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In biological vision systems, the attention mechanism is responsible for selecting the relevant information from the sensed field
of view. In robotics, this ability is specially useful because of the restrictions in computational resources which are necessary to
simultaneously perform different tasks. An emerging area in robotics is developing social robots which are capable to navigate and
to interact with humans and with their environment by perceiving the real world in a similar way that people do. In this proposal,
we focus on the development of an object-based attention mechanism for a social robot. It consists of three main modules. The first
one (preattentive stage) implements a concept of saliency based on “proto-objects.” In the second stage (semiattentive), significant
items according to the tasks to accomplish are identified and tracked. Finally, the attentive stage fixes the field of attention to the

most salient object depending on the current task.

1. Introduction

In the last few years, emphasis has increased in the devel-
opment of robot vision systems according to the model
of natural vision due to its robustness and adaptability.
Research in psychology and physiology demonstrates that
the efficiency of natural vision has foundations in visual
attention, which is a process that filters out irrelevant
information and limits processing to items that are relevant
to the present task [1]. Developing computational perception
systems that provide these same sorts of abilities is a critical
step in designing social robots that are able to cooperate
with people as capable partners, that are able to learn
from natural human instruction and that are intuitive and
engaging for people to interact with, but that are also able to
simultaneously navigate in initially unknown environments
or to perform other tasks as, for instance, grasping a specific
object.

In the literature, methods to model attention are cate-
gorized in space-based and object-based. The fundamental
difference between them is the underlying unit of attentional
selection [2]. While space-based methods deploy attention

at the level of space locations, the object-based theory
holds that a preattentive process segments the image into
objects and then the attention is allocated to these objects.
The models of space-based attention scan the scene by
shifting attention from one location to the next to limit
the processing to a variable size of space in the visual
field. Therefore, they have some intrinsic disadvantages. In a
normal scene, objects may overlap or share some common
properties. Then, attention may need to work in several
discontinuous spatial regions at the same time. On the
other hand, if different visual features, which constitute
the same object, come from the same region of space,
an attention shift will be not required [3]. Object-based
models of visual attention provide a more efficient visual
search than space-based attention. Besides, it is less likely to
select an empty location. In the last few years, these models
of visual attention have received an increasing interest
in computational neuroscience and in computer vision.
Object-based attention theories are based on the assumption
that attention must be directed to an object or group of
objects, instead of to a generic region of the space [4]. In
fact, neurophysiological studies [2] show that, in selective



attention, the boundaries of segmented objects, and not
just spatial position, determine what is selected and how
attention is deployed. Therefore, these models will reflect
the fact that the perception abilities must be optimized to
interact with objects and not just with disembodied spatial
locations. Thus, visual systems will segment complex scenes
into objects which can be subsequently used for recognition
and action. However, recent psychological research shows
that, in natural vision, the preattentive process divides a
visual input into raw or primitive objects [5] instead of well-
defined objects. Some authors use the notion of proto-objects
[4, 6] to refer to these primitive objects, that are defined as
units of visual information that can be bound into a coherent
and stable object. On the other hand, other challenging issue
in visual attention models is the inhibition of return. This
process avoids continuous attention to only one location or
object. The most used approach is to build an inhibition map
that contains suppression factors for previously attended
regions [7, 8]. The problem of these maps is that they are not
able to manage inhibited moving objects or situations where
the vision system is moving. To deal with these situations, it
is necessary to track the inhibited objects [4, 9].

Following these considerations, this paper presents a
general object-based visual attention model which exploits
the concept of proto-objects as image entities which do not
necessarily correspond with a recognizable object, although
they possess some of the characteristics of objects [4, 10].
Thus, it can be considered that they are the result of the initial
segmentation of the image input into candidate objects (i.e.,
grouping together those input pixels which are likely to
correspond to parts of the same object in the real world,
separately from those which are likely to belong to other
objects). This is the main contribution of the proposed
approach, as it is able to group the image pixels into entities
which can be considered as segmented perceptual units using
a novel perceptual segmentation algorithm in a preattentive
stage. Once the input image has been split, the saliency
of each region is evaluated by combining four low-level
features. In this combination process, the weight of each
evaluated feature will depend on the performed task. Other
important contribution is the inclusion of a semiattentive
stage which will take into account the currently executed
tasks in the information selection process. Besides, it is capa-
ble of handling dynamic environments where the locations
and shapes of the objects may change due to motion and
minor illumination differences between consecutive acquired
images. In order to deal with these scenes, a mean shift-based
tracking approach [11] for inhibition of return is employed.
Recently attended proto-objects will be stored in a memory
module for several fixations. Thus, if the task requires to shift
the focus of attention to a previously attended proto-object
and it is still stored in this memory, these fixations could be
fastly executed. Finally, an attentive stage is included where
two different behaviors or tasks have been programmed.
Currently, these behaviors only need visual information
to be accomplished and thus they will allow to test the
performance of the proposed visual perception system.

The remainder of the paper is organized as follows.
Section 2 provides a brief related work. Section 3 presents an
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overview of the proposed attention model. The preattentive,
semiattentive, and attentive stages of the proposal are
described in Sections 4, 5, and 6, respectively. Section 7
deals with some obtained experimental results. Finally,
conclusions are shown in Section 8.

2. Related Work

There are mainly two psychological theories of visual atten-
tion that have influenced the computation models existing
today [12]: the feature integration theory and the guided
search. The feature integration theory proposed by Treisman
and Gelade [13] suggests that the human vision system
detects separable features in parallel in an early step of the
attention process. Then, they are spatially combined to finally
attend individually to each relevant location. According to
this model, methods compute image features in a number
of parallel channels in a preattentive task-independent stage.
The extracted features are integrated into a single saliency
map which codes the saliency of each image pixel [12,
14-16]. While this previous theory is mainly based on a
bottom-up component of attention, the guided search theory
proposed by Wolfe et al. [17, 18] is centered on the fact
that a top-down component in attention can increase the
speed of the process when identifying the presence of a
target in a scene. The model computes a set of features
over the image and the top-down component activates
locations that might contain the features of the searched
target. These two approaches are not mutually exclusive, and
nowadays, some efforts in computational attention are being
conducted to develop models which combine a bottom-up
preattentive stage with a top-down attentive stage [19]. The
idea is that while the bottom-up step is independent of the
task, the top-down component tries to model the influence
of the current executed task in the process of attention.
Therefore, Navalpakkam and Itti [19] extended Itti’s model
[14] by building a multiscale object representation in a
long-term memory. The multiscale object features stored in
this memory determine the relevance of the scene features
depending on the current executed task.

The aforementioned computational models are space-
based methods which allocate the attention to a region of the
scene rather than to an object or proto-object. An alternative
to space-based methods was proposed by Sun and Fisher
in [3]. They present a grouping-based saliency method and
a hierarchical selection of attention at different perceptual
levels (points, regions, or objects). The problem of this model
is that the groups are manually drawn. Orabona et al. [4]
propose a model of visual attention based on the concept
of “proto-objects” as units of visual information that can
be bound into a coherent and stable object. They compute
these proto-objects by employing the watershed transform
to segment the input image using edge and colour features
in a preattentive stage. The saliency of each proto-object
is computed taking into account top-down information
about the object to search depending on the task. Yu et
al. [6] propose a model of attention in which, first in a
preattentive stage the scene is segmented into “proto-objects”



EURASIP Journal on Advances in Signal Processing

Stereo image pair

| Perceptual segmentation |

2

Task to accomplish

Saliency map computation |(—

Preattentive stage

Proto-objects

Proto-objects

| Proto-object selection |

IOR

Proto-object positions
and descriptors

Tracking
Semiattentive stage

Proto-object

Attentive stage

F1GURE 1: Overview of the proposed model of visual attention.

in a bottom-up manner using Gestalt theories. After that, ina
top-down way, the saliency of the proto-objects is computed
taking into account the current task to accomplish by using
models of objects which are relevant to this task. These
models are stored in a long-term memory.

3. Overview of the Proposed Model of Attention

This paper presents an object-based model of visual attention
for a social robot which works in a dynamic scenario.
The proposed system integrates task-independent bottom-
up processing and task-dependent top-down processing. The
bottom-up component determines the set of proto-objects
present in the image. It also describes them by a set of low-
level features that are considered relevant to determine their
corresponding saliency values. On the other hand, the top-
down component weights the low-level features which char-
acterize each proto-object to obtain a single saliency value
depending on the task. From the recently attended proto-
objects, it also selects those which are relevant for the task.
Figure 1 shows an overview of the proposed architec-
ture. The visual attention model implements a concept of
salience based on proto-objects which are computed in the
preattentive stage of this model. These proto-objects are
defined as the blobs of uniform colour and disparity of
the image which are bounded by the edges obtained using
a Canny detector. A stereo camera is used to compute
a dense disparity map. At the pre-attentive stage, proto-
objects are described by four low-level features, which are
computed in a task-independent way: colour and luminosity
contrasts between the proto-object and all the objects in
its surroundings, mean disparity, and the probability of
the “proto-object” to be a face or a hand taking into
account its colour. A proto-object catches the attention if it
differs from its immediate surroundings or if its associated
low-level features are interesting for the task to reach. A

weighted normalized summation is employed to combine
these features into a single saliency map. Depending on the
current task to perform, different sets of weights are chosen.
These task-dependent weights will be stored in a memory
module. In our proposal, this module will be called the
long-term memory (LTM), as it resembles the one proposed
by Borji et al. [20]. The main steps of the pre-attentive
stage of the proposed attention mechanism are resumed
in Algorithm 1. This pre-attentive stage is followed by a
semiattentive stage where a tracking process is performed
over the recently attended proto-objects using a mean shift-
based algorithm [11]. The output regions of the tracking
algorithm are used to implement the inhibition of return
(IOR). This stage is resumed in Algorithm 2. The IOR will
avoid revisiting recently attended objects. To store these
attended proto-objects, we include at this level a working
memory (WM) module. This module has a fixed size, and
stored patterns should be forgotten after several fixations
to include new proto-objects. It must be noted that our
two proposed memory modules are not exactly related
to the memory organization postulated by the cognitive
psychology or neuroscience. They satisfy specific functions
in the proposed architecture.

Algorithm 1 (Pre-attentive stage). We have the following

(1) Pre-segmentation of the input image into homoge-
neous colour blobs

(2) Perceptual grouping of the blobs into proto-objects

(3) Computation of the features associated to each proto-
object: colour contrast, intensity contrast, disparity
and skin colour

(4) Computation of attractivity maps for each of the
computed features

(5) Combination of the attractivity maps into a final
saliency map (Ec. (1))

end



Algorithm 2 (Semiattentive stage). We have the following

(1) Tracking of the most salient proto-objects which has
been already attended and which are stored in the
WM

(2) IOR over the saliency map SRTATE selection of the
most salient proto-objects of the current frame

(3) Updating of the WM
end

When a new task has to be performed by the robot, the
system looks in the WM for the proto-object (or proto-
objects) which is necessary to accomplish the task. If the
proto-object has not been recently attended, the system looks
in the LTM for the best set of weights for obtaining the
saliency map according to the task to reach. Then, pre-
attentive and semiattentive stages are performed. On the
other hand, if the proto-object required by the task is stored
in the WM, then it will be possible to recover its position in
the scene from the WM and to send this data to the attentive
stage. In this case, the pre-attentive and semiattentive stages
are also performed, but now using a set of weights which
does not enhance any specific feature in the saliency map
computation (generic exploration behaviour). If new proto-
objects are now found, they could launch a different task. In
any case, it must be noted that to solve the action-perception
loop is not the goal of this work, which is focused on the
visual perception system.

Finally, in order to test the proposed perception system,
we have developed two specific behaviours. The human
gesture recognition module and the visual landmark detector
are the responsible for recognize the upper-body gestures
of a person who is interacting with the robot and to pro-
vide visual natural landmarks for mobile robot navigation,
respectively. They will be further described in Section 6.

4. Preattentive Stage: Object-Based Selection

As it was aforementioned in Section 1, several psychological
studies have shown that, in natural vision, the visual input
is divided into proto-objects in a preattentive process [5].
Following this guideline, the proposed model of attention
implements a pre-attentive stage where the input image is
segmented into perceptually uniform blobs or proto-objects.
In our case, these proto-objects are defined as the union
of a set of blobs of uniform colour and disparity of the
image which will be partially or totally bounded by the
edges obtained using a Canny detector. As the process to
group image pixels into higher-level structures can be com-
putationally complex, perceptual segmentation approaches
typically combine a presegmentation step with a subsequent
perceptual grouping step [21]. The pre-segmentation step
performs the low-level definition of segmentation as the pro-
cess of grouping pixels into homogeneous clusters, and the
perceptual grouping step conducts a domain-independent
grouping which is mainly based on properties such as the
proximity, closure, or continuity.
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In our proposal, both steps are performed using an
irregular pyramid: the Bounded Irregular Pyramid (BIP)
[22]. Pyramids are hierarchical structures which have been
widely used in segmentation tasks [22]. Instead of perform-
ing image segmentation based on a single representation
of the input image, a pyramid segmentation algorithm
describes the contents of the image using multiple repre-
sentations with decreasing resolution. Pyramid segmentation
algorithms exhibit interesting properties when compared to
segmentation algorithms based on a single representation.
Thus, local operations can adapt the pyramid hierarchy to
the topology of the image, allowing the detection of global
features of interest and representing them at low resolution
levels [23]. With respect to other irregular pyramids, the
main advantage of the BIP is that it is able to obtain
similar segmentation results but in a faster way [22, 24].
Hence, the proposed approach uses the BIP to accomplish
the detection of the proto-objects. In this hierarchy, the first
levels perform the pre-segmentation step using a colour-
based distance to group pixels into homogeneous blobs
(see [22, 25] for further details). After this step, grouping
blobs aims at simplifying the content of the obtained image
partition in order to extract the set of final proto-objects. For
managing this grouping, the BIP structure is also used: the
obtained pre-segmented blobs constitute the first level of the
perceptual grouping hierarchy, and successive levels are built
using a distance which integrates edge and region descriptors
[21]. Figure 2 shows a pre-segmentation image and the final
regions obtained after applying the perceptual grouping.
It can be noted that the pre-segmentation approach has
problems to merge regions in shaded tones (e.g., wall left
part). Although the perceptual grouping step solves some of
these problems, the final regions obtained by the described
bottom-up process may not always correspond to the natural
image objects.

Once the set of proto-objects has been obtained, the
saliency of each of them is computed and stored in a
saliency map. To do that, four features are computed for each
proto-object i: colour contrast (MCG;), intensity contrast
(MLG;), disparity (D;), and skin colour (SK;). From these
four features, attractivity maps are computed, containing
high values for interesting proto-objects and lower values
for other regions in a range of [0 - - - 255]. Finally, similarly
to other models [9, 26], the saliency map is computed by
combining the feature maps into a single representation. A
weighted normalized summation has been used as feature
combination strategy because, although this is the worst
strategy when there are a big number of feature maps [27],
it has been demonstrated that its performance is good in
systems with a small number of feature maps. Then, the final
saliency value, Sal; of each proto-object, 7, is computed as

Sal; = A, MCG; + A,MLG; + A3D; + 14SK; (1)

being {A};_;..., the weights associated to each feature map
which values are set depending on the current task to
execute in the attentive stage. These A; values are stored
in the LTM. In our current implementation, only two
different behaviours can be chosen at the attentive stage.
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(b)

(c)

FIGURE 2: Pre-attentive stage: (a) original left image; (b) pre-segmentation image; and (c) final set of proto-objects.

The first one looks for visual landmarks for mobile robot
navigation giving, more importance to the colour and
intensity contrasts (A; = A, = 0.35 and A3 = A4 = 0.15),
and the second one looks for humans to interact, giving
more importance to the skin colour map (A; = A, = 0.15,
A3 = 0.30, and A4 = 0.40). In any case, the setting of these
parameters must be changed in future versions, including
a reinforcement learning approach which allows to choose
these values from different trials in an unsupervised manner.

5. Semiattentive Stage: the Inhibition of
Return and the Role of the Working Memory

Psychophysics studies about human visual attention have
established that a local inhibition is activated in the saliency
map when a proto-object is already attended. This mech-
anism avoids directing the focus of attention to a proto-
object immediately visited, and it is usually called inhibition
of return (IOR). In the context of artificial models of visual
attention, the IOR is typically implemented using a 2D
inhibition map which contains suppression factors for one or
more focuses of attention recently attended. This approach
is valid to manage static scenarios, but it is not able to
handle dynamic environments where inhibited proto-objects
or the vision itself are in motion, or when minor illumination
differences between consecutive frames cause shape changes
in the proto-objects. In these scenarios, it is necessary to
match proto-objects among consecutive video frames and to
move the suppression factors.

Some proposed models, like the Backer et al’s approach
[28], try to solve this problem relating the inhibition to
features of activity clusters. However, the scope of dynamic
inhibition becomes very limited because it is not related
to objects. Thus, we propose an object-based IOR which is
implemented using an object tracking procedure. Specifi-
cally, the IOR has been implemented using a tracker based on
the Dorin Comaniciu’s meanshift approach [11]. Thus, our
approach keeps on tracking the proto-objects that have been
already attended in previous frames and which are stored
in the WM. Once the new positions of the attended proto-
objects are obtained, a suppression mask image is generated
and the regions of the image which are associated to already
attended proto-objects are inhibited in the current saliency
map (i.e., these regions have a null saliency value).

As it has been aforementioned, the working memory
(WM) has an important role in the top-down part of the
proposed system as well as to address the inhibition of
return. Basically, this memory module is the responsible for
storing the recently attended proto-objects. To do that, a
set of descriptors of each proto-object is stored, its colour
histogram regularized by a spatial kernel (required by the
mean-shift algorithm), its mean colour (obtained in the
perceptual grouping step), its pre-attentive features (colour
and intensity contrasts, mean disparity and skin colour),
its position in the scene, and its time to live. It must
be noted that the proposed pre-attentive and semiattentive
stages have been designed as early visual processes. That
is, object recognition cannot be performed at these stages
because it is considered a more complex task, that will
be carried out in later stages of the visual process. For
this reason, the search of a proto-object required by the
task in the WM is only accomplished based on its mean
colour and on its associated pre-attentive features. This set
of five features will be compared with those stored in the
WM using a simple Euclidean distance. The time to live
determines when a stored pattern should be removed from
the WM.

6. Attentive Stage

A social robot is a robot that must be capable to interact
with its environment and with humans and other robots.
Among the large set of behaviours that this kind of robots
must exhibit, we have implemented two basic behaviors
in this stage: a visual natural landmark detector and a
human gesture recognition behavior. These behaviors are
the responsible for provide natural landmarks for robot
navigation and to recognize the upper-body gestures of a
person which is interacting with the robot, respectively.
It is clear that the robot would need other behaviors to
develop its activities in a dynamic environment (e.g., to solve
path planning and obstacle avoidance tasks or to exhibit
verbal human-robot interaction abilities). However, these
two implemented behaviors will allow to test the capacity
of the pre-attentive (and semiattentive) stages to provide
good candidate proto-objects to higher-level modules of
attention.

Specifically, among the set of proto-objects, the visual
landmark detector task should select the set of them which



are very contrasted in colour with their surroundings. In
order to do that, the weights used in the saliency computa-
tion give more importance to the colour and intensity con-
trasts maps over the rest ones (as it was previously mentioned
in Section 4). Among the set of more salient proto-objects
in the final saliency map, the visual landmark detection
behaviour chooses those which satisfy certain conditions.
The key idea is to use as landmarks quasi-rectangular-
shaped proto-objects without significant internal holes and
with a high value of saliency. In this way, we try to avoid
the selection of segmentation artifacts, assuming that a
rectangular region has less probability to be a segmentation
error than a sparse region with a complex shape. Selected
proto-objects cannot be located at the image border in order
to avoid errors due to partial occlusions. On the other hand,
in order to assure that the regions are almost planar, regions
which present abrupt depth changes inside them are also
discarded. Besides, it is assumed that large regions could
be more likely associated to nonplanar surfaces. Finally,
the selection of proto-objects with a high value of saliency
guarantees a higher probability of repeatability than non-
salient ones. A detailed explanation of this behavior can be
found in [24].

On the other hand, social robots are robots that are
not only aware of their surroundings. They are also able to
learn from, recognize, and communicate with other indi-
viduals. While other strategies are possible, robot learning
by imitation (RLDbI) represents a powerful, natural, and
intuitive mechanism to teach social robots new tasks. In
RLbI scenarios, a person can teach a robot by simply
demonstrating the task that the robot has to perform. The
behaviour included in the attentive stage of the proposed
attention model is an RLbI architecture that provides a social
robot with the ability to learn and to imitate upper-body
social gestures. A detailed explanation of this architecture
can be found in Bandera et al. [29]. The inputs of the
architecture are the face and the hands of the human
demonstrator and her silhouette. The face and the hands
are obtained using the face detector proposed by Viola
and Jones [30], which is executed over the most salient
skin coloured proto-objects obtained in the semiattentive
stage. In order to obtain this proto-objects, the weights
to compute the final saliency map give more importance
to the skin colour feature map (as it was mentioned in
Section 4).

7. Results

Different tests have been performed to evaluate the ability of
the proposed detector to extract salient regions, the stability
of these regions, and the capacity of the tracking algorithm to
correctly implement the dynamic inhibition of return. With
respect to the attention stages, we have also tested the ability
of this attention mechanism to provide visual landmarks
for environment mapping in a mobile robots navigation
framework and to provide skin-coloured regions to a human
gesture recognition system. In these two application areas,
the proposed visual perception system was tested using a
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stereo head mounted on a mobile robot. This robot, named
NOMADA, is a new 1.60 meters tall robot that is currently
being developed in our research group. It has wheels for
holonomic movements and is equipped with different types
of sensors, an embedded PC for autonomous navigation,
and a stereo vision system. The current mounted stereo
head is the STH-MDCS from Videre Design, a compact,
low-power colour digital stereo head with an IEEE 1394
digital interface. It consists of two 1.3 megapixel, progressive
scan CMOS imagers mounted in a rigid body, and a 1394
peripheral interface module, joined in an integral unit.
Images are restricted to 640 X 480 or 320 X 240 pixels.
The embedded PC, that processes these images using the
Linux operating system, is a Core 2 Duo at 2.4 Ghz, equipped
with 1 Gb of DDR2 memory at 800 Mhz and 4 Mb of cache
memory.

7.1. Evaluating the Performance of the Proposed Salient
Region Detector. The proposed model of visual attention
has been qualitatively examined through video sequences
which include humans and other moving objects in the
scene. Figure 3 shows the left images of several image pairs
of an image sequence perceived from a stationary binocular
camera head. Although the index values below each image
are not consecutive, all image pairs are processed. The
attended proto-object is marked by a red bounding-box
in the input frames. Proto-objects which are inhibited are
marked by a white bounding-box. Only one proto-object is
attended at each fixation. Among the inhibited proto-objects,
there are static items, such as the blue battery attended in
frame 10, but also dynamic ones, such as the hands attended
in frames 20 or 45.

The inhibition of static proto-objects will be discarded
when they remain in the WM for more than a specific
number of frames (specified by their time to live). That is,
when the time to live of a proto-object expires, it is removed
from the WM; thus, it could be attended again (e.g., the
blue battery enclosed by the focus of attention at frames
10 and 55). Additionally, the inhibition of dynamic proto-
objects will be also discarded if the tracking algorithm detects
that they have suffered a high shape deformation (this is the
reason for discarding the inhibition of the right hand after
frame 50) or when they disappear from the field of view
(e.g., the blue cup after frame 15). On the other hand, it
must be noted that the tracker follows the activity of the
inhibited proto-objects very closely, preventing the templates
employed by the mean-shift algorithm to be corrupted by
occlusions. In our case, the tracker is capable of handling
scale changes, object deformations, partial occlusions, and
changes of illumination. Finally, it can be noted that the
focus of attention is directed at certain frames to uninterested
regions of the scene. For instance, this phenomenon occurs
at frames 15, 40, or 50. It is usual that these regions will
be associated to segmentation artifacts. In this case, they
may not be correctly tracked because their shapes change
excessively over time. As, it has been aforementioned, they
are removed from the list of proto-objects stored at the
WM.
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Frame 50

Frame 55

Frame 15

Frame 45

Frame 60

FIGURE 3: Left input images of a video sequence. Attended proto-objects have been marked by red bounding-boxes and inhibited ones have

been marked by white bounding-boxes.

7.2. Testing the Approach in a Visual Landmarks Detection
Framework. To test the validity of the proposed approach to
detect stable visual landmark, data were collected driving the
robot through different environments while capturing real-
life stereo images. Figures 4(a)—4(c) show the results asso-
ciated to several video frames obtained from three different
trials. Visual landmarks are matched using the descriptor and
scheme proposed in [24]. Represented proto-objects have
been stored in the WM when they were attended and tracked
between subsequently acquired frames. In the illustrated
frames, the robot is in motion, so all detected visual land-
marks are dynamic. As it has been aforementioned, they will

be forgotten after several fixations or when they disappear
from the field of view. The indexes marked on the figure
can be only employed to identify what landmarks have been
matched in each video sequence. Thus, they are not a valid
reference to match landmarks among the three illustrated
sequences. Unlike other methods, such as the Harris-Affine
and Hessian-Affine [31] techniques, this approach does
not rely on the extraction of interest point features or on
differential methods in a preliminary step. It thus provides
complementary image information, being more closely
related to those region detectors based on image intensity
analysis, such as the MSER and IBR approaches [31].
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Frame #16

Frame #31

Frame #11
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Frame #50

Frame #70

Frame #80

Frame #104

Frame #71

Frame #51

FIGURE 4: Visual landmarks detection results: (a) frames of video sequence #1, (b) frames of video sequence #2, and (c) frames of video
sequence #3. Representing ellipses have been chosen to have the same first and second moments as the originally arbitrarily shaped region
(matched landmarks inside of the same video sequence have been marked with the same index).

TaBLE 1: Gestures used to test the system

Gesture Description

Left up Point up using the left hand

Left Point left using the left hand

Right up Point up using the right hand
Right Point right using the right hand
Right forward Point forward using the right hand
Stop Move left and right hands forward
Hello Wave the right hand

Hands up Move left and right hands up

7.3. Testing the Approach in a Human Gesture Recognition
Framework. The experiments performed to test the human
gesture recognition stage involved different demonstrators
executing different gestures in a noncontrolled environment.
These users performed various executions of the upper-body
social gestures listed in Table 1. No specific markers nor

special clothes were used. As the stereo system has a limited
range, the demonstrator was told to stay at a distance close
to 1.7 meters from the cameras. The pre-attention stages
provides this module with a set of skin-coloured regions.
From this set of proto-objects, the faces of tentative human
demonstrators are detected using a cascade detector based
on the scheme proposed by Viola and Jones (see [30] for
details). Once faces are detected, the closest face is chosen.
The silhouette of the human demonstrator can be obtained
by using a fast connected component algorithm that takes
into account the information provided by the 3D position
of the selected face. Human hands are detected as the two
biggest skin colour regions inside this silhouette. It must
be considered that this silhouette may also contain objects
that are close to the human. The recognition system is
then executed to identify the performed gesture. Figure 5
shows human heads and hands obtained when the gesture
recognition system is executed on the previously described
system. As depicted, the system is able to detect human
faces in the field of view of the robot and it is also able
to capture the upper-body motion of the closer human at
human interaction rates.
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FIGURE 5: Human motion capture results: (a) left image of the stereo pair with head (yellow) and hands (green) regions marked, and (b) 3D

model showing captured pose.

8. Conclusions and Future Work

This paper has presented a visual attention model that
integrates bottom-up and top-down processing. It runs at
15 frames per second using 320 X 240 images on a standard
Pentium personal computer when there are less than five
inhibited (tracked) proto-objects. The model accomplishes
two selection stages, including a semiattentive computation
stage where the inhibition of return has been performed
and where a list of attended proto-objects is stored. This
list can be used as a working memory, being employed
by the behaviors to search for proto-objects which share
some desired features. At the pre-attentive stage, the visual
scene is divided into perceptually uniform blobs. Thus, the
model can direct the attention on proto-objects, similarly
to the behavior observed in humans. In order to deal with
dynamic scenarios, the inhibition of return is performed
by tracking the proto-objects. Specifically, this work uses
the mean-shift tracker. Finally, this attention mechanism
is integrated with an attentive stage that will control the
field of attention following two different behaviors. The first
behavior is a visual perception system which main goal is to
help in the learning process of a social robot. The second
one is a system to autonomously acquire visual landmarks
for mobile robot simultaneous localization and mapping.
We do not discuss in this paper the way these behaviors
emerge or how the task-dependent parameters of the model
are learnt. These issues will constitute our main future
work.
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