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We present a comprehensive study on the effect of reverberation and background noise on the recognition of nonprototypical
emotions from speech. We carry out our evaluation on a single, well-defined task based on the FAU Aibo Emotion Corpus
consisting of spontaneous children’s speech, which was used in the INTERSPEECH 2009 Emotion Challenge, the first of its
kind. Based on the challenge task, and relying on well-proven methodologies from the speech recognition domain, we derive test
scenarios with realistic noise and reverberation conditions, including matched as well as mismatched condition training. As feature
extraction based on supervised Nonnegative Matrix Factorization (NMF) has been proposed in automatic speech recognition for
enhanced robustness, we introduce and evaluate different kinds of NMF-based features for emotion recognition. We conclude that
NME features can significantly contribute to the robustness of state-of-the-art emotion recognition engines in practical application

scenarios where different noise and reverberation conditions have to be faced.

1. Introduction

In this paper, we present a comprehensive study on auto-
matic emotion recognition (AER) from speech in realistic
conditions, that is, we address spontaneous, nonprototyp-
ical emotions as well as interferences that are typically
encountered in practical application scenarios, including
reverberation and background noise. While noise-robust
automatic speech recognition (ASR) has been an active field
of research for years, with a considerable amount of well-
elaborated techniques available [1], few studies so far dealt
with the challenge of noise-robust AER, such as [2, 3].
Besides, at present the tools and particularly evaluation
methodologies for noise-robust AER are rather basic: often,
they are constrained to elementary feature enhancement
and selection techniques [4, 5], are characterized by the
simplification of additive stationary noise [6, 7], or are
limited to matched condition training [8—11].

In contrast, this paper is a first attempt to evaluate the
impact of nonstationary noise and different microphone

conditions on the same realistic task as used in the INTER-
SPEECH 2009 Emotion Challenge [12]. For a thorough and
complete evaluation, we implement typical methodologies
from the ASR domain, such as commonly performed with
the Aurora task of recognizing spelt digit sequences in noise
[13]. On the other hand, the task is realistic because emotions
were nonacted and nonprompted and do not belong to a
prototypical, preselected set of emotions such as joy, fear,
or sadness; instead, all data are used, including mixed and
unclear cases (open microphone setting). We built our eval-
uation procedures for this study on the two-class problem
defined for the Challenge, which is related to the recognition
of negative emotion in speech. A system that performs
robustly on this task in real-life conditions is useful for a
variety of applications incorporating speech interfaces for
human-machine communication, including human-robot
interaction, dialog systems, voice command applications,
and computer games. In particular, the Challenge task is
based on the FAU Aibo Emotion Corpus which consists of
recordings of children talking to the dog-like Aibo robot.



Another key part of this study is to exploit the signal
decomposition (source separation) capabilities of Nonneg-
ative Matrix Factorization (NMF) for noise-robustness, a
technology which has led to considerable success in the ASR
domain. The basic principle of NMF-based audio processing,
as will be explained in detail in Section 2, is to find a locally
optimal factorization of a spectrogram into two factors, of
which the first one represents the spectra of the acoustic
events occurring in the signal and the second one their
activation over time. This factorization can be computed
by iteratively minimizing cost functions resembling the
perceptual quality of the product of the factors, compared
with the original spectrogram. In this context, several studies
have shown the advantages of NMF for speech denoising
[14-16] as well as the related task of isolating speakers in
a mixture (“cocktail party problem”) [17-19]. While these
approaches use NMF as a preprocessing method, recently
another type of NMF technologies has been proposed that
exploits the structure of the factorization: when initializing
the first factor with values suited to the problem at hand, the
activations (second factor) can be used as a dynamic feature
which corresponds to the degree that a certain spectrum
contributes to the observed signal at each time frame. This
principle has been successfully introduced to ASR [20, 21]
and the classification of acoustic events [22], particularly the
detection of nonlinguistic vocalizations in speech [23]; yet it
remains an open question whether it can be exploited within
AER.

There do exist some recent studies on NMF features
for emotion recognition from speech. In [24], NMF was
proposed as an effective method to extract relevant spectral
information from a signal by reducing the spectrogram
to a single column, to which emotion classification can
be applied; yet, this study lacks comparison to more con-
ventional feature extraction methods. In [25], NMF as a
feature space reduction method was reported being superior
to related techniques such as Principal Components Analysis
(PCA) in the context of AER. However, both these studies
were carried out on clean speech with acted emotions;
in contrast, our technique aims to augment NMF feature
extraction in noisy conditions by making use of the intrinsic
source separation capabilities of NME In this respect, it
directly evolves from our previous research on robust ASR
[20], where we proposed a “semisupervised” approach that
detects spoken letters in noise by classifying the time-
varying gains of corresponding spectra while simultaneously
estimating the characteristics of the additive background
noise. Transferring this paradigm to the emotion recognition
domain, we propose to measure the amount of “emotional
activation” in speech by NMF and show how this paradigm
can improve state-of-the-art AER “in the wild”.

The remainder of this paper is structured as follows.
First, we introduce the mathematical background of NMF
and its use in signal processing in Section 2. Second, we
describe our feature extraction procedure based on NMF
in Section 3. Third, we describe the data sets based on the
INTERSPEECH 2009 Emotion Challenge task that we used
for evaluation in Section 4 and show the results of our exper-
iments on reverberated and noisy speech, including different
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microphone conditions, in Section 5 before concluding in
Section 6.

2. Nonnegative Matrix Factorization

2.1. Definition. The mathematical specification of the NMF
algorithm is as follows: given a matrix V. € R?*" and a
constant r € N, it computes two matrices W € R7*" and
H e R7*", such that

V ~ WH. (1)

In case that (m + n)r < mn, NMF performs information
reduction (incomplete factorization); otherwise, the factor-
ization is called overcomplete. Incomplete and overcomplete
factorizations require different algorithmic approaches [26];
we constrain ourselves to incomplete factorization in this
study.

As a method of information reduction, it fundamentally
differs from other methods such as PCA by using nonnega-
tivity constraints: it does not merely aim at a mathematically
optimal basis for describing the data, but at a decomposition
into its actual parts. To this end, it finds a locally optimal
representation where only additive—never subtractive—
combinations of the parts are allowed. There is evidence
that this type of decomposition corresponds to the human
perception of images [27] and human language acquisition
[28].

2.2. NMF-Based Signal Processing. NMF in signal processing
is usually applied to spectrograms that are obtained by short-
time Fourier transformation (STFT). Basic NMF approaches
assume a linear signal model. Note that (1) can be written
as follows (the subscripts :, t and :, j denote the tth and jth
matrix columns, resp.):

,
V= ij,tW;,]’, l<t<n (2)
j=1

Thus, supposing V is the magnitude spectrogram of a
signal (with short-time spectra in columns), the factorization
from (1) represents each short-time spectrum V., as a linear
combination of spectral basis vectors W ; with nonnegative
coefficients H;; (1 < j < r). In particular, the ith row
of the H matrix indicates the amount that the spectrum in
the ith column of W contributes to the spectrogram of the
original signal. This fact is the basis for our feature extraction
approach, which will be explained in Section 3.

When there is no prior knowledge about the number of
spectra that can describe the source signal, the number of
components r has to be chosen empirically, depending on the
application. As will be explained in Section 3, in the context
of NMF feature extraction, this parameter also influences the
number of features. The actual number of components used
for our experiments will be described in Section 5 and was
defined based on our previous experience with NMF-based
source separation and feature extraction of speech and music
(23, 29].
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In concordance with recent NMF techniques for speech
processing [17, 21], we apply NMF to Mel spectra instead
of directly using magnitude spectra, in order to integrate
a psychoacoustic measure and to reduce the computational
complexity of the factorization. As common for feature
extraction in speech and emotion recognition, the Mel filter
bank had 26 bands and ranged from 0 to 8 kHz.

2.3. Factorization Algorithms. A factorization according to
(1) is usually achieved by iterative minimization of a cost
function c:

(W,H) = arg minc(W',H'). (3)
W H

Several recent studies in NMF-based speech processing
[15, 16, 18-20] use cost functions based on a modified
version of Kullback-Leibler (KL) divergence such as

Vi
ca(W,H) = Z(V,-j log (WI;)” - (V—WH)ij). (4)
ij ij

Particularly, in our previous study on NMF feature
extraction for detection of nonlinguistic vocalizations in
speech [23], this function has been shown to be superior
to a metric based on Euclidean distance, which matches the
results of the comparative study carried out in [30].

For minimization of (4), we implemented the algorithm
by Lee and Seung [31], which iteratively modifies W and
H using “multiplicative update” rules. With matrix-matrix
multiplication being its core operation, the computational
cost of this algorithm largely depends on the matrix
dimensions: assuming a naive implementation of matrix-
matrix multiplication, the cost per iteration step is O(mnr)
for the minimization of ¢; from (4). However, in practice,
computation time can be drastically reduced by using
optimized linear algebra routines.

As for any iterative algorithm, initialization and termi-
nation must be specified. While H is initialized randomly
with the absolute values of Gaussian noise, for W we use
an approach tailored to the problem at hand, which will be
explained in detail later. As to termination, a convergence-
based stopping criterion could be defined, measured in terms
of the cost function [30, 32]; however, several previous
studies, including [20, 21, 23, 29], proposed to run a fixed
number of iterations. We used the latter approach for two
reasons: first, from our experience, the error in terms of ¢4
that is left after a few hundred iterations is not significantly
reduced by further iterations [29]. Second, for a signal
processing system in real-life use, this does not only reduce
the computational complexity—as the cost function does not
have to be evaluated after each iteration—but also ensures a
predictable response time. During the experiments carried
out in this study, the number of iterations remained fixed at
200.

2.4. Context-Sensitive Signal Model. Various extensions to
the basic linear signal model have been proposed to address
a fundamental limitation. In (2), the acoustic events are

characterized only by an instantaneous spectral observation,
rather than a sequence; hence, NMF cannot exploit any
context information which might be relevant to discriminate
classes of acoustic events. In particular, an extension called
Nonnegative Matrix Deconvolution (NMD) has been pro-
posed [33, 34] where each acoustic event is modeled by a
spectrogram of fixed length T and is obtained by a mod-
ified version of the NMF multiplicative update algorithm;
however, this modification implies that variations of the
original NMF algorithm—such as minimization of different
types of cost functions—cannot immediately be transferred
to the NMD case [32]. In this paper, we use an NMD-related
approach [21] where the original spectrogram V is converted
to a matrix V' such that every column of V' is the row-
wise concatenation of a sequence of short-time spectra (in
the form of row vectors). Mathematically speaking, given
a sequence length T and the original spectrogram V, we
compute a modified matrix V' defined by

V:,l V:,2 " V:,n7T+1

V=] oL . (5)
V:,T V:,T+1 e V:,n

That is, the columns of V' correspond to overlapping
sequences of spectra in V. This method reduces the problem
of context-sensitive factorization of V to factorization of
V’; hence, it will allow our approach to be easily extended
by using a variety of available NMF algorithms. In our
experiments, the parameter T was set to 10.

3. NMF Feature Extraction

3.1. Supervised NMF. Considering (2) again, one can directly
derive a concept for feature extraction: by keeping the
columns of W constant during NMF, it seeks a minimal-
error representation of the signal using a given set of spectra
with nonnegative coefficients. In other words, the algorithm
is given a set of acoustic events, described by (a sequence of)
spectra, and its task is to find the activation pattern of these
events in the signal. The activation patterns for each of the
predefined acoustic events then yield a set of time-varying
features that can be used for classification. This method
will subsequently be called supervised NMF, and we call the
resulting features “NMF activations”.

This approach requires a set of acoustic events that are
known to occur in the signals to be processed. However,
it can be argued that this is generally the case for speech-
related tasks: for instance, in our study on NMEF-based
spelling recognition [20], the events corresponded to spelt
letters; in [21], spectral sequences of spelt digits were used.
In the emotion recognition task at hand, they could consist
of manifestations of certain emotions. Still, a key question
that remains to be answered is how to compute the spectra
that are used for initialization. For this study, we chose to
follow a paradigm that led to considerable success in source
separation [17, 34, 35] as well as NMF feature extraction
(20, 23] tasks: here, NMF itself was used to reduce a set
of training samples for each acoustic event to discriminate



into a set of characteristic spectra (or spectrograms). More
precisely, our algorithm for initialization of supervised NMF
builds a matrix W as follows, assuming that we aim to
discriminate K different classes of acoustic events. For each
classk € {1,...,K},

(1) concatenate the corresponding training samples,
(2) compute the magnitude spectrogram Vj by STFT,
(3) from Vj obtain matrices Wy, Hy by NME

Intuitively speaking, the columns of each Wy contain “char-
acteristic” spectra of class k. As we are dealing with modified
spectrograms (5), we will subsequently call the columns of
W “characteristic sequence”. More precisely, these are the
observation sequences that model all of the training samples
belonging to class k with the least overall error. From the Wy
we build the matrix W by column-wise concatenation:

W= [W,W, - - - Wk]. (6)

3.2. Semisupervised NMF. If supervised NMF is applied
to a signal that cannot be fully modeled with the given
set of acoustic events—for instance, in the presence of
background noise—the algorithm will produce erroneous
activation features. Hence, in [20, 22] a semisupervised
variant was proposed: here, the matrix W containing charac-
teristic spectra is extended with additional columns that are
randomly initialized. By updating only these columns during
the iteration, the algorithm is “allowed” to model parts of
the signal that cannot be explained using the predefined set
of spectra. In particular, these parts can correspond to noise:
in both the aforementioned studies, a significant gain in
noise-robustness of the features could be obtained by using
semisupervised NMFE. Thus, we expect that semisupervised
NMEF features could also be beneficial for recognition of
emotion in noise, especially for mismatched training and
test conditions. As the feature extraction method can isolate
(additive) noise, it is expected that the activation features are
less degraded, and less dependent on the type of noise, than
those obtained from supervised NMF, or more conventional
spectral features such as MFCC. In contrast, it is not clear
how semisupervised NMF features, and NMF features in
general, behave in the case of reverberated signals; to our
knowledge, this kind of robustness issue has not yet been
explicitly investigated. We will deal with the performance of
NMEF features in reverberation as well as additive noise in
Sections 5.3 and 5.4.

Finally, as semisupervised NMF can actually be used for
arbitrary two-class signal separation problems, it could be
useful for emotion recognition in clean conditions as well.
In this context, one could initialize the W matrix with “emo-
tionless” speech and use an additional random component.
Then, it could be assumed that the activations of the random
component are high if and only if there are signal parts that
cannot be adequately modeled with nonemotional speech
spectra. Thus, the additional component in semisupervised
NMEF would estimate the degree of emotional activation in
the signal. We will derive and evaluate a feature extraction
algorithm based on this idea in Section 5.2.
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3.3. Processing of NMF Activations. Finally, a crucial issue is
the postprocessing of the NMF activations. In this study, we
constrain ourselves to static classification using segmentwise
functionals of time-varying features, as the performance of
static modeling is often reported as superior for emotions
[36] and performs very well in classification of nonlinguistic
vocalizations [37], particularly using NMF features [23]. In
the latter study, the Euclidean length of each row of the
activation matrix was taken as a functional. We extend this
technique by adding first-order regression coefficients as
well as other functionals of the NMF activations, exactly
corresponding to those computed for the INTERSPEECH
2009 Emotion Challenge baseline (see Table 2), to ensure best
comparability of results.

As to normalization of the NMF activations, in [23] the
functionals were normalized to sum to unity. Also in [21],
the columns of the “activation matrix” H were normalized to
unity after factorization. Normalization was not an issue in
[20], as the proposed discrete “maximum activation” feature
is invariant to the scale of H. In our preliminary experiments
on NMF feature extraction for emotion recognition, we
found it inappropriate to normalize the NMF activations,
since the unnormalized matrices contain some sort of energy
information which is usually considered very relevant for the
emotion recognition task; furthermore, in fact an optimal
normalization method for each type of functional would
have to be determined. In contrast, we did normalize
the initialized columns of W, each corresponding to a
characteristic sequence, such that their Euclidean length was
scaled to unity, in order to prevent numerical problems.

For best transparency of our results, the NMF imple-
mentation available in our open-source NMF toolkit
“openBliSSART” was used (which can be downloaded at
http://openblissart.github.com/openBliSSART/). Function-
als were computed using our openSMILE feature extractor
[38, 39] that provided the official feature sets for the
INTERSPEECH 2009 Emotion Challenge [12] and the
INTERSPEECH 2010 Paralinguistic Challenge [40].

3.4. Relation to Information Reduction Methods. NMF has
been proposed as an information reduction method in sev-
eral studies on audio pattern recognition, including [24, 25,
41]. One of its advantages is that there are no requirements
on the data distribution other than nonnegativity, unlike, for
example, for PCA which assumes Gaussianity. On the other
hand, nonnegativity is the only asserted property of the basis
W—in contrast to PCA or Independent Component Analysis
(ICA).

Most importantly, our methodology of NMF feature
extraction goes beyond previous approaches for information
reduction, including those that use NME While it also
gains a more compact representation from spectrograms,
it does so by finding coefficients that minimize the error
induced by the dimension reduction for each individual
instance. This is a fundamental difference to, for example,
the extraction of Audio Spectral Projection (ASP) features
proposed in the MPEG-7 standard [41], where the spectral
observations are simply projected onto a basis estimated
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by some information reduction method, such as NMF
or PCA. Furthermore, traditional information reduction
methods such as PCA cannot be straightforwardly extended
to semisupervised techniques that can estimate residual
signal parts, as described in Section 3.2—this is a specialty
of NMF due to its nonnegativity constraints which allow a
part-based decomposition.

Laying aside these theoretical differences, it still is of
practical interest to compare the performance of our super-
vised NMF feature extraction against a dimension reduction
by PCA. We apply PCA on the extended Mel spectrogram V
(5), as PCA on the logarithm of the Mel spectrogram would
result in MFCC-like features which are already covered by
the IS feature set. To rather obtain a feature set comparable
to the NMF features, the same functionals of the according
projections on this basis are taken as in Table 2. While the
PCA basis could be estimated class-wisely, in analogy to
NMEF (6), we used all available training instances for the
computation of the principal components, as this guarantees
pairwisely uncorrelated features. We will present some key
results obtained with PCA features in Section 5.

4. Data Sets

The experiments reported in this paper are based on the FAU
Aibo Emotion Corpus and four of its variants.

4.1. FAU Aibo Emotion Corpus. The German FAU Aibo Emo-
tion Corpus [42] with 8.9 hours of spontaneous, emotionally
colored children’s speech comprises recordings of 51 German
children at the age of 10 to 13 years from two different
schools. Speech was transmitted with a wireless head set (UT
14/20 TP SHURE UHF-series with microphone WH20TQG)
and recorded with a DAT-recorder. The sampling rate of
the signals is 48 kHz; quantization is 16bit. The data is
downsampled to 16 kHz.

The children were given five different tasks where they
had to direct Sony’s dog-like robot Aibo to certain objects
and through a given “parcours”. The children were told that
they could talk to Aibo the same way as to a real dog.
However, Aibo was remote-controlled and followed a fixed,
predetermined course of actions, which was independent of
what the child was actually saying. At certain positions, Aibo
disobeyed in order to elicit negative forms of emotions. The
corpus is annotated by five human labelers on the word level
using 11 emotion categories that have been chosen prior
to the labeling process by iteratively inspecting the data.
The units of analysis are not single words, but semantically
and syntactically meaningful chunks, following the criteria
defined and evaluated in [43] (18216 chunks, 2.66 words
per chunk on average, cf. [42]). Heuristic algorithms are
used to map the decisions of the five human labelers on
the word level onto a single emotion label for the whole
chunk [42]. The emotional states that can be observed in
the corpus are rather nonprototypical, emotion-related states
than “pure” emotions. Mostly, they are characterized by low
emotional intensity. Along the lines of the INTERSPEECH
2009 Emotion Challenge [12], the complete corpus is

TaBLE 1: Number of instances in the FAU Aibo Emotion Corpus.
The partitioning corresponds to the INTERSPEECH 2009 Emotion
Challenge, with the training set split into a training and develop-
ment set (“devel”).

(a) close-talk microphone (CT), additive noise (BA = babble, ST = street)

# NEG IDL >
train 1541 3380 4921
devel 1817 3221 5038
test 2465 5792 8257
> 5823 12393 18216

(b) room microphone (RM), artificial reverberation (CTRV)

# NEG IDL s
train 1483 3103 4586
devel 1741 2863 4604
test 2418 5468 7886
s 5642 11434 17076

used for the experiments reported in this paper, that is,
no balanced subsets were defined, no rare states and no
ambiguous states are removed—all data had to be processed
and classified (cf. [44]). The same 2-class problem with the
two main classes negative valence (NEG) and the default state
idle (IDL, i.e., neutral) is used as in the INTERSPEECH 2009
Emotion Challenge. A summary of this challenge is given in
[45].

As the children of one school were used for training and
the children of the other school for testing, the partitions
feature speaker independence, which is needed in most
real-life settings, but can have a considerable impact on
classification accuracy [46]. Furthermore, this partitioning
provides realistic differences between the training and test
data on the acoustic level due to the different room
characteristics, which will be specified in the next section.
Finally, it ensures that the classification process cannot adapt
to sociolinguistic or other specific behavioral cues. Yet,
a shortcoming of the partitioning originally used for the
challenge is that there is no dedicated development set. As
our feature extraction and classification methods involve a
variety of parameters that can be tuned, we introduced a
development set by a stratified speaker-independent division
of the INTERSPEECH 2009 Emotion Challenge training set.
To allow for easy reproducibility, we chose a straightforward
partitioning into halves. That is, the first 13 of the 26
speakers (speaker IDs 01-08, 10, 11, 13, 14, and 16) were
assigned to our training set, and the remaining 13 (speaker
IDs 18-25, 27-29, 31, and 32) to the development set. This
partitioning ensures that the original challenge conditions
can be restored by jointly using the instances in the training
and development sets for training.

Note that—as it is typical for realistic data—the two
emotion classes are highly unbalanced. The number of
instances for the 2-class problem is given in Table 1(a).
This version, which also has been the one used for the
INTERSPEECH 2009 Emotion Challenge, will be called
“close-talk” (CT).



4.2. Realistic Noise and Reverberation. Furthermore, the
whole experiment was filmed with a video camera for
documentary purposes. The audio channel of the videos is
reverberated and contains background noises, for example,
the noise of Aibo’s movements, since the microphone of
the video camera is designed to record the whole scenery
in the room. The child was not facing the microphone,
and the camera was approximately 3m away from the
child. While the recordings for the training set took place
in a normal, rather reverberant class room, the recording
room for the test set was a recreation room, equipped with
curtains and carpets, that is, with more favorable acoustic
conditions. This version will be called “room microphone”
(RM). The amount of data that is available in this version
(17 076 chunks) is slightly less than in the close-talk version
due to technical problems with the video camera that
prevented a few scenes from being simultaneously recorded
on video tape. See Table 1(b) for the distribution of instances
in the RM version. To allow for comparability with the same
choice of instances, we thus introduce the set CTry, which
contains only those close-talk segments that are also available
in the RM version, in addition to the full set CT.

4.3. Artificial Reverberation. The third version [47] of the
corpus was created using artificial reverberation: the data
of the close-talk version was convolved with 12 different
impulse responses recorded in a different room using multi-
ple speaker positions (four positions arranged equidistantly
on one of three concentric circles with the radii r €
{60cm, 120cm,240cm}) and alternating echo durations
Teo € {250ms,400ms} spanning 180°. The training,
development, and test set of the CTry version were evenly
split in twelve parts, of which each was reverberated with
a different impulse response. The same impulse response
was used for all chunks belonging to one turn. Thus, the
distribution of the impulse responses among the instances in
the training, development, and test set is roughly equal. This
version will be called “close-talk reverberated” (CTRV).

4.4. Additive Nonstationary Noise. Finally, in order to create
a corpus which simulates spontaneous emotions recorded
by a close-talk microphone (e.g., a headset) in the presence
of background noise, we overlaid the close-talk signals from
the FAU Aibo Emotion Corpus with noises corresponding to
those used for the Aurora database [13], which was designed
to evaluate performance of noise-robust ASR. We chose the
“Babble” (BA) and “Street” (ST) noise conditions, as these
are nonstationary and frequently encountered in practical
application scenarios. The very same procedure as in creating
the Aurora database [13] was followed: first, we measured
the speech activity in each chunk of the FAU Aibo Emotion
Corpus by means of the algorithm proposed in the ITU-
T P56 recommendation [48], using the original software
provided by the ITU. Then, each chunk was overlaid with a
random noise segment whose gain was adjusted in such a way
that the signal-to-noise ratio (SNR), in terms of the speech
activity divided by the long-term (RMS) energy of the noise
segment, was at a given level. We repeated this procedure for
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the SNR levels —5dB, 0dB, 5dB, and 10 dB, similarly to the
Aurora protocol.

In other words, the ratio of the perceived loudness of
voice and noise is constant, which increases the realism of our
database: since persons are supposed to speak louder once
the level of background noise increases (Lombard effect), it
would not be realistic to mix low-energy speech segments
with a high level of background noise. This is of particular
importance for the FAU Aibo Emotion Corpus, which is
characterized by great variance in the speech levels. To avoid
clipping in the audio files, the linear amplitude of both
speech and noise was multiplied with 0.1 prior to mixing.
Thus, for the experiments with additive noise, the volume of
the clean database had to be adjusted accordingly. Note that
at SNR levels of 0 dB or lower, the performance of conven-
tional automatic speech recognition on the Aurora database
decreases drastically [13]; furthermore, our previous study
on emotion recognition in the presence of additive noise
[11] indicates that an SNR of 0 dB poses a challenge even for
recognition of acted emotions.

5. Results

The structure of this section is oriented on the different
variants of the FAU Aibo Emotion Corpus as introduced in
the last section—including the original INTERSPEECH 2009
Emotion Challenge setting.

5.1. Classification Parameters. As classifier, we used Support
Vector Machines (SVM) with a linear kernel on normalized
features, which showed better performance than standard-
ized ones in a preliminary experiment on the development
set. Models were trained using the Sequential Minimal
Optimization (SMO) algorithm [49]. To cope with the
unequal distribution of the IDL and NEG classes, we always
applied the Synthetic Minority Oversampling Technique
(SMOTE) [50] prior to classifier training, as in the Challenge
baselines. For both oversampling and classification tasks, we
used the implementations from the Weka toolkit [51], in
line with our strategy to rely on open-source software to
ensure the best possible reproducibility of our results, and
utmost comparability with the Challenge results. Thereby
parameters were kept at their defaults except for the kernel
complexity parameter, as we are dealing with feature vec-
tors of different dimensions and distributions. Hence, this
parameter was fine-tuned on the development set for each
training condition and type of feature set, with the results
presented in the subsequent sections.

5.2. INTERSPEECH 2009 Emotion Challenge Task. In a first
step, we evaluated the performance of NMF features on
the INTERSPEECH 2009 Emotion Challenge task, which
corresponds to the 2-class problem in the FAU Aibo Emotion
Corpus (CT version) to differentiate between “idle” and
“negative” emotions. As the two classes are highly unbal-
anced (cf. Table 1)—with over twice as much “idle” instances
as “negative” ones—we consider it more appropriate to
measure performance in terms of unweighted average recall



EURASIP Journal on Advances in Signal Processing

TasLg 2: INTERSPEECH 2009 Emotion Challenge feature set (IS):
low-level descriptors (LLD) and functionals.

LLD (16 - 2) Functionals (12)

(A) ZCR mean

(A) RMS Energy standard deviation

(A) FO kurtosis, skewness

(A) HNR extremes: value, rel. position, range
(A) MFCC 1-12 linear regression: offset, slope, MSE

TaBLE 3: Summary of NMF feature sets for the Aibo 2-class
problem. # IDL: number of characteristic sequences from IDL
training instances; # NEG: number of characteristic sequences from
NEG instances; # free: number of randomly initialized components;
Comp: indices of NMF components whose functionals are taken
as features; Dim: dimensionality of feature vectors. For N30/31-1,
no “free” component is used for training instances of clean speech.
As explained in the text, the N31; set is not considered for the
experiments on additive noise.

Name #IDL #NEG # free Comp Dim
N3l 30 0 1 1-31 744
N30 15 15 0 1-30 720
N31 15 15 1 1-31 744
N30/31-1 15 15 0/1 1-30 720
N31-1 15 15 1 1-30 720

(UAR) than weighted average recall (WAR). Furthermore,
UAR was the metric chosen for evaluating the Challenge
results.

As a first baseline feature set, we used the one from
the classifier subchallenge [12], which is shown in Table 2.
Next, as NMF features are essentially spectral features with
a different basis, we also compared them against Mel
spectra and MFCCs, to investigate whether the choice of
“characteristic sequences” as basis, instead of frequency
bands, is superior.

Based on the algorithmic approaches laid out in Section 3,
we applied two variants of NMF feature extraction, whereby
factorization was applied to Mel spectrograms (26 bands)
obtained from STFT spectra that were computed by applying
Hamming windows of 25ms length at 10ms frame shift.
First, semisupervised NMF was used, based on the idea that
one could initialize the algorithm with manifestations of
“idle” emotions and then estimate the degree of negative
emotions in an additional, randomly initialized component.
Thus, in contrast to the application of semisupervised NMF
in noise-robust speech recognition [20], where the activa-
tions of the randomly initialized component are ignored
in feature extraction, in our case we consider them being
relevant for classification. 30 characteristic sequences of idle
emotions were computed from the INTERSPEECH 2009
Emotion Challenge training set according to the algorithm
from Section 3.1, whereby a random subset of approximately
10% (in terms of signal length) was selected to cope with
memory requirements for the factorization, as in [17, 23].
including functionals, is denoted by “N31;” (cf. Table 3).

75
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6727 6746 ]
65 65.55 65.59 65.81
62.37
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55 F : ! : .

50

IS N30 N31; IS+N30 IS+N31; Mel

Feature set

MECC

F1GURE 1: Results on the INTERSPEECH 2009 Emotion Challenge
task (FAU Aibo 2-class problem, close-talk speech = CT). “UAR”
denotes unweighted average recall. “IS” is the baseline feature set
from the challenge; “N30” and “N31,” are supervised and unsuper-
vised NMF features (cf. Table 3); “+” denotes the union of feature
sets. “Mel” are functionals of 26 Mel frequency bands and “MFCC”
functionals of the corresponding MFCCs (1-12). Classification was
performed by SVM (trained with SMO, complexity C = 0.1).

As another method, we used supervised NME, that is,
without a randomly initialized component, and predefining
characteristic spectrograms of negative emotion as well,
which were computed from the NEG instances in the
INTERSPEECH 2009 Emotion Challenge training set (again,
a random subset of about 20% was selected). In order to have
a feature set with comparable dimension, 15 components per
class (IDL, NEG) were used for supervised NME, yielding the
feature set “N30” (Table 3).

As an alternative method of (fully) supervised NMF
that could be investigated, one could compute character-
istic sequences from all available training data, instead of
restricting the estimation to class-specific matrices. While
this is an interesting question for further research, we did
not consider this alternative due to several reasons: first,
processing all training data in a single factorization would
result in even larger space complexity, which is, speaking
of today, already an issue for the classwise estimation (see
above). Second, our N30 feature set contains the same
amount of discriminative features for each class, while the
training set itself is unbalanced (cf. Table 1). Finally, while
it could theoretically occur that the same, or very similar,
characteristic sequences are computed for both classes, and
thus redundant features would be obtained, we found that
this was not a problem in practice, as in the extracted
features no correlation could be observed, neither within
the features corresponding to the IDL or NEG classes, nor
in the NMF feature space as a whole. Note that in NMF
feature extraction using a cost function that purely measures
reconstruction error, such as (4), statistical properties of the
resulting features can never be guaranteed.

Results can be seen in Figure 1. NMF features clearly
outperformed “plain” Mel spectra and deliver a comparable
UAR in comparison to MFCCs. Still, it turned out that they
could not outperform the INTERSPEECH 2009 feature set;
even a combination of the NMF and IS features (IS+N30, IS+
N31;1) could not yield a performance gain over the baseline.
Considering the performance of different variants of NMF,



no significant differences can be seen according to a one-
tailed t-test (P > 0.05), which will be the test we refer to in
the subsequent discussion. Note that the baseline in Figure 1
is higher than the one originally presented for the challenge
[12], due to the SMO complexity parameter being lowered
from 1.0 to 0.1.

To complement our extensive experiments with NMF,
we further investigated information reduction by PCA. To
that end, PCA features were extracted using the first 30
principal components of the extended spectrograms of the
training set as transformation, as described in Section 3.4,
and computing functionals of the transformed extended
spectrograms of the test set. This type of features will be
referred to as “P30” in analogy to “N307 in all subsequent
discussions. However, the observed UAR of 65.33% falls
clearly below the baseline features, and also below both types
of NMF features considered. Still, as the latter difference
is not significant (P > 0.05), we further considered PCA
features for our experiments on reverberation and noise, as
will be pointed out in the next sections.

5.3. Emotion Recognition in Reverberated Speech. Next, we
evaluated the feature extraction methods proposed in the
last section on the reverberated speech from the FAU Aibo
Emotion Corpus (RM and CTRV versions). The same
initialization as for the NMF feature extraction on CT speech
was used, thus the NMF feature sets for the different versions
are “compatible”.

Our evaluation methodologies are inspired by techniques
in the noise-robust ASR domain, taking into account
matched condition, mismatched condition, and multicondition
training. Similar procedures are commonly performed with
the Aurora database [13] and were also partly used in our
previous study on noise-robust NMF features for ASR [20].

In particular, we first consider a classifier that was trained
on CTrym speech only and evaluate it across the three test
conditions available (CTry, RM, and CTRV). Next, we join
the training instances from all three conditions and evaluate
the same three test conditions (multicondition training).
Lastly, we also consider the case of “noise-corrupted” models,
that is, classifiers that were, respectively, trained on RM
and CTRV data. Note that for the multicondition training,
upsampling by SMOTE was applied prior to joining the
data sets, to make sure that each combination of class and
noise type is equally represented in the training material.
Thereby we optimized the complexity parameter C for the
SMO algorithm on the development set to better take into
account the varying size and distribution of feature vectors
depending on (the combination of) features investigated. In
Figure 2, we show the mean UAR over all test conditions
on the development set, depending on the value of C for
each of the different training conditions. Different parameter
values of C € {1073,2 - 1073,5-1073,1072,2 - 107%,5 -
1072,107%,0.2,0.5, 1} were considered. The general trend is
that on one hand, the optimal parameter seems to depend
strongly on the training condition and feature set; however,
on the other hand, it turned out that N30 and N31 can
be treated with similar complexities, as can IS + N30 and
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TaBLE 4: Results on the Aibo 2-class problem (7 886 test instances
in each of the CTry, RM, and CTRV versions) for different
training conditions. All results are obtained with SVM trained
by SMO with complexity parameter C, which was optimized on
the development set (see Figure 2). “UAR” denotes unweighted
average recall. “IS” is the baseline feature set (INTERSPEECH 2009
Emotion Challenge) while “N30” and “N31;” are NMF features
obtained using supervised and semisupervised NMF (see Table 3).
“+” denotes the union of feature sets. “Mean” is the arithmetic
mean over the three test conditions. The best result per column is
highlighted.

(a) Training with close-talk microphone (CTra)

UAR [%] C CTrMm RM CTRV Mean
IS 1.0 67.62 60.51 53.06 60.40
N30 1.0 65.48 52.36 50.23 56.02
N31; 1.0 65.54 53.10 50.36 56.33
IS+ N30 0.5 67.37 49.15 51.62 56.05
IS+ N31, 1.0 67.15 56.47 51.95 58.52
(b) Multicondition training (CTryp + RM + CTRV)
UAR [%] C CTrMm RM CTRV Mean
IS 0.01 67.72 59.52 66.06 64.43
N30 0.05 66.73 67.55 52.66 62.31
N31; 0.2 65.81 64.61 63.32 64.58
IS +N30 0.005 67.64 62.64 66.78 65.69
IS+ N31, 0.005 67.07 61.85 65.92 64.95
(c) Training on room microphone (RM)
UAR [%] C CTrm RM CTRV Mean
IS 0.02 61.61 62.72 62.10 62.14
N30 0.2 53.57 65.61 54.87 58.02
N31; 0.5 54.50 66.54 56.20 59.08
IS + N30 0.05 65.13 66.26 60.39 63.93
IS + N31; 0.05 64.68 66.34 59.54 63.52
(d) Training on artificial reverberation (CTRV)
UAR [%] C CTrm RM CTRV Mean
1S 0.02 60.64 59.29 66.35 62.09
N30 0.05 60.73 68.19 62.72 63.88
N31; 0.02 60.94 64.40 64.30 63.21
IS + N30 0.01 61.70 49.17 66.68 59.18
IS+ N31, 0.02 61.61 63.03 66.56 63.73

IS+N31. Thus, we exemplarily show the IS, N31, and IS+N31
feature sets in the graphs in Figure 2 and leave out N30.
After obtaining an optimized value of C for each training
condition, we joined the training and development sets and
used these values for the experiments on the CTry, RM,
and CTRYV versions of the test set; the results are given in
Table 4. First, it has to be stated that NMF features can
outperform the baseline feature set in a variety of scenarios
involving room-microphone (RM) data. In particular, we
obtain a significant (P < 0.001) gain of almost 4% absolute
for matched condition training, from 62.72% to 66.54%
UAR. Furthermore, a multicondition trained classifier using
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FIGURE 2: Optimization of the SMO kernel complexity parameter C on the mean unweighted average recall (UAR) on the development set
of the FAU Aibo Emotion Corpus across the CTry, RM, and CTRV conditions. For the experiments on the test set (Table 4), the value of C
that achieved the best performance on average over all test conditions (CTry, RM, and CTRV) was selected (depicted by larger symbols).
The graphs for the N31; and IS + N31; sets are not shown for the sake of clarity, as their shape is roughly similar to N30 and IS + N30.

the N30 feature set outperforms the baseline by 8% absolute;
in the case of a classifier trained on CTRV data, the
improvement by using N30 instead of IS features is even
higher (9% absolute, from 59.29% to 68.19%). On the other
side, NMF features seem to lack robustness against the more
diverse reverberation conditions in the CTRV data, which
generally results in decreased performance when testing
on CTRYV, especially for the mismatched condition cases.
Still, the difference on average across all test conditions for
multicondition trained classifiers with IS + N30 (65.69%
UAR), respectively, IS features (64.43% UAR) is significant
(P < 0.002). Considering semisupervised versus fully
supervised NME, there is no clear picture, but the tendency
is that the semisupervised NMF features (N31;) are more
stable. For example, consider the following unexpected result
with the N30 features: in the case of training with CTRV and
testing with RM, N30 alone is observed 9% absolute above
the baseline, yet its combination with IS falls 10% below the
baseline.

As the multicondition training case has proven most
promising for dealing with reverberation, we investigated
the performance of P30 features in this scenario. On
average over the three test conditions, the UAR is 62.67%;
thus comparable with supervised NMF (N30, 62.31%), but
significantly (P < 0.001) below semisupervised NMF (N31y,
64.58%). Thereby the complexity was set to C = 1.0, which
had yielded the best mean UAR on the development set.
In turn, P30 features suffer from the same degradation of
performance when CT training data is used in mismatched
test conditions: in that case, the mean UAR is 56.17%
(again, at the optimum of C = 1.0), which does not differ
significantly (P > 0.05) from the result achieved by either
type of NMF features (56.02% for N30, 56.33% for N31;).

5.4. Emotion Recognition in Noisy Speech. The settings for
our experiments on emotion recognition in noisy speech
correspond to those used in the previous section—with the
disturbances now being formed by purely additive noise,
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not involving reverberation. Note that the clean speech and
multicondition training scenarios now exactly match the
“Aurora methodology” (test set A from [13]). Additionally,
we consider mismatched training with noisy data as in our
previous study [20] or the test case “B” from the Aurora
database [13]. In correspondence with Aurora, all SNR levels
from —5dB to 10 dB were considered as testing condition,
while the —5 dB level was excluded from training. Thus, the
multicondition training, as well as training with BA or ST
noise, involves the union of training data corresponding to
the SNR levels 0 dB, 5dB, and 10 dB.

As in the previous sections, the baseline is defined
by the IS feature set. For NMF feature extraction, we
used semisupervised NMF with 30 predefined plus one
uninitialized component, but this time with a different
notion: now, the additional component is supposed to model
primarily the additive noise, as observed advantageous in
[20]. Hence, both the idle and negative emotions should
be represented in the preinitialized components, with 15
characteristic spectrograms for each—the “N31” feature set
is now used instead of N31; (cf. Table 3).

It is desirable to compare these semisupervised NMF
features with the procedure proposed in [20]. In that
study, supervised NMF was applied to the clean data, and
semisupervised NMF to the noisy data, which could be done
because neither multicondition training was followed nor
were models trained on clean data tested in noisy conditions,
due to restrictions of the proposed classifier architecture.
However, for a classifier in real-life use, this method is mostly
not feasible as the noise conditions are usually unknown. On
the other hand, using semisupervised NMF feature extraction
both on clean and noisy signals, the following must be taken
into account: when applied to clean speech, the additional
component is expected to be filled with speech that cannot be
modeled by the predefined spectra; however, it is supposed to
contain mostly noise once NMF is applied to noisy speech.
Thus, it is not clear how to best handle the activations
of the uninitialized component in such a way that the
features in the training and test sets remain “compatible”,
that is, that they carry the same information: we have to
introduce and evaluate different solutions, as presented in
Table 3.

In detail, we considered the following three strategies for
feature extraction. First, the activations of the uninitialized
component can be ignored, resulting in the “N31-1” feature
set; second, we can take them into account (“N317). A
third feature set, subsequently denoted by “N30/31-1, finally
provides the desired link to our approach introduced in
[20]: here, the activations for the clean training data were
computed using fully supervised NMF; in contrast, the acti-
vations for the clean and noisy test data, as well as the noisy
training data, were computed using semisupervised NMF
with a noise component (without including its activations in
the feature set).

Given that the noise types considered are nonstationary,
one could think of further increasing the number of unini-
tialized components for a more appropriate signal modeling.
Yet, we expect that this would lead to more and more speech
being modeled by the noise components, which is a known
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drawback of NMF—due to the spectral overlap between
noise and speech—if no further constraints are imposed
on the factorization [15, 16]. Hence, an undesired amount
of randomness would be introduced to the information
contained in the features.

We experimented with all three of the N31, N31-1, and
N30/31-1 sets, and their union with the IS baseline feature
set. First, Table 5(a) shows the recognition performance for
the clean training case. The result is twofold: on the one
hand, for both cases of noise they outperform the baseline,
particularly in the case of babble noise, where the mean UAR
across the SNR levels is 60.79% for IS and 63.80% for N31-
1. While this effect is lower for street noise, all types of NMF
features outperform the IS baseline on average over all testing
conditions. The difference in the mean UAR achieved by
N31-1(63.75%) compared with the IS (62.34%) is significant
with P < 0.001. On the other hand, for neither of the NMF
feature sets could a significant improvement be obtained
by combining them with the baseline feature set; still, the
union of IS and N31-1 exhibits the best overall performance
(63.99% UAR). This, however, comes at a price: comparing
N31 to IS for the clean test condition, a performance loss of
about 5% absolute from 68.47% to 63.65% UAR has to be
accepted, which can only partly be compensated by joining
N31 with IS (65.63%). In summary, the NMF features lag
considerably behind in the clean testing case (note that the
drop in performance compared to Figure 1 is probably due
to the different type of Semisupervised NMF as well as the
complexity parameter being optimized on the mean).

A counterintuitive result in Table 5(a) deserves some
further investigation: while the UAR obtained by the IS
features gradually decreases when going from the clean
case (68.47%) to babble noise at 10, 5, and 0dB SNR
(57.71% for the latter), it considerably increases for —5 dB
SNR (64.52%). Still, this can be explained by examining
the confusion matrices, as shown in Table 6. Here, one
can see that at decreasing SNR levels, the classifier more
and more tends to favor the IDL class, which results in
lower UAR; this effect is however reversed for —5 dB, where
more instances are classified as NEG. This might be due
to the energy features contained in IS; generally, higher
energy is considered to be typical for negative emotion.
In fact, preliminary experiments indicate that when using
the IS set without the energy features, the UAR increases
monotonically with the SNR but is significantly below the
one achieved with the full IS set, being at chance level for
—5dB (BA and ST) and at 66.31% for clean (CT) testing.
The aforementioned unexpected effect also occurs—in a
subdued way—for the NMF features, which, as explained
before, also contain energy information. As a final note,
when considering the WAR, that is, the accuracy instead of
the UAR, as usually reported in studies on noise-robust ASR
where balancing is not an issue, there is no unexpected drop
in performance from —5 to 0 dB for the BA testing condition:
indeed, the WAR is 69.44% at —5dB and 71.41% at 0dB,
respectively. For the ST testing condition, the WAR drops
below chance level (49.22%) for —5 dB, then monotonically
raises to 62.44, 69.70, and 70.58% at increased SNRs of 0, 5,
and 10 dB.
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TaBLE 5: Results on the Aibo 2-class problem with additive noise (8257 test instances) for different training conditions. The following
test conditions were considered: CT (clean), BA (babble noise at —5-10 dB SNR), and ST (street noise at —5—-10 dB SNR). All results are
obtained with SVM trained by SMO with complexity parameter C, which was optimized on the development set (see Figure 3). “UAR”
denotes unweighted average recall. “IS” is the baseline feature set (INTERSPEECH 2009 Emotion Challenge); NMF features (“N31” etc.)
were obtained using supervised and semisupervised NMF (see Table 3). “+” denotes the union of feature sets. “Mean” is the arithmetic mean
over the nine test conditions for Tables 5(a) and 5(b), and the mean over all SNRs for Tables 5(c) and 5(d). Note that the “N30/31-1” set
differs from “N31-1” only in the case that clean speech occurs in the training material. The best result per column is highlighted. Note that
the UAR does not uniformly increase with SNR, as could be expected—this is partly due to the imbalanced test set, as explained in the text.

(a) Clean training (CT)

BA ST

UAR [%] C CT Mean
-5dB 0dB 5dB 10dB -5dB 0dB 5dB 10dB
IS 0.2 68.47 64.52 57.71 57.73 63.20 60.60 64.19 62.47 62.20 62.34
N31-1 0.001 62.85 65.79 64.06 62.84 62.49 63.82 64.94 63.77 63.18 63.75
N30/31-1 0.002 62.23 65.64 63.18 61.71 61.90 64.11 64.63 63.21 62.37 63.22
N31 0.001 63.65 65.78 63.25 62.24 63.03 64.01 64.77 62.90 62.68 63.59
IS +N31-1 0.002 65.24 65.93 63.13 62.45 63.46 63.00 65.39 63.75 63.53 63.99
IS +N30/31-1 0.005 64.20 65.22 61.51 60.95 61.85 63.51 65.11 62.23 61.93 62.95
IS+ N31 0.002 65.63 65.73 62.32 61.74 63.90 63.20 65.33 63.00 63.25 63.79
(b) Multicondition training (CT + BA + ST)
UAR [%] C CT BA ST Mean
-5dB 0dB 5dB 10dB -5dB 0dB 5dB 10dB
IS 0.2 66.96 65.78 66.36 66.60 66.57 64.79 65.87 65.58 65.59 66.01
N31-1 0.5 64.36 66.11 66.25 65.61 65.49 65.27 65.64 65.64 65.86 65.58
N30/31-1 1.0 63.40 66.17 66.30 65.65 65.29 65.19 65.61 65.35 65.59 65.39
N31 0.2 65.37 66.48 65.86 66.04 65.93 65.72 65.50 65.72 65.76 65.82
IS+ N31-1 0.02 66.61 66.00 66.43 66.69 66.57 65.60 66.48 66.48 66.22 66.34
IS + N30/31-1 0.02 66.28 66.10 66.51 66.69 66.42 65.58 66.52 66.41 66.06 66.29
IS +N31 0.05 66.69 66.13 66.02 66.66 66.52 65.75 66.38 66.07 66.27 66.28
(c) Training on babble noise (BA)
UAR [%] C CT BA Mean ST Mean
-5dB 0dB 5dB 10dB -5dB 0dB 5dB 10dB
IS 1.0 62.17 66.15 66.04 66.16 65.62 65.99 61.26 65.57 66.05 64.95 64.46
N31-1 0.2 62.95 66.38 65.88 65.20 65.03 65.62 65.37 65.58 65.20 64.94 65.27
N31 0.5 65.81 66.59 66.35 66.07 65.96 66.24 64.54 65.70 65.85 65.89 65.50
IS+N31-1  0.02 63.32 67.16 67.26 66.48 65.99 66.72 61.82 66.56 67.20 66.78 65.59
IS+ N31 0.02 64.38 67.57 67.22 66.95 66.37 67.03 61.55 66.53 67.17 66.47 65.43
(d) Training on street noise (ST)
UAR [%] C CT BA Mean ST Mean
-5dB 0dB 5dB 10dB -5dB 0dB 5dB 10dB
IS 1.0 61.33 62.20 63.03 63.61 62.22 62.77 65.15 65.44 65.67 65.20 65.37
N31-1 0.5 62.84 65.40 65.61 65.33 64.78 65.28 65.56 65.55 65.00 65.48 65.40
N31 0.2 65.55 64.91 64.78 65.69 65.71 65.27 65.56 65.74 65.06 66.03 65.60
IS+N31-1 0.2 61.51 64.02 64.50 64.86 64.09 64.37 66.00 66.02 66.18 66.28 66.12
IS+ N31 0.1 63.43 63.60 64.14 65.07 64.94 64.44 65.95 66.29 66.34 66.16 66.19

multicondition training is higher than for clean training,
which is true for all feature sets, and with the IS +

Next, Table 5(b) evaluates multicondition training with
the aforementioned feature sets. Again, the union of IS and

N31-1 shows the best mean UAR (66.34%), but the gain
with respect to the IS baseline (66.01%) is not significant;
however, the aforementioned performance loss in the clean
test condition is avoided. As is expected, the mean UAR for

N30/31-1 feature set profiting the most (over 3% absolute
on average). From both Tables 5(a) and 5(b), one can
see that the “N30/31-1” feature set inspired by [20] is
inferior to the other two kinds of semisupervised NMF
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F1GURE 3: Optimization of the SMO kernel complexity parameter C on the mean unweighted average recall (UAR) on the development set of
the FAU Aibo Emotion Corpus across the CT, BA, and ST test conditions, including all available SNRs from —5 to 10 dB. For the experiments
on the test set (Table 5), the value of C that achieved the best performance on average over all test conditions (CT, BA, and ST) was selected

(depicted by larger symbols). The graphs for the N30 and IS + N30 sets are not shown for the sake of clarity, as their shape is roughly similar
to N31 and IS + N31.

TaBLE 6: Confusion matrices on the Aibo 2-class problem with additive noise (8 257 test instances) for clean training, using the IS feature
set and an SVM classifier with complexity parameter C = 0.2, as in Table 5(a). The following test conditions were considered: CT (clean),
BA (babble noise at —5—10 dB SNR), and ST (street noise at —5—10 dB SNR).

# CT BA ST
-5dB 0dB 5dB 10dB -5dB 0dB 5dB 10dB
IDL NEG IDL NEG IDL NEG IDL NEG IDL NEG IDL NEG IDL NEG IDL NEG IDL NEG
IDL 4195 1597 4445 1347 5311 481 5228 564 4718 1074 1874 3918 3467 2325 4657 1135 4808 984
NEG 875 1590 1176 1289 1880 585 1844 621 1357 1108 275 2190 776 1689 1367 1098 1445 1020

feature sets; the difference between IS + N30/31-1 and IS +
N31-1 for the clean training case is even significant with
P <0.01.

Finally, Tables 5(c) and 5(d) evaluate training on noisy
data, with matched and mismatched test condition. In
this context, it is especially notable that the NMF features
outperform the IS feature set for the clean test condition,
with N31 (65.81%) being more than 3% absolute over the
baseline (62.17%) for BA training and over 4% for ST

training (N31: 65.55%; IS: 61.33%). Both these differences
are significant with P < 0.001.

Additionally, comparing mismatched and matched noisy
test conditions in Tables 5(c) and 5(d), one can see that the
improvement by NMF features is generally higher for mis-
matched conditions, providing evidence for the claim from
Section 3.2. Particularly, in the case of ST training and testing
on BA, we observed a gain of 2.5% absolute over the baseline
(62.77%) by both the N31-1 (65.28%) and N31 (65.27%)
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feature sets, on average over the four SNRs. Still, both these
sets also improve the results for matched condition training
(by almost 2% absolute, from 63.76% to 65.60% for N31).
On the other hand, in the case of BA-matched condition
training, a significant gain is only obtained by combining
NMF with IS; yet, this feature set provides the overall best
mean UAR on babble noise (67.03%) among all training
conditions. Again, for mismatched condition (testing on ST),
there is an improvement of about 1.0% absolute comparing
N31 (65.50%) to IS (64.46%).

To complement the discussion of our results, we con-
ducted several experiments using the P30 features to deal
with additive noise. As in the last section, we considered mul-
ticondition training, since overall, this scenario yielded the
most stable results across all testing conditions considered.
Again, it turned out that all three types of NMF features
were superior to P30, which was evaluated at a complexity
parameter of C = 0.02 that was found to be optimal on
the development set and yielded a mean UAR of 65.08%
across all nine testing conditions. Finally, in an experiment
with BA training using the P30 features, we found that both
in the mismatched test conditions (CT, ST) and in matched
condition, the P30 features fell clearly behind NMF features:
on average over the BA respectively ST conditions, the mean
UAR (65.21%/64.88%) is significantly (P < 0.05) below the
performance of N31 (66.24%/65.50%), and also falls behind
N31-1 (65.62%/65.27%). While in clean testing, P30 (with
an UAR of 65.31%) can outperform N31-1 (62.84%), it is
still is slightly below N31 (65.55%), which gives the overall
best result for BA training and clean testing.

5.5. Discussion. Summarizing the results from both Tables
4 and 5, it can be seen that especially the N31; and N31
feature sets are promising for robust emotion recognition:
while they are sometimes inferior to other NMF features,
in almost all cases, they increase the performance when
added to the baseline feature set, and in some cases, they
even outperform the baseline alone. The latter observation
is particularly remarkable when taking into account that
NMEF features are computed by a purely heuristic algorithm
on spectral information, while the baseline was specifically
engineered for emotion recognition.

While in case of multicondition training on realistic noise
and reverberation, a significant gain could be obtained by
adding NMF features to the baseline, this was not true for
multicondition training on additive noise. Still, in a scenario
where the classifier was trained on one (additive) noise type
and tested in clean and other noisy conditions, NMF features
have led to significantly better performance than the baseline;
hence, it will be an interesting topic for future research
to evaluate NMF features in multicondition training with
mismatched noises—such as in the “Aurora” test case “B”
[13]. In summary, we conclude that in application scenarios
“in the wild”, the information contained in the NMF features
seems to complement traditional AER features considerably
well.

In contrast, for clean testing conditions, that is, in the
absence of noise and reverberation, including the original
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INTERSPEECH 2009 Challenge task, we could not achieve
a performance improvement over the baseline by NMF
features. It is actually a frequently encountered phenomenon
that while methods tailored to noise-robust speech process-
ing, such as NMF, are valuable for deteriorated signals, they
result in slightly lower performance on clean signals; similar
conclusions have been recently drawn in, for example, [21].

Concerning the different notions of supervised NMF
for AER that we proposed, no clear tendency can be
observed when comparing the N31; feature set which is
supposed to measure the degree of negative emotion in
the random component of semisupervised NMF, with the
supervised NMF feature set N30. Hence, we conclude that
both approaches are valid and should be considered in
further research.

Finally, when comparing the various solutions to extract
features from noisy speech by Semisupervised NMF, includ-
ing our previous approach [20], it is notable that ignoring
the activation of the noise component in classification (as
done for N31-1) is not necessarily the best choice, as could be
assumed in the first place. In fact, the additional features in
N31 considerably increase mean UAR over all test conditions
for BA as well as ST training, while they do not contribute to
robustness for clean and multicondition training. The best
result for both CT and multicondition training is, however,
achieved by the union of IS and N31-1. Notably, the feature
set N30/31-1 corresponding to our previous approach [20]
lags considerably behind the other types of NMF features in
the case of clean testing, both for clean and multicondition
training: it is 1.4% and 2.0% below N31, respectively, which
is significant with P < 0.05.

6. Conclusion

The experiments dealt with in this paper were motivated
by the considerable mismatch between the ASR and AER—
or the linguistic and paralinguistic—domains, regarding
the techniques and evaluation methodologies for enhanced
robustness. Hence, we did not only present our results in
a manner that resembles the well-known Aurora training
and test scenarios, but also integrated NMF as a novel
noise-robust signal processing method. Further, in contrast
to many current studies that perform subject dependent
percentage splits or cross-validations, we strictly enforced
speaker independence. Finally, we focused on exact repro-
ducibility by relying on open-source software for all major
steps in the feature extraction and classification procedure,
and most importantly by using clearly defined training,
development, and test sets based on publicly available
corpora. In fact, a deficiency that shows in a number of
studies is that they do not explicitly mention the parts of data
used for optimizing parameters. On the other hand, classifier
parameters tend to have great influence on the recognition
rates, as we have clearly demonstrated in this paper.

From our experimental results, we conclude that the
overall performance of NMF features is remarkable, espe-
cially compared to our previous study on NMF in the
paralinguistic domain [23], where performance of NMF
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features themselves was observed considerably below the
MEFCC baseline; in this paper, NMF features were often
observed on par with the well-tuned INTERSPEECH 2009
Emotion Challenge feature set. Yet, the most noticeable
tendency that we find in our results is that a gain by NMF
can be obtained exactly in the most realistic conditions: that
is, in the presence of realistic noise and reverberation, and to
some extent in the (simulated) presence of babble or street
noise. Note that while it is a common phenomenon in noise-
robust ASR that performance monotonically increases with
SNR, and this type of behavior could be reproduced for AER
in [10], other studies, such as [9] suggest that this might not
always be the case. Given the fact that there is still a lack of
comprehensive studies on noise-robust AER, this issue may
be worth further investigation in the future.

Caution must be exercised when comparing recognition
rates on spontaneous, nonprototypical emotions, as those
reported in this paper, to the ones from other studies on
AER, which are typically carried out on corpora of acted
emotions. While much research work has been invested into
tuning performance on the INTERSPEECH 2009 Emotion
Challenge task, the best result in terms of UAR still remains
at 71.2% for the two-class problem, which is obtained by
fusing the individual classification engines of the challenge
participants [45]. This clearly indicates that the “open-
microphone” setting in which the FAU Aibo Emotion Corpus
was generated still poses a hard challenge to today’s AER
systems, yielding recognition rates that are considerably
lower than it could be expected for a two-class problem
consisting of acted emotions.

On the other hand, the promising results concerning
robustness that were reported in this paper motivate a lot
of further research in the domain. First, we might consider
overcomplete NMF that is initialized with a large set of spec-
tral sequences that correspond to different emotion classes—
inspired by the “exemplar-based” recognition architecture
introduced in [21], which delivered excellent results in noise-
robust ASR, and which particularly marks a departure from
the information reduction paradigm found in traditional
NMF approaches. Second, a novel technique could perform
adaptation to noise on the NMF feature extraction level by
measuring the activations of spectra from different noise
conditions. Concerning evaluation, we have not yet adopted
the various feature enhancement techniques developed in
years of ASR research, such as Histogram Equalization or
Switching Models (cf. [1]), which could be beneficial both
for conventional as well as NMF features. Further, evaluation
of noise-robust techniques should be carried out taking into
account a greater variety of noise conditions—a task that
we are now ready to address after having defined the basic
methodologies. In this context, we will also strive at a more
detailed investigation of the proposed feature extraction
approach in comparison to more traditional information
reduction methods, building on the preliminary experiments
with PCA reported in this paper, and further including ICA.

Finally, we are confident that our paradigms can be
extended to other fields of the paralinguistic domain. Hence,
we will consider further application scenarios for NMF
feature extraction, for instance, the INTERSPEECH 2010
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Paralinguistic Challenge [40] task to recognize the level of
interest in spontaneous speech.
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