the variances (hence the average energy) may not change
as a result of an orthonormal transform, the KLT provides
the largest transform coding gain of any transform coding
method [15, 16].

Although the KLT is the optimum statistical transform
which maximizes the coding gain, it has several disadvan-
tages in applying to practical compression. The autocorrela-
tionmatrix is computed based on the source data and it is not
available to the receiver. Therefore, either the autocorrelation
or the transform itself has to be sent to the receiver. The size
of these matrices can remove any advantages to using the
optimal transform. Furthermore, the autocorrelationmatrix,
and therefore the KLT matrix, will change with time for the
nonstationary signals. However, in applications where the
statistics changes slowly and transform size can be kept small,
the KLT can be of practical use [15, 17].

4. Lattice Parameterization

Consider the two-channel QMF bank shown in Figure 3. The
most general relation between the reconstructed signal, X̂(z),
and the original signal, X(z), is given by [16] as

X̂(z) = 1
2
[H0(z)F0(z) +H1(z)F1(z)]X(z)

+
1
2
[H0(−z)F0(z) +H1(−z)F1(z)]X(−z).

(5)

The second term in the above equation represents the
aliasing error, and it can be eliminated by choosing the
synthesis filter, Fk(z), according to

F0(z) = −H1(−z), F1(z) = H0(−z), (6)

leading to the result

T(z) = X̂(z)
X(z)

= 1
2
[−H0(z)H1(−z) +H1(z)H0(−z)]. (7)

Let us denote polyphase components of H0(z) by H00(z)
and H01(z), and that of H1(z) by H10(z) and H11(z) so that

H0(z) = H00
(
z2
)
+ z−1H01

(
z2
)
,

H1(z) = H10
(
z2
)
+ z−1H11

(
z2
)
.

(8)

The polyphase components give the even and odd indexed
coefficients of the filters. The polyphase matrix of the two-
channel filter bank is then defined as

Hp(z) =
⎡
⎣H00(z) H01(z)

H10(z) H11(z)

⎤
⎦ (9)

and it can be written as

Hp(z) =
⎡
⎣1 0

0 ±1

⎤
⎦ · R(θK) ·Λ(z)

· R(θK−1)Λ(z) · · ·Λ(z) · R(θ0),
(10)

where R(θ) and Λ(z) are defined as

R(θ) =
⎡
⎣ cosθ sin θ

− sin θ cos θ

⎤
⎦, Λ(z) =

⎡
⎣1 0

0 z−1

⎤
⎦ (11)

[16, 18, 19]. Changing the sign of H1(z), if necessary,
corresponds to selecting identitymatrix as the first multiplier
in (10). With the selection of identity matrix,Hp(z) becomes

Hp(z) = R(θK) ·Λ(z) · R(θK−1) ·Λ(z) · · ·Λ(z) · R(θ0).
(12)

This is called lattice parameterization, and it gives Hp(z) as a
function of angles.

For H0(z) to be a low-pass filter, H0(z = −1) should be
zero. This condition can be written in terms of the angles θi,
i = 0, 1, . . . ,K as

K∑
i=0

θi = π
4
. (13)

This condition reduces number of free angle parameters by
1. Due to insertion of a zero at z = −1, the convergence of
the wavelet iteration is assured, so the developed filter bank
corresponds to a wavelet.

If the length of the filters h0[n] and h1[n] both areN , then
H0(z) and H1(z) are of degree N − 1 and Hp(z) is of degree
(N − 2)/2. Therefore the number of angle parameters, θi, in
(12) is given as K = (N − 2)/2. It means that the coefficients
of length-N filters can be represented byK = (N−2)/2 angles
by lattice parameterization.

For the case of length-4 filters, lattice parameterization
gives the low-pass filter coefficients in terms of a single angle,
α, as follows [20]:

h0(0) = 1− cosα + sin α
2
√
2

,

h0(1) = 1 + cosα + sin α
2
√
2

,

h0(2) = 1 + cosα− sin α
2
√
2

,

h0(3) = 1− cosα− sinα
2
√
2

.

(14)
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For longer filters, filter coefficients can be computed
using the Maple code given by Selesnick [19].

5. BWT Inversion

As explained in Section 2, the BWT matrix is computed by
applying a set of periodic input signals to the BWT system.
The first input signal is [1, 0, . . . , 0] and the next input signals
are the shifted versions of the first signal.

The proposedmethod, which is called the BWT Inversion,
aims to find the QMF banks which generate the BWT matrix
closest to a given KLT matrix. An analytic formulation will
be developed for the KLTmatrices of size 4× 4 in Section 5.1
and the experimental results will be given in Section 5.2.
Despite the theoretical possibility of obtaining the analytical
optimization expression in greater powers of 2 (i.e., 8,
16, 32, etc.), the expressions become overly complicated.
Consequently, the analytic formulations will be skipped for
these larger dimensions and numerical results with coding
gains being provided in Section 5.3.

5.1. 4× 4 Case. Consider the length-4 low-pass filter param-
eterized by the lattice parameterization technique in (14).
The quadrature mirror high-pass filter pair is computed by
ordering the low-pass filter coefficients in the reverse order
and changing the signs of the even-ordered coefficients:

h1(0) =1− cosα− sinα
2
√
2

,

h1(1) =−1− cosα + sinα
2
√
2

,

h1(2) =1 + cosα + sinα
2
√
2

,

h1(3) =−1 + cosα− sinα
2
√
2

.

(15)

Assume that the 4× 4 BWT matrix, A = {ai j , i, j =
1, 2, 3, 4}, is obtained when (14) and (15) are used in the two-
stage subband decomposition system shown in Figure 1(b).
Let us compute the elements of the BWT matrix A. The
computations of the elements a11, a32, and a21 will be given
here and computations of the other elements will be skipped.

The element a11 is computed by filtering the 4-periodic
signal

x1[n] =
⎧⎨
⎩
1, n = 4k,

0, n /= 4k,
k ∈ Z (16)

with h0, and down-sampling the result by two, and repeating
the filtering and down-sampling operations once more.
When x1[n] is filtered with h0, the following signal, which
is the upper sub-signal in the first stage, is obtained:

u′1[n] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

h0(0), n = 4k,

h0(1), n = 4k + 1,

h0(2), n = 4k + 2,

h0(3), n = 4k + 3.

(17)

Down-sampling u′1 by two yields

u1[n] =
⎧⎨
⎩
h0(0), n = 2k,

h0(2), n = 2k + 1.
(18)

Filtering u1 with h0 gives

u′11[n] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h0(0)[h0(0) + h0(2)]

+h0(2)[h0(1) + h0(3)], n = 2k,

h0(2)[h0(0) + h0(2)]

+h0(0)[h0(1) + h0(3)], n = 2k + 1.

(19)

Down-sampling u′11 by two gives

u11[n] = h0(0)[h0(0) + h0(2)] + h0(2)[h0(1) + h0(3)].
(20)

u11[n] is a 1-periodic signal and its constant sample con-
structs the a11 element of A. Putting filter coefficients given
in (14) into (20) yields

a11 = 1√
2
1− cosα + sinα

2
√
2

+
1√
2
1 + cosα− sin α

2
√
2

= 0.5

(21)

since h0(0) + h0(2) = h0(1) + h0(3) = 1/
√
2.

Let us compute a32. To do this, a 4-periodic signal,

x2[n] =
⎧⎨
⎩
1, n = 4k + 1,

0, otherwise
(22)

is filtered by h1, down-sampled by two, filtered by h0, and
down-sampled by two consecutively. Filtering x2 with h1 and
down-sampling by two gives

u2[n] =
⎧⎨
⎩
h1(3), n = 2k,

h1(1), n = 2k + 1.
(23)

This is the subsignal obtained at the lower band of the first
stage. When it is filtered by h0 and down-sampled by two,
the third signal at the end of the second stage is obtained:

u23[n] = h1(1)[h0(1) + h0(3)] + h1(3)[h0(0) + h0(2)]

= 1√
2
[h1(1) + h1(3)]

= −0.5.

(24)

This signal is a 1-periodic constant signal, and its repeating
term constructs the a32 element of BWT matrix A.

To compute a21, the input signal x1[n] given in (16)
should be filtered by h0, down-sampled by two, filtered by h1
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and down-sampled by two consecutively. At the end of these
operations, a21 is calculated as follows:

a21 = −cosα− sinα
2

. (25)

After computing all other elements, the BWT matrix A is
constructed as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.5 0.5 0.5

C2(α) −C1(α) −C2(α) C1(α)

0.5 −0.5 0.5 −0.5
−C1(α) −C2(α) C1(α) C2(α)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (26)

where C1(α) = (sinα+cosα)/2 and C2(α) = (sin α−cosα)/2.
The single free lattice parameter, α, can be calculated

analytically by matching the elements of the KLT matrix and
the BWT matrix. To match the elements, let us examine the
KLT matrices obtained from the rows and columns of some
test images and find the way how the BWT matrix matches
to the KLT matrix.

Some of the test images and the 4× 4 KLT matrices
obtained from the rows and columns of the test images are
listed in Table 1.

Sequency of a matrix row is defined as the half the
number of sign change in that row [15]. It is seen from
the KLT matrices in Table 1 that the elements in the first
row of a KLT matrix are close to 0.5, and that the elements
in the third row are around +0.5 or −0.5, and that the
sequencies of the rows are 0/2, 1/2, 2/2, and 3/2 from top
to bottom. The increasing sequency order is an expected
feature of the KLT matrix since sequency corresponds to the
frequency of the subbands after the transformation, and KLT
maximizes the energies of the lower frequencies. Sequency
ordering is also used when generating the Discrete Walsh-
Hadamard Transform (DWHT) matrix [15]. The rows of
the DCT matrix are also ordered in the increasing sequency
order [15].

The first row of the KLT matrix and the first row of
the BWT matrix given in (26) matches well, but the third
rows and the sequencies of the rows do not match. To
correct this problem, we can apply an interchange of the
columns. It can easily be verified that when the columns are
interchanged in the order of 4-1-3-2, the corrected ordering
provides the true match to the sequencies of the KLT matrix
elements. It can be noted that this interchange of the columns
of the BWT matrix corresponds to the interchange of the
periodic input signals which are used to compute the BWT
matrix. Changing the order of these input signals does not
affect the orthogonality of the BWT matrix [9]. Such a
column reordering is also known from the DWHT matrix
determination [15].

For a normal image, KLT structure is mostly similar in
terms of sequencies. We have also experimentally observed
that the features that are brought forth by the KLT matrix
are the same for the test images in the 4× 4 case. For the
larger transform dimensions, the features may be different
and different column orders may be discovered for different
signals.

When the columns of the BWT matrix, A, are written in
the order 4-1-3-2, the following matrix is obtained:

A(ord) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.5 0.5 0.5

C1(α) C2(α) −C2(α) −C1(α)

−0.5 0.5 0.5 −0.5
C2(α) −C1(α) C1(α) −C2(α)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (27)

A(ord) best matches to KLT matrices when C1(α) and
C2(α) both are positive and this condition is satisfied when
π/4 < α < 3π/4. Therefore we need to seek α values for the
KLT matrices of the test images in this range. For other KLT
matrices, this condition may change but now it is valid for all
test images shown in Table 1.

By construction, the element of the first and the third
rows of the BWTmatrix are always±0.5 but the correspond-
ing elements in the KLT matrix need not be precisely ±0.5.
Consequently, unlike the situation in [6], so, the possibility
of finding a QMF bank that exactly generates a given KLT
matrix is rather slim. The values in the KLTmatrices that cor-
respond to C1(α) and C2(α) in the BWT matrix are usually
slightly different from each other although they are the same
in the BWT matrix. However, it is still possible to find the
block wavelet filters that generate the “closest” BWT matrix
to the KLT matrix in the sense of least mean squared error.

An error function to be minimized between a KLTmatrix
K = {ki j , i, j = 1, 2, 3, 4} and the column-ordered BWT
matrix, A(ord), can be defined as the summation of the
squared differences between the elements of the second and
fourth rows of the matrices:

e = [C1(α)− k21]
2 + [C2(α)− k22]

2

+ [−C2(α)− k23]
2 + [−C1(α)− k24]

2

+ [C2(α)− k41]
2 + [−C1(α)− k42]

2

+ [C1(α)− k43]
2 + [−C2(α)− k44]

2

= [C1(α)− k21]
2 + [C2(α)− k22]

2

+ [C2(α) + k23]
2 + [C1(α) + k24]

2

+ [C2(α)− k41]
2 + [C1(α) + k42]

2

+ [C1(α)− k43]
2 + [C2(α) + k44]

2.

(28)

Taking the derivative of ewith respect to α and equating it
to zero gives where the error is minimum ormaximum. Since
dC1(α)/dα = −C2(α) and dC2(α)/dα = C1(α), the derivative
of e with respect to α can be calculated as

de

dα
= −2C2(α)[C1(α)− k21] + 2C1(α)[C2(α)− k22]

+ 2C1(α)[C2(α) + k23]− 2C2(α)[C1(α) + k24]

+ 2C1(α)[C2(α)− k41]− 2C2(α)[C1(α)− k42]

− 2C2(α)[C1(α)− k43] + 2C1(α)[C2(α) + k44].
(29)
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Table 1: Test images and their row- and column-KLT matrices.

Test Image Row-KLT Matrix Column-KLT Matrix

Lena

K(row)
Lena =

⎡
⎢⎢⎢⎢⎣

0.4983 0.5011 0.5016 0.4990

0.6525 0.2699 −0.2648 −0.6567
−0.5060 0.5014 0.4958 −0.4966
0.2642 −0.6516 0.6576 −0.2705

⎤
⎥⎥⎥⎥⎦ K(col)

Lena =

⎡
⎢⎢⎢⎢⎣

0.4991 0.5012 0.5009 0.4989

0.6525 0.2720 −0.2720 −0.6529
−0.4998 0.4957 0.5023 −0.5022
0.2745 −0.6551 0.6503 −0.2694

⎤
⎥⎥⎥⎥⎦

Mandrill

K(row)
Mandrill =

⎡
⎢⎢⎢⎢⎣

0.4999 0.5003 0.5023 0.4975

0.7287 0.1924 −0.4016 −0.5202
−0.2565 0.3470 0.5876 −0.6845
0.3915 −0.7696 0.4911 −0.1152

⎤
⎥⎥⎥⎥⎦ K(col)

Mandrill =

⎡
⎢⎢⎢⎢⎣

0.4985 0.5010 0.5015 0.4990

0.6175 0.3228 −0.2787 −0.6609
−0.5371 0.5031 0.4930 −0.4641
0.2858 −0.6258 0.6540 −0.3145

⎤
⎥⎥⎥⎥⎦

Peppers

K(row)
Peppers =

⎡
⎢⎢⎢⎢⎣

0.4994 0.5008 0.5006 0.4992

0.6629 0.2502 −0.2557 −0.6577
−0.4998 0.5076 0.4909 −0.5015
0.2477 −0.6549 0.6656 −0.2582

⎤
⎥⎥⎥⎥⎦ K(col)

Peppers =

⎡
⎢⎢⎢⎢⎣

0.4995 0.5004 0.5004 0.4997

0.6438 0.2725 −0.2440 −0.6721
−0.5138 0.4793 0.5193 −0.4864
0.2683 −0.6676 0.6483 −0.2490

⎤
⎥⎥⎥⎥⎦

Bridge

K(row)
Bridge =

⎡
⎢⎢⎢⎢⎣

0.5000 0.5016 0.5007 0.4977

0.6240 0.3190 −0.2990 −0.6476
−0.5186 0.4996 0.4978 −0.4834
0.3028 −0.6301 0.6420 −0.3150

⎤
⎥⎥⎥⎥⎦ K(col)

Bridge =

⎡
⎢⎢⎢⎢⎣

0.4999 0.5015 0.5008 0.4978

0.6594 0.2762 −0.3133 −0.6252
−0.4890 0.5334 0.4629 −0.5120
0.2762 −0.6227 0.6609 −0.3149

⎤
⎥⎥⎥⎥⎦

The ±C1(α)C2(α) terms cancel each other and the following
equation is obtained after equating the derivative to zero:

(−k22 + k23 − k41 + k44)C1(α)

+ (k21 − k24 − k42 + k43)C2(α) = 0.
(30)

Putting the values of C1(α) and C2(α) yields

tanα = p2 − p1
p2 + p1

, (31)

where p1 = (−k22 + k23 − k41 + k44) and p2 = (k21 − k24 −
k42 + k43).

The lattice parameter, α, which generates the closest BWT
matrix to a given KLT matrix in the sense of least mean
squared error is then given by inverting (31):

α = arctan
p2 − p1
p2 + p1

. (32)

If α0 is a solution to (32), then α1 = π + α0 is also
a solution to (32). One of these solutions corresponds
to the minimum mean squared error, and the other one
corresponds to the maximum mean squared error. The one
which remains in the range π/4 < α < 3π/4 is the solution
which makes the mean squared error minimum. Putting α
into (14) and (15) generates the corresponding QMF bank.

Finding the angle which makes mean squared error
between BWT and KLT matrices by (32) and generating
QMF bank by (14) and (15) is named here as BWT Inversion.

5.2. Experiments for the 4× 4 Case. The row- and column-
KLT matrices of size 4× 4, given in Table 1, are computed
and the lattice parameter which generates the BWT matrices
closest to them is calculated using the BWT inversion
method explained in Section 5.1. The QMF filters which
will be used in the sub-band decomposition are computed
from the lattice parameters with (14) and (15). To measure
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Table 2: Lattice parameters of the test images and the corresponding low-pass filter coefficients and coding gains.

Test Image Lattice Parameter (α) h0(0) h0(1) h0(2) h0(3) Coding gain

Lena (row) 1.1731 0.5426 0.8164 0.1645 −0.1093 15.1908

Lena (column) 1.1802 0.5549 0.8151 0.1612 −0.1080 21.0076

Mandrill (row) 1.1987 0.5544 0.8114 0.1527 −0.1043 7.1926

Mandrill (column) 1.2246 0.5661 0.8061 0.1410 −0.0990 4.3168

Peppers (row) 1.1512 0.5324 0.8205 0.1747 −0.1134 13.5035

Peppers (column) 1.1597 0.5364 0.8189 0.1707 −0.1118 13.0679

Bridge (row) 1.2377 0.5721 0.8033 0.1350 −0.0962 5.4588

Bridge (column) 1.2163 0.5624 0.8079 0.1447 −0.1007 5.1669

Table 3: Lattice parameters at the maximum coding gains and the corresponding low-pass filter coefficients.

Test Image Lattice Parameter (α) h0(0) h0(1) h0(2) h0(3) Coding Gain

Lena (row) 1.0521 0.4853 0.8359 0.2218 −0.1288 15.7026

Lena (column) 1.0524 0.4855 0.8358 0.2216 −0.1287 21.8264

Mandrill (row) 0.9482 0.4345 0.8470 0.2726 −0.1398 9.4769

Mandrill (column) 1.0359 0.4775 0.8379 0.2296 −0.1308 4.6043

Peppers (row) 1.0371 0.4781 0.8378 0.2290 −0.1307 13.7553

Peppers (column) 1.0372 0.4781 0.8378 0.2290 −0.1307 13.2861

Bridge (row) 1.0505 0.4846 0.8361 0.2225 −0.1290 5.5726

Bridge (column) 1.0547 0.4866 0.8355 0.2205 −0.1284 5.2838

Table 4: Daub-2 low-pass filter coefficients.

Coefficient Value

h0(0) 0.4830

h0(1) 0.8365

h0(2) 0.2241

h0(3) −0.1294

the compression capabilities of these QMF filters, the rows
and columns of the test images are applied as inputs
to the two-stage subband decomposition system given in
Figure 1(b) and four sub-signals are obtained. The energies,
that is, the variances, of these sub-signals are used to compute
the coding gains. Coding gain is given by the following
equation [15]:

GTC = (1/4)
∑4

k=1 σk2(∏4
k=1σk2

)1/4 , (33)

where σk, k = 1, 2, 3, 4 are the variances of the subbands.
This expression also corresponds to the arithmetic mean of
variances divided by geometric mean of the same variances.
This expression measures how much the energy of the
input signal is compacted in one of the subbands after
the transform. The higher the coding gain, the higher
the compression ratios can be obtained after the subband
decomposition [15].

The lattice parameters obtained from row- and column-
KLT matrices of the test images are given in Table 2 with
the corresponding low-pass filter coefficients and the coding
gains obtained after the two-stage subband decomposition.

The maximum possible coding gains that could be
obtained using the QMF banks are listed in the last column
of Table 3 with the lattice parameters and low-pass filter
coefficients.

Figure 4 shows the graphs of the coding gains computed
by (33) and the squared errors, computed by (28), between
the row-KLT matrices of the test images and the BWT
matrices obtained for each value of α in the range [0, 2π].
It is seen from the graphs that the lattice parameter angle
found by the BWT inversion method is close to the angle at
which the maximum coding gain occurs. This observation
also provides a motivation for the argument of achieving
BWT matrices close to KLT matrices.

In order to make a comparison with a filter bank with
the same filter-tap size, the Daub-2 filter was considered. The
Daub-2 filter bank can be generated by the lattice parameter
α = π/3 and this parameter is indicated on Figure 4. Daub-2
lattice parameter is very close to the angle of the maximum
coding gain for the three of the test images: Lena, Peppers,
and Bridge. The Mandrill image contains a lot of high
frequencies and therefore Daub-2 is not as successful on
Mandrill as the other images. The Daub-2 filter coefficients
are given in Table 4. The coding gains obtained by Daub-2
filters are shown in Table 5 for each test image. Due to the
floating-point precision limits, these coding gains are very
close to the maximum coding gains.

By examining the coding gains, it is observed that Daub-
2 filter bank gives higher coding gains than the coding
gains of the BWT inversion method for most of the cases.
However, the channel variances which are given in Table 6
shows that the BWT inversion can compact the signal as good
as the Daub-2 filter bank and the filter banks which give the
maximum coding gains. It means that the signals which are
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Table 5: Coding gains obtained by Daub-2 filter bank.

Image Coding Gain

Lena (row) 15.7017

Lena (column) 21.8251

Mandrill (row) 9.0181

Mandrill (column) 4.6032

Peppers (row) 13.7534

Peppers (column) 13.2847

Bridge (row) 5.5726

Bridge (column) 5.2835

decomposed into subbands using the BWT inversion filter
banks can be compressed with the compression ratios as
good as the compression ratios that can be achieved by the
Daub-2 filter bank.

5.3. 8× 8 Case. The BWT inversion method can be applied
to the 8 × 8 case by the same way as the 4 × 4 case. In this
case, three lattice parameters, t0, t1, and t2 are obtained by the
lattice parameterization method. The coefficients of the low-
pass QMF filter are then given by the following equations
[19]:

t3 = π

4
− t0 − t1 − t2,

h0(1) = cos(t3) cos(t2) cos(t1) cos(t0),

h0(2) = cos(t3) cos(t2) cos(t1) sin(t0),

h0(3) = − cos(t3) cos(t2) sin(t1) sin(t0)

− cos(t3) sin(t2) sin(t1) cos(t0)

− sin(t3) sin(t2) cos(t1) cos(t0),

h0(4) = cos(t3) cos(t2) sin(t1) cos(t0)

− cos(t3) sin(t2) sin(t1) sin(t0)

− sin(t3) sin(t2) cos(t1) sin(t0),

h0(5) = − cos(t3) sin(t2) cos(t1) sin(t0)

+ sin(t3) sin(t2) sin(t1) sin(t0)

− sin(t3) cos(t2) sin(t1) cos(t0),

h0(6) = cos(t3) sin(t2) cos(t1) cos(t0)

− sin(t3) sin(t2) sin(t1) cos(t0)

− sin(t3) cos(t2) sin(t1) sin(t0),

h0(7) = − sin(t3) cos(t2) cos(t1) sin(t0),

h0(8) = sin(t3) cos(t2) cos(t1) cos(t0).

(34)

The quadrature mirror high-pass filter pair is computed
by ordering the low-pass filter coefficients in the reverse
order and changing the signs of the even-ordered coefficients,
similar to (15). When this filter bank is used in the three-
stage decompositions structure, the BWT matrix is obtained
in the following form:

A

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
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2
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2
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2

A B −C −D −A −B C D

−E −F E F −E −F E F

−C −D −A −B C D A B

1
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√
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− 1
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− 1
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2

1
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2
− 1
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√
2

G −H −I J −G H I −J
−F E F −E −F E F −E
−I J −G H I −J G −H

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(35)

where A, B, C, D, E, F, G, H , I , and J are some functions of
the lattice parameters t0, t1, and t2. All of these coefficients are
written in huge expressions in terms of the lattice parameters
and it is hard to write down an analytical expression for
the optimum lattice parameter. Therefore, only the situation
while passing from 4× 4 to 8× 8 will be examined and
the matching the BWT matrix to the KLT matrix will be
mentioned.

First of all, the correct column order which matches the
BWT and KLTmatrices should be discovered, as explained in
Section 5.1. To find the correct column order, the sequencies
of the rows of the BWT matrix and the lattice parameters
by which the maximum coding gain is achieved can be
examined.

When the row- and column-KLT matrices of the four
test images are examined, it is seen that the second rows
of each KLT matrices are sorted in the descending order
except the column-KLT of the Mandrill and the row- and
column-KLTmatrices of the Bridge images. We can conclude
from this observation that the KLT matrix distinguishes
different features for the Mandrill and Bridge images since
they contain more high-frequency components than the
other images. As a result, we can select a column order which
sorts the second row of the BWT matrix in the descending
order.

It is observed that the maximum coding gains are
obtained with the BWT matrices whose second row orders
are similar, that is, when the columns of the BWT matrices
are ordered in the column order 1-8-2-7-3-6-4-5, then the
second rows become sorted in the descending order. The only
exception for this order is the columns of the Mandrill image
(the mentioned column-order for the Mandrill image is 8-1-
7-2-6-3-5-4).

When the columns of the BWT matrix in (35) are
ordered in the order 1-8-2-7-3-6-4-5, the following matrix
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Figure 4: Graphs of coding gains and errors for test images: (a) Lena, (b) Mandrill, (c) Peppers, and (d) Bridge.

is obtained:

A(ord)

=

⎡
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(36)

By inspecting the sequencies of the rows of A(ord), it is
observed that the sequency of the first row is 0 because all
elements are the same. The coefficients A, D, B, and C in the
second row are all positive since the second row is sorted in
the descending order, as explained above. So, the sequency
for the second row is 1/2. If E and F have opposite signs, then
the sequency of the third row becomes 2/2. The fourth row
has the same coefficients as the second row, so the sequency
of the fourth row is 7/2. The elements in the fifth row are
fixed and they make the sequency of the fifth row as 4/2. If
G, H , I , and J in the sixth row have the same signs, then the
sequency of the sixth row becomes 5/2. By using the same
assumptions, the sequencies of the seventh and the eighth
rows become 6/2 and 3/2. By looking at the sequencies, we
see that the rows should be ordered too, that is, the fourth
and the eighth rows should be replaced.
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Table 6: Channel variances.

Test Image Method Ch.1 Ch.2 Ch.3 Ch.4

Lena (row)

BWT Inversion 0.1576 0.0022 0.0003 0.0005

Daub-2 0.1576 0.0022 0.0002 0.0005

Max. Coding Gain 0.1576 0.0022 0.0002 0.0005

Lena (col.)

BWT Inversion 0.1579 0.0015 0.0002 0.0003

Daub-2 0.1579 0.0015 0.0001 0.0003

Max. Coding Gain 0.1579 0.0015 0.0001 0.0003

Mandrill (row)

BWT Inversion 0.0890 0.0076 0.0003 0.0007

Daub-2 0.0892 0.0078 0.0002 0.0004

Max. Coding Gain 0.0892 0.0080 0.0002 0.0003

Mandrill (col.)
BWT Inversion 0.0867 0.0084 0.0005 0.0029

Daub-2 0.0868 0.0085 0.0004 0.0028

Max. Coding Gain 0.0868 0.0085 0.0004 0.0028

Peppers (row)

BWT Inversion 0.1738 0.0020 0.0005 0.0006

Daub-2 0.1739 0.0020 0.0005 0.0006

Max. Coding Gain 0.1739 0.0020 0.0005 0.0006

Peppers (col.)
BWT Inversion 0.1748 0.0019 0.0006 0.0008

Daub-2 0.1749 0.0018 0.0005 0.0007

Max. Coding Gain 0.1749 0.0018 0.0005 0.0007

Bridge (row)

BWT Inversion 0.1698 0.0062 0.0015 0.0029

Daub-2 0.1701 0.0061 0.0015 0.0029

Max. Coding Gain 0.1702 0.0061 0.0015 0.0029

Bridge (col.)
BWT Inversion 0.1674 0.0081 0.0012 0.0034

Daub-2 0.1676 0.0082 0.0012 0.0033

Max. Coding Gain 0.1676 0.0082 0.0012 0.0022

Table 7: Lattice parameters obtained by BWT inversion, squared errors, coding gains, and Daub-4 coding gains for the test images.

Image t0 t1 t2 Error Coding gain Daub-4 Coding Gain

Lena (Row) 0.2050 1.7578 2.3681 1.5799 29.0332 28.1603

Lena (Column) 0.1815 1.7548 2.3792 1.9057 42.3720 40.9648

Mandrill (Row) 0.1076 1.7306 2.4510 6.6210 19.4572 11.1199

Mandrill (Column) 0.2639 1.7654 2.3397 0.3251 10.8046 8.7974

Peppers (Row) 0.1145 1.7522 2.4255 1.6738 21.7710 21.0646

Peppers (Column) 3.0985 1.7363 2.5385 1.0668 20.2952 20.0228

Bridge (Row) 3.2223 1.7654 2.4497 1.2905 7.5605 7.3931

Bridge (Column) 1.7719 0.8179 2.7880 0.8227 7.2874 7.1124

Consequently, we have ordered the columns according to
the second row and the rows according to the sequencies of
the rows. After this, the signs of the rows are further altered
to match the column sequencies, too.

Interchanging the rows and columns of the BWT matrix
corresponds to interchanging the input signals which are
used to generate the BWT matrix and it does not affect the
orthogonality of the BWTmatrix, as explained in Section 5.1.
Changing the sign of a row of the BWT matrix corresponds
to changing the sign of a 1 in the input vectors, and again, it
does not affect the orthogonality of the BWT matrix. From
the KLT point of view, changing row order, column order,

or signs corresponds to bring a specific feature forth or send
it back. Notice that, since KLT also internally orders the
eigenvectors of the autocorrelation matrix according to the
eigenvalues, the above described operation is reasonable.

In the numerical experiments for the 8× 8 case, the
8× 8 row- and column-KLT matrices of the test images are
computed. The error is calculated as the total squared error
between the elements of the KLTmatrix and the BWTmatrix
whose rows, columns, and signs are ordered as explained
above. The local minima of the error are found by the
steepest descent algorithm as explained in [7] by starting
from random initial t0, t1, and t2 values and the coding gains
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Table 8: The channel variances and percentages obtained by the BWT Inversion and the Daub-4 filter banks.

Test Image Method Ch.1 Ch.2 Ch.3 Ch.4 Ch.5 Ch.6 Ch.7 Ch.8

Lena (Rows)

BWT Inversion
0.3077 0.0085 0.0009 0.0027 0.0001 0.0001 0.0005 0.0003

(95.93%) (2.64%) (0.27%) (0.84%) (0.04%) (0.05%) (0.16%) (0.08%)

Daub-4
0.3143 0.0089 0.0009 0.0028 0.0001 0.0002 0.0005 0.0003

(95.83%) (2.72%) (0.27%) (0.84%) (0.03%) (0.05%) (0.17%) (0.09%)

Lena (Columns)

BWT Inversion
0.3049 0.0057 0.0006 0.0019 0.0001 0.0001 0.0003 0.0002

(97.21%) (1.81%) (0.18%) (0.60%) (0.02%) (0.04%) (0.10%) (0.05%)

Daub-4
0.3114 0.0060 0.0006 0.0019 0.0001 0.0001 0.0003 0.0002

(97.12%) (1.89%) (0.18%) (0.60%) (0.02%) (0.04%) (0.10%) (0.06%)

Mandrill (Rows)

BWT Inversion
0.1598 0.0187 0.0045 0.0095 0.0000 0.0000 0.0005 0.0001

(82.74%) (9.67%) (2.33%) (4.92%) (0.01%) (0.02%) (0.24%) (0.07%)

Daub-4
0.1574 0.0189 0.0038 0.0092 0.0000 0.0001 0.0014 0.0006

(82.19%) (9.88%) (1.97%) (4.81%) (0.02%) (0.08%) (0.72%) (0.33%)

Mandrill (Columns)

BWT Inversion
0.1595 0.0178 0.0050 0.0121 0.0000 0.0001 0.0031 0.0007

(80.45%) (8.99%) (2.50%) (6.12%) (0.01%) (0.05%) (1.56%) (0.33%)

Daub-4
0.1610 0.0182 0.0062 0.0125 0.0001 0.0001 0.0023 0.0007

(80.06%) (9.06%) (3.07%) (6.21%) (0.04%) (0.07%) (1.13%) (0.37%)

Peppers (Rows)

BWT Inversion
0.3390 0.0081 0.0008 0.0022 0.0004 0.0005 0.0006 0.0004

(96.29%) (2.29%) (0.24%) (0.62%) (0.12%) (0.13%) (0.18%) (0.12%)

Daub-4
0.3363 0.0086 0.0009 0.0023 0.0005 0.0004 0.0006 0.0005

(96.06%) (2.45%) (0.26%) (0.66%) (0.13%) (0.12%) (0.17%) (0.13%)

Peppers (Columns)

BWT Inversion
0.3450 0.0064 0.0010 0.0022 0.0005 0.0005 0.0009 0.0005

(96.64%) (1.79%) (0.29%) (0.62%) (0.13%) (0.14%) (0.24%) (0.15%)

Daub-4
0.3463 0.0071 0.0011 0.0024 0.0005 0.0005 0.0008 0.0006

(96.43%) (1.97%) (0.29%) (0.66%) (0.14%) (0.14%) (0.21%) (0.16%)

Bridge (Rows)

BWT Inversion
0.3209 0.0150 0.0041 0.0074 0.0011 0.0014 0.0033 0.0018

(90.37%) (4.22%) (1.16%) (2.09%) (0.31%) (0.40%) (0.92%) (0.52%)

Daub-4
0.3189 0.0155 0.0042 0.0077 0.0012 0.0014 0.0032 0.0020

(90.08%) (4.37%) (1.20%) (2.18%) (0.34%) (0.39%) (0.89%) (0.55%)

Bridge (Columns)

BWT Inversion
0.3103 0.0208 0.0055 0.0099 0.0009 0.0010 0.0033 0.0018

(87.77%) (5.88%) (1.56%) (2.81%) (0.25%) (0.28%) (0.95%) (0.51%)

Daub-4
0.3036 0.0211 0.0050 0.0101 0.0008 0.0011 0.0033 0.0019

(87.51%) (6.08%) (1.44%) (2.90%) (0.24%) (0.33%) (0.95%) (0.56%)

are computed for all local minima. The local minima which
give the maximum coding gain for each of the test images are
listed in Table 7. The results show that better coding gains are
obtained by the proposed method as compared to the Daub-
4 filter bank, which has the same filter-tap size.

It is observed that the maximum coding gain occurs
at one of the local parametric minima, but that point is
not necessarily the global minimum. This situation can be
explained by the characteristics of the KLT matrix. The
features that make the coding gain maximum may require
some extra constraints to reach to the global optimum.

The channel variances obtained by the BWT inversion
and the Daub-4 filter banks are listed in Table 8. The channel

variances show that the BWT Inversion method collects most
of the information in the first subband.

6. Conclusion

In this paper, a signal-specific method of QMF bank design
is proposed. The method uses the KLT matrix which is
specific for the statistical characteristics of the signal and
compresses the signal with the maximum coding gain.
The BWT inversion method designs the QMF banks by
matching the BWT matrix to the KLT matrix, and it is
therefore a completely new filter design method. Unlike
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the previous works, the parameterization is constructed for
2-channel dyadic filter banks and their extensions. Due to
the limitation in degree of freedom (i.e., single parameter
for 4 channel decomposition and 3 parameters for 8 channel
decomposition), exact matching of the produced BWT and
real KLT is almost impossible. In that case, it is proposed that
the QMF structure, which produces a BWT matrix that is as
close to KLT as possible (in RMSE sense), should produce a
good performance. The validity of this argument is verified
over experiments of compaction ratio evaluation over test
images.

The work is explained in two parts. In the first part, an
analytical method to construct the QMF filter bank of size
4× 4 is developed. Developing an analytical method for the
size 8× 8 is difficult because the number of terms in the
equations increases exponentially and the solutions produce
overly complicated and long expressions. Thus, the 8× 8 case
is considered in the second part and numerical computation
method for matching KLT and BWT is adopted.

The coding gains obtained by the BWT inversion and
the equal-sized filter banks in the Daubechies family are
compared. In the 4× 4 case, the Daub-2 filter bank generates
slightly better coding gains, but BWT inversion method
separates the signal into subbands whose variances are close
to the variances obtained by the Daub-2 filter bank. On the
other hand, it must be noted that the parameterization of
the 4× 4 case is really low (just one parameter), and any
optimization attempt has very limited effect. In the 8× 8
case, however, greater coding gains are obtained for all of the
test images. Again, most of the signal energies are gathered
in the first subband. So, the BWT inversion method gives
better result than the Daub-4 filter bank. The reason to
this improvement can be explained due to better parameter
degree of freedom (three parameters) for the exploitation
of the KLT similarity. Consequently more features of the
KLT matrix are revealed in the 8× 8 case. It is reasonable to
assume that this property could provide better performance
for higher orders of two. However, due to the complexity of
the analytical expressions in higher orders, more emphasis
is expected to be paid on numerical approximations of
the described BWT-KLT matching idea in QMF filter bank
design.
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