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This study presents a hybrid technique for simultaneously completing images by using geometry and texture components of input
data. The approaches using inpainting methods based on partial differential equations (PDEs) to fill in large image regions usually
fail if these regions contain textures. On the other hand, texture synthesis algorithms sometimes fail due to complex structures
and textures in the image. However, this study, suggesting a hybrid method using both techniques, produces satisfactory results
in completing the missing parts of images. In the proposed method, the given image is decomposed into two components. The
geometry component, obtained by using the regularization PDE based on a trace operator, was inpainted by a tensor-driven
PDE algorithm that takes curvatures of line integral curves into account, and the texture component, obtained by subtracting
the given image from the geometry component, was reconstructed by the modified exemplar-based inpainting algorithm. Both
of these methods work on color information. The main contribution of this paper is that it uses decomposition and montage
stages together which provides superior results compared with the existing methods. Experimental results show that the proposed
method efficiently fills in target regions, which is promising.

1. Introduction

In many cases, there might be some missing parts in images
and videos, which may affect the appearance in a negative
manner. Completing these missing parts properly is very
important in editing images and videos for restoration
(detection and removal of blotches in old motion pictures
or films), correction (fixing undesirable defects such as red-
eyes), manipulation (making tricky photos and creating
effects on the images), and denoising.

There are two categories of image reconstruction meth-
ods mentioned in the literature. These are called texture
synthesis and inpainting which has received more attention
in recent years. The first is generally used to reconstruct
the large regions of images, and the second, PDE-based-
method, is used to fill in the small image holes. Bertalmio
et al. [1] presented an inpainting approach to retouch small
image gaps. However, this method cannot complete large
missing regions, especially including textures. Tschumperlé
and Deriche [2] proposed the trace-based PDE method
which is not very successful because of rounding the corners
in images. Then, Tschumperlé [3] resolved this problem

by creating an algorithm based on curvature-preserving
PDE. Criminisi et al. [4] presented an exemplar-based
image inpainting algorithm to remove large objects from
images. The method fills in the missing regions by sample
patches. However, sometimes artifacts are seen in the output
image generated by filling in the missing parts of the
input image. Dizdaroglu and Gangal [5] introduced the
spatiotemporal exemplar-based image inpainting method to
complete damaged regions in image sequences. But this
method can also fail if it is tested on only one input image.
Bertalmio et al. [6] proposed a combined inpainting and
texture synthesis method. Since the method does not employ
color information, it is sometimes unable to detect the
image contours, and the filling process cannot be completed
successfully. Harald [7] introduced a combined approach
which is limited to the removal of small image holes, while
continuing to blur the completed region. Sun et al. [8]
presented an image repairing method that needs the users’
guidance to propagate the structure in the filled region.
Drori et al. [9] obtained the best fragments to retouch
missing parts of the given image by using iterative circle-
based searching. However, this method is complex and time
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FIGURE 1: 7 and 6~ vectors at point p.

consuming. Jia and Tang [10] used a tensor voting method
to fill in the degraded regions of the image which also utilize
image segmentation. However, current algorithms are not
able to segment images completely. Komodakis and Tziritas
[11] proposed a method to complete missing regions by
employing priority-belief propagation algorithm. But this
approach is very slow in inpainting large missing regions.
Although Wexler et al. [12] suggests a solution based on
pattern similarity to fill in target regions, it is also proven
to be too slow. Dizdaroglu [13] presented another method
that reconstructs the completed region by employing both
the geometry and texture information of the input image,
on which this paper is structured. The method is able to
generate plausible results. Fadili and Starck [14] employed
the expectation maximization method to inpaint missing
regions. But the method may be unsatisfactory because it
generates blurring effects in inpainting large missing regions.
Liu et al. [15] used an image completion method based on
views of large displacement. However, it requires tiresome
interactive segmentation. Barnes et al. [16] proposed image
editing tools employing a randomized algorithm for quickly
finding the best match between image patches, that is,
for the purpose of completing image regions. But this
application does not work automatically but interactively.
Ignéacio and Jung [17] introduced another method that is also
computationally complex in block-based image inpainting in
the wavelet domain. Xu and Sun [18] suggested an exemplar-
based inpainting method using patch propagation based on
patch selection and patch inpainting. However, the results
of this method show that sometimes the edges are not
connected properly in the filled regions.

Since the previous methods generate unsatisfactory re-
sults in some cases we presented an approach that is capable
of processing both geometry and texture images simultane-
ously in order to obtain the visually plausible reconstructed
image.

2. The Proposed Method

The proposed method contains image decomposition,
inpainting and texture synthesis.

LetI: Q — R" be a multivalued (color) image (n = 3),
defined on domain Q — R?,and I; : Q@ — R represents the
image channel i of I (1 < i < n): for all p € Q. The method
is explained in detail in the following sections.
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FIGURE 2: Gradient norm of Barbara color image.
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FIGURE 3: Tensor directions of Barbara image.

2.1. Image Decomposition. In the equationI = I,+1I,, which
shows the entire image, I, and I, represent the geometry
image and the texture image, respectively. According to
the equation, it can be seen that the texture image I, is
generated by subtracting I,, from I. Texture information can
be considered as a kind of noise while geometry information
can be considered as a cartoon version with sharp edges.
Meyer [20] first introduced a space of oscillating function to
model the texture component of an image. Vese and Osher
[21] presented a decomposition approach employing the
total variation minimization for image denoising [22], and
then this method was adapted for the simultaneous texture
and geometry image inpainting [6]. A simple and rapid
version of Meyer’s model was presented for decomposition
which is seen a new nonlinear filter [19]. However, a
denoising algorithm based on PDE can be used in order
to obtain geometry image. In this study, the trace-based-
method [2] is preferred among those algorithms.

Denoising or regularization of a scalar image I : Q —
R based on PDEs is a smoothing operation along the
direction defined based on intensity distributions of pixels on



EURASIP Journal on Advances in Signal Processing

F1GURE 4: Chosen parts of decomposed components of the input image and the output images: the geometry images (a) and (b) and the tex-
ture images (¢) and (d), and the output images (e) and (f) are obtained by the method in [19] (left side) and the proposed method (right side).

the region. Here, the smoothing operation should not blur
the edges, which could be ensured by avoiding smoothing
orthogonally to edges. In order to do this, the local geometry
of image should be obtained in the first place.

The following conditions consisting of important fea-
tures are provided in every image point p = (x,y) € Q
(2, 3].

(i) Two orthogonal directions 08*(p),0~(p) € S' (unit
vectors of R?) determined by maximum and mini-
mum intensity variations at the point p are defined
to show the gradient vector, and the edge if there is
any, respectively.

(ii) The positive values A*(p), A~ (p) are calculated relat-
ed to clarity of the edges to show effective variations
of the image intensities along 6% (p) and 6~ (p).

The local geometry {AY~,07~ | p € Q} of scalar
images I is calculated based on the gradient field VI
or the smoothed gradient field VI, = G, * VI. Here,
Go = (1/270?) exp(—(x? + y*)/20?) is a 2-dimensional (2D)
Gaussian kernel with a variance o.

The image gradient is the derivation of a scalar image I
related to the spatial coordinates p:

T
T ol oI
VI = (Ix,Iy> = (ax: ay) . (]-)

A vector VI : QO — R? is created according to the image
gradient to represent magnitudes of the scalar image I and
the maximum variation directions. Scalar and pointwise
measure of the image variations are given by the gradient
norm || VI|| which is used in image analysis in many cases:

2 2
||V1||=J(§i) (3). @
Therefore, A\t = ||VI||* and 8~ = nt = VI/||IVI| are
possible measures of the intensity and direction of the image
edge, respectively, (see Figure 1).

Here, G: Q — P(2) of 22 symmetric and semipositive
tensors, denoted by for all p € Q, G(p) = 166" +
ATttt may be utilized to represent {1,607+ | p € Q}
more properly. Eigenvalues of G are A~ and A" and related
eigenvectors are 0~ and 0*. For example, the tensor G(p) =

VI(p)VI (p)T can be used to show the local geometry of
scalar images .
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(d)

FiGURre 5: Closeups of decomposed components of the input image: the geometry images (a) and (b) and the texture images (c) and (d) are
obtained by the method in [6] (left side) and the proposed method (right side).

The local geometry for multivalued images I can be
obtained in a similar way, by computing the field G of
geometry tensors. Therefore, the gradient of multivalued
images is expressed as follows:

ol
n
VpeQ, G(p)=> VLV, whereVI = 3}‘_
i1 8);
(3)

G is defined as the following for color images I = (R, G, B):
1 &2
G- g g
1 &2
R2+ G2+ B2
~ \ RyR.+G,G, +B,B,

(4)
R:R, + GxGy+BxBy)

2 2 . g2
R, +G; +B;

The positive eigenvalues 1™/~ and the orthogonal eigenvec-
tors 07/~ of G are formulized as follows:

2
- Sutgn* \/(gn —gzz) +4g1
- ) ,

5
200 (5)

9t =
2 s |
g2 —gu * \/(gn —gzz) +4¢i>

The gradient norm ||VIl| of color image is easy to
compute as follows since it perceives image structures
successfully (see Figure 2):

VI = VA* +A- = JZIIVL-IIZ. (6)
i=1
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w(CP(a))

FiGURE 6: Integral curve CP(a) of vector fields w: Q — R2.

FIGURE 7: A chosen part of the inpainted geometry image.

More consistent geometry is obtained provided that
G, = G * G, is smoothed by the Gaussian filter. Here, G,
is a good estimator of the local multivalued geometry of I at
the point p, and its spectral elements give the vector-valued
variations (by the eigenvalues A=, A* of G,) at the same time
and the orientations (edges) of the local image structures (by
the eigenvectors 0~ L 0% of Gy).

Tschumperlé and Deriche [2] suggested designing a
particular field T : Q — P(2) of diffusion tensors to define
the specification of the local smoothing method for the
regularization process. Apparently, it should be noticed that
T depending on the local geometry of I is thus defined from
the spectral elements A*,A~and 8%, 0~ of G,:

Vpeq, T(p)=f (A,17)0767"+ f*(15,17)6 0"
(7)

The strengths of smoothing along 6~,0*% are set by two
functions denoted by f~/* : R* — R, where the types
of applications determine f~ and f*. Sample functions for
image denoising are proposed in [2]:

_ 1
“(ANAT) = ,
/ ( ) (1+/1++/1’)p1
(8)
f+()k+,lf> - (1 +A+1+A>P2’ with pl < p2.

Here, the goal of smoothing operation is as follows.

(i) The pixels on image edges are smoothed along 6~
with a strength inversely relative to the vector edge
strength (anisotropic smoothing).

(ii) The pixels on homogeneous regions are smoothed
along all possible directions (isotropic smoothing).

5
O;
oT;
\1/:1 ‘Y? N )
[ [ P I;

FiGure 8: The modified exemplar-based inpainting diagram.

FIGURE 9: A chosen part of the completed texture image.

The tensor directions for Barbara color image are
depicted in Figure 3.

Tschumperlé and Deriche [2] suggests a regularization-
PDE-based approach to agree with the local smoothing
geometry T based on a trace operator:

ol dl; '
= o = trace(TH;), 9)

where H; is the Hessian matrix of I;:

I 9%
ox>  0xdy
H; = . (10)
L 9%
dydx 0y?

In this study, H; is a symmetric matrix since the images are
regular ones, 0%1;/0xdy = 9°I;/dydx.

As Tschumperlé and Deriche [2] have shown, equation
(9) can be viewed as a local filtering with oriented and
normalized Gaussian kernels. Here, a small convolution is
locally applied around each point p with a 2D Gaussian mask
G oriented by the tensor T(p):

Ty _ 1 p'T'p
Gt(p)—4me><p ) (11)

As a matter of fact, a link exists between anisotropic diffusion
PDE and classical filtering techniques:

31; = trace(TH;) < aIi(t) = ITi—o) * G’tr (12)
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(b)

FIGURE 10: An input image for object removal (a), the mask image (b), the method in [7] (c), the exemplar-based inpainting method [4]
(d), the modified exemplar-based inpainting method (e), and the proposed method (f).

The regularization PDE shown in the following equation
is compatible with all local geometric properties expressed
before:

Li=0) = Linitial>

dly (13)

ot

where dt stands for adapting time step.

The suggested technique for image decomposition is used
to generate the image geometry. Results given in Figure 4
are obtained using decomposition and montage algorithms.
Unlike the method presented in [19], the proposed method
assembles the texture and geometry components successfully
and generate the output image almost the same as the input,
which is shown in the figure.

Figure 5 illustrates another result obtained by using the
decomposition algorithms. We compare our method with
the method presented in [6] after converting decomposed
components of the test image to grayscale since [6] also
employs a grayscale version of the image. There is less texture

Iiteny = Iy + dt

information in our geometry component and our texture
component is also appreciably sharper than the method
in [6], as shown in the figure. Besides, if the number of
iteration is increased more, the geometry component is
better smoothed, which results less texture information to
remain in the geometry component.

2.2. Inpainting. The trace-based-method behaves locally as
an oriented Gaussian smoothing filter. The strength and
orientation of this smoothing filter is directly related with
the tensor T. This method preserves edges; but, it tends
to cause unacceptable rounding effects on curved structures
such as corners. It is because the 2D Gaussian kernel does not
consider curvatures. For this reason, Tschumperlé proposed
another technique [3] which can be considered filtering
the image locally with the normalized 1-dimensional (1D)
Gaussian kernel. In this technique, the smoothing geometry
tensor field T is split into sum of vector fields, and then line
integral convolutions (LICs) is performed on the image with
each of these vector fields.
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(c)

(d)

FIGURE 11: A test image for completing artificially degraded regions (a), the constrained PDE-based-method [3] (b), the modified exemplar-

based inpainting method (c), and the proposed method (d).

This new technique, the curvature-preserving regulariza-
tion PDE [3], which smoothes I along a vector field w: Q —
R ? instead of a tensor field T, is defined as follows:

oI T T
o = trace(ww Hi> + VI Jyww, (14)
where J,, denotes the Jacobian of w:
Ju ou
ox dy
Jw= v ov (15)
ox dy

The added term VIiT]ww naturally depends on the variation
of the vector field w. By means of this term, the given
image is smoothed along a single direction w/||wl|, with
a smoothing strength of ||w|l. There are the two spatial
components of w(p) = (u(p), v(p))T. This approach can be
briefly explained as follows.

Suppose that CP(a) is the curve defining the integral curve
of w, starting from p and parameterized by a € R (see
Figure 6):

CP(0) = p,

(16)
@) _ yice(a).
da
When a — +oo, the integral curve CP(a) is tracked forward,
and when a — —oo it is tracked backward.
The second derivative of the function a — I;(CP(a)) at
a = 0 is obtained by using Taylor’s formula as follows:

oI;(CP(a)) _ 9°Ii(CP(a))
ot B da?

"Hi(p)) + V1T (p)w(p).

(17)

This equation is the same as the curvature-preserving PDE
(14).

= trace (w(p)w(p)
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FIGURE 13: A given image for filling-in an artificially degraded region (a), the mask image (b), the method in [17] (¢), and the proposed
method (d).
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FIGURE 14: A given image for large object removal (a), the mask image (b), the exemplar-based inpainting method [4] (c), and the proposed

method (d).

To regularize multivalued images, Tschumperlé [3] ex-
tended the single-direction smoothing PDE (14) so that it
can deal with tensor-valued geometry T : QO — P(2), instead
of a vector-valued geometry w by writing T as

T= 721 Jﬂzo (\/Taa) (\/Taa)Tdoc, (18)

where a, = (cosa sina)” and T = \/f‘uuT + \/f+va is

the square root of T. (VT)> = T and (VT)" = /T can be

easily verified. Then, the PDE (14) is solved by Tschumperlé
[3] as follows:

oI, 2 o ("
= trace(TH;) + ~ VI, Jta VTagda, (19)
ot T a=0 “

where J g, stands for the Jacobian of Q — VTa,. A
practical approach for this solution can be expressed as in:

N-1
(Ga. 1 ZI[IJ (20)
N = LIC(V/Ta,)’
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FIGURE 15: A given image for completing an artificially degraded region (a), the mask image with the user’s guidance (b), close-ups of the
method in [16] (¢), the method employing the user’s guidance in [16] (d), and the proposed method (e).

where each Gaussian variance has a standard deviation dt,
and I[LII]C( -) stands for the line integral convolution. The most
difficult operation here is the LIC computation, which
requires the tracking of integral curves of a vector field. In
order to solve this problem, a very simple technique based on
the classical Runge-Kutta integration scheme is employed by
Tschumperlé [3]. Although another faster LIC computation
has developed in [23], it does not utilize Gaussian weighting
functions, as needed here:

W) = [ 1 @God @)

where G;(x) stands for 1D Gaussian kernel function as shown
in:

1 x?
Gi(x) = Jdnt exp(— 4t)' (22)

The outlines of the implementation of suggested algo-
rithm for a single iteration are as follows.

(1) The smoothed geometry field G, is computed from
1.

(2) The eigenvalues and eigenvectors of G, are com-
puted.

(3) The diffusion tensor field T is computed from G,.

(4) For ain all [0, 7]:

(i) the vector field w = /Ta, is computed,

(i) LIC operation of I'*! is applied in forward and
backward directions along CP.

(5) The average of all LICs is computed in step (4).

The result of the inpainting algorithm on the geometry
image is depicted in Figure 7.

2.3. Texture Synthesis. The texture synthesis method is based
on the existing image inpainting method presented in [4].
However, unlike the proposed method, color information
is not taken into account in the existing algorithm, while
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(®)

FIGURE 16: A given image for removal of artificially added scratches (a), the mask image (b) the method in [18] (c), and the proposed method

(d).

obtaining the data term and attempting to find the best
sample patch in the search region.

The method represented in Figure 8 requires a clarifi-
cation. In the drawing, I(p) is a pixel value in the input
image, I'; is the region that needs some reconstruction, 8T’ is
boundary of T';, and @; is the search region that is composed
of sample patches. ¥¥ is the actual patch that is to be filled at
the point p on 6T;. The filling priority of boundary points on
the target area is found as follows:

_ [trace(TH})|

Di(p) 255

(23)

where y;(p) shows the confidence term indicating the filling
priority from the outer layers of the target region towards
inner layers, and D;(p), modified to take into account
multivalued images, is the term giving the priority based on
the gradient values such as edge information. Area(\V?) is the
area of W and T stands for f~(A*,17)8-0-".

yi(p) is set to following values during the initialization:

1, Vp e @,

yi(p) = ‘| (24)
0, Vperl.

In this study, the suggested method considers the color
information in calculating the distance between two patches,
which is defined as the weighted sum of squared differ-
ences (WSSD), and then performs the search process in
the search region only. This increases the performance of
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(®)

(c)

(d)

FIGURE 17: The input images (a) and (b) for image completion, the mask images (c) and (d) and output images (e) and (f) are generated by

the proposed method.

the algorithm compared with the techniques considering
the whole image instead of the search region only. Here, after

finding maximum priority patch ¥¥, the best model patch
is investigated within the search regions, where distance d =
S di(PF, W) between the patches WY and W1 is calculated
as the WSSD of pixels that have already been filled. The best
sample patch is copied from the search region to the target
region. The confidence values are updated in every step.

Figure 9 shows the result of texture synthesis operation
suggested in the study on the texture image.

3. Experimental Results

The proposed method is tested on several color images, some
of which are taken from other studies in the literature in
order to make a comparison. In the modified exemplar-based
inpainting method, ranges of the search regions are chosen
between 30 and 70 pixels. Other parameters are kept the
same as in the referenced papers. We also apply a dilation
operation on the mask images to obtain the better results.
The first experiment shows how to remove balustrade
from the images including textures. The test results are seen
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(c)

13

(d)

FIGURE 18: Geometry (a) and texture (c) components are generated by the proposed method, and the reconstructed geometry image (b) and

the completed texture image (d) are obtained by the proposed method.

in Figure 10. Figures 10(c) and 10(d) shows the result of
methods proposed in [7] and [4], respectively. Unlike these
methods, our modified exemplar-based inpainting method
produces an almost perfect result on the brick wall and trees
as seen in Figure 10(e). Actually, there is no need to apply
another proposed method based on the summation of geom-
etry and texture components if the given image does not con-
tain complex structure and texture information. As an exam-
ple, we still give another result generated by the combined
approach in Figure 10(f), where image structure is propa-
gated better than the modified exemplar-based-method.

Figure 11 demonstrates the results of the constrained
PDE-based inpainting method [3], the modified exemplar-
based inpainting method and the proposed method on
Barbara image, respectively. As seen in these results, the
proposed method gives the best visual quality compared
with the others; but, there is color scattering on some of
the completed parts, especially on the transitional region
between arm and knee.

Figure 12 compares the proposed method with the
approach presented in [8]. Figure 12(d) shows that the
structure is completed in the target region using our
method successfully. The method in [8] necessitates a guided
structure propagation process, where the user draws curves
to join the image geometry properly in the filling regions.
Unlike that, our method works completely automatic.

Figure 13 illustrates another comparison between the
proposed and other methods in terms of successes in
repairing the artificially degraded regions. The method in
[17] completes the target area better than the proposed
method. But the proposed method has less computational
complexity than the method presented in [17], which uses
the wavelet domain and extra information in order to find
the best patch to match and synthesis.

Figure 14 depicts removal of a large object from a
photograph. The structure is obtained by the proposed
method better than the method in [4]; however, texture
information in some of the completed region cannot be
estimated, especially in the roof.

Figure 15 demonstrates another example of completion
of the region having complex textures. Figure 15(c) shows
the result of the method presented in [16] using only a
mask image, which does not generate efficient results on
the wall and the tree pictures. Figure 15(d) presents the
completed result, where the user’s guidance is used. Our
method seems to generate promising results whereas it
produces blurring effects in some filling regions as shown in
Figure 15(e).

Figure 16 depicts an example of scratch removal. The
method in [18] does not propagate the structure as seen in
Figure 16(c), especially on the regions of legs of the horse.
The proposed method is able to combine those regions and
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generate the visually plausible output; however, there are
blurring effects on some of the completed regions.

Lastly, Figure 17 demonstrates object removal and old
motion picture repairing. These examples produce visually
plausible results. Also, the decomposing results are shown
in Figure 18 which is generated using the film frame in
Figure 17(b).

The methods were implemented in Microsoft Visual C++
2005 by taking advantage of CImg library [24]. The program
was run on a PC with Pentium 2.20 GHz processor and 2 GB
RAM. The runtime of the proposed method is changing
depending on size of filling regions. The process for the
degraded Barbara image of size 512 X 512 presented in
Figure 11(d) takes about 4 minutes.

4. Conclusion

This study proposes a method that combines the advan-
tages of inpainting and texture synthesis approaches. Both
approaches are separately applied to decomposed images.
Results of both approaches are then combined to reconstruct
the output image. The result shows that the output image is
of acceptable quality.

As a future task automatic search capability could be
developed for search regions in the modified exemplar-based
inpainting method since the dimension of the search region
is manually arranged at present. The proposed method also
generates color scattering and blurring effects on some of
the filling regions. These drawbacks can also be eliminated
in another future task.

We conduct research on the current modified exemplar-
based inpainting algorithm to restore old motion picture
films by extending the spatiotemporal domain. Actually,
there is no need to apply the proposed method, based
on decomposition, on the film frames, because adequate
information to fill in the degraded region of the current
frame could be found in the previous and next frames. So
blotches are easily concealed by using the modified exemplar-
based-method because they do not appear in the same
spatial locations in successive frames, and the computational
complexity can be reduced as well.
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