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We show that the structural similarity (SSIM) index, which is used in image processing to assess the similarity between an image
representation and an original reference image, can be formulated as a locally quadratic distortion measure. We, furthermore,
show that recent results of Linder and Zamir on the rate-distortion function (RDF) under locally quadratic distortion measures
are applicable to this SSIM distortion measure. We finally derive the high-resolution SSIM-RDF and provide a simple method to
numerically compute an approximation of the SSIM-RDF of real images.

1. Introduction

A vast majority of the work on source coding with a
fidelity criterion (i.e., rate-distortion theory) concentrates
on the mean-squared error (MSE) fidelity criterion. The
MSE fidelity criterion is used mainly due to its mathematical
tractability. However, in applications involving a human
observer it has been noted that distortion measures which
include some aspects of human perception generally perform
better than the MSE [1]. A great number of perceptual dis-
tortion measures are nondifference distortion measures and,
unfortunately, even for simple sources, their corresponding
rate-distortion functions (RDFs), that is, the minimum bit-
rate required to attain a distortion equal to or smaller
than some given value, are not known. However, in certain
cases it is possible to derive their RDFs. For example, for a
Gaussian process with a weighted squared error criterion,
where the weights are restricted to be linear time-invariant
operators, the complete RDF was first found in [2] and later
rederived by several others [3, 4]. Other examples include
the special case of locally quadratic distortion measures
for fixed rate vector quantizers and under high-resolution
assumptions [5], results which are extended to variable-rate
vector quantizers in [6, 7], and applied to perceptual audio
coding in [8, 9].

In [10], Wang et al. proposed the structural similarity
(SSIM) index as a perceptual measure of the similarity
between an image representation and an original reference
image. The SSIM index takes into account the cross-
corelation between the image and its representation as well
as the images first- and second-order moments. It has been
shown that this index provides a more accurate estimate of
the perceived quality than the MSE [1]. The SSIM index was
used for image coding in [11] and was cast in the framework
of �1-compression of images and image sequences in [12].
The relation between the coding rate of a fixed-rate uniform
quantizer and the distortion measured by the SSIM index
was first addressed in [13]. In particular, for several types of
source distributions and under high-resolution assumptions,
upper and lower bounds on the SSIM index were provided
as a function of the operational coding rate of the quantizer
[13].

In this paper, we present the high-resolution RDF for
sources with finite differential entropy and under an SSIM
index distortion measure. The SSIM-RDF is particularly
important for researchers and practitioners within the image
coding area, since it provides a lower bound on the number
of bits that any coder, for example, JPEG, and so forth,
will use when encoding an image into a representation,
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which has an SSIM index not smaller than a prespecified
level. Thus, it allows one to compare the performance
of a coding architecture to the optimum performance
theoretically attainable. The SSIM-RDF is nonconvex and
does not appear to admit a simple closed-form expression.
However, when the coding rate is high, that is, when each
pixel of the image is represented by a high number of bits,
say more than 0.5 bpp, then we are able to find a simple
expression, which is asymptotically (as the bit rate increases)
exact. For finite and small bit rates, our results provides an
approximation of the true SSIM-RDF.

In order to find the SSIM-RDF, we first show that
the SSIM index can be formulated as a locally quadratic
distortion measure. We then show that recent results of
Linder and Zamir [7] on the RDF under locally quadratic
distortionmeasures are applicable, and finally obtain a closed
form expression for the high-resolution SSIM-RDF. We end
the paper by showing how to numerically approximate the
high-resolution SSIM-RDF of real images.

2. Preliminaries

In this section, we present an important existing result
on rate-distortion theory for locally quadratic distortion
measures and also present the SSIM index.We will need these
elements when proving our main results, that is, Theorems 2
and 3 in Section 3.

2.1. Rate-Distortion Theory for Locally Quadratic Distortion
Measures. Let x ∈ Rn be a realization of a source vector
process and let y ∈ Rn be the corresponding reproduction
vector. A distortion measure d(x, y) is said to be locally
quadratic if it admits a Taylor series (i.e., it possesses
derivatives of all orders in a neighborhood around the points
of interest) and furthermore, if the second-order terms of its
Taylor series dominate the distortion asymptotically as y →
x (corresponding to the high-resolution regime). In other
words, if d(x, y) is locally quadratic, then it can be written
as d(x, y) = (x− y)TB(x)(x− y) +O(‖x − y‖3), where B(x)
is an input-dependent positive-definite matrix and where for
y close to x, the quadratic term (i.e., (x − y)TB(x)(x − y)) is
dominating [7]. We use upper case X when referring to the
stochastic process generating a realization x and use h(X) to
denote the differential entropy of X , provided it exists. The
determinant of a matrix B is denoted det(B) and E denotes
the expectation operator.

The RDF for locally quadratic distortion measures and
smooth sources was found by Linder and Zamir [7] and is
given by the following theorem.

Theorem 1 (see [7]). Suppose d(x, y) and X satisfy some mild
technical conditions (see conditions (a)–(g) in Section II.A in
[7]) , then

lim
D→ 0

[
R(D) +

n

2
log2

(
2πeD
n

)]

= h(X) +
1
2
E
[
log2(det(B(X)))

]
,

(1)

where R(D) is the RDF of X (in bits per block) under distortion
d(x, y), and h(X) denotes the differential entropy of X .
(The distribution of image coefficients and transformed image
coefficients of natural images can in general be approximated
sufficiently well by smooth models [14, 15]. Thus, the regularity
conditions of Theorem 1 are satisfied for many naturally
ocurring images.)

2.2. The Structural Similarity Index. Let x, y ∈ Rn where n ≥
2. We define the following empirical quantities: the sample
mean μx � (1/n)

∑n−1
i=0 xi, the sample variance σ2x � (1/(n −

1))(x−μx)
T(x−μx) = (xTx/(n−1))− (nμ2x/(n−1)), and the

sample cross-variance σxy = σyx � (1/(n− 1))(x − μx)
T(y −

μy) = (xT y/(n− 1))− (nμxμy/(n− 1)). We define μy and σ2y
similarly.

The SSIM index studied in [10] is defined as.

SSIM
(
x, y

)
�

(
2μxμy + C1

)(
2σxy + C2

)
(
μ2x + μ2y + C1

)(
σ2x + σ2y + C2

) , (2)

where Ci > 0, i = 1, 2. The SSIM index ranges between
−1 and 1, where positive values close to 1 indicate a small
perceptual distortion. We can define a distortion “measure”
as one minus the SSIM index, that is,

d
(
x, y

)
� 1−

(
2μxμy + C1

)(
2σxy + C2

)
(
μ2x + μ2y + C1

)(
σ2x + σ2y + C2

) , (3)

which ranges between 0 and 2 and where a value close to 0
indicates a small distortion. The SSIM index is locally applied
to N × N blocks of the image. Then, all block indexes are
averaged to yield the SSIM index of the entire image.We treat
each block as an n-dimensional vector where n = N2.

3. Results

In this section, we present the main theoretical contributions
of this paper. We will first show that d(x, y) is locally
quadratic and then use Theorem 1 to obtain the high-
resolution RDF for the SSIM index.

Theorem 2. d(x, y), as defined in (3), is locally quadratic.

Proof. See the appendix.

Theorem 3. The high-resolution RDF R(D) for the source X
under the distortion measure d(x, y), defined in (3) and where
h(X) <∞ and 0 < E‖X‖2 <∞, is given by

lim
D→ 0

[
R(D) +

n

2
log2(2πeD)

]

= h(X) +
1
2
E
[
(n− 1)log2(a(X)) + log2(a(X) + b(X)n)

]

+
n

2
log2(n),

(4)
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where a(X) and b(X) are given by

a(X) = 1
n− 1

· 1
2σ2x + C2

, (5)

b(X) = 1
n2
· 1
2μ2x + C1

− 1
n(n− 1)

· 1
2σ2x + C2

. (6)

Proof. Recall from Theorem 2 that d(x, y) is locally quadrat-
ic. Moreover, the weighting matrix B(X) in (1), which is
also known as a sensitivity matrix [5], is given by (A.8), see
the appendix. In the appendix, it is also shown that B(x) is
positive definite since a(x) > 0, a(x) + b(x)n > 0, for all x,
where a(x) and b(x) are given by (5) and (6), respectively.
From (A.9), it follows that

E
[
log2(det(B(X)))

]

= E
[
(n− 1)log2(a(X)) + log2(a(X) + b(X)n)

]
.

(7)

At this point, we note that the main technical conditions
required for Theorem 1 to be applicable is boundedness in
the following sense [7]: h(X) < ∞, 0 < E‖X‖2 < ∞,
E[log2(det(B(X)))] < ∞, and E(trace{B−1(X)})3/2 < ∞
and furthermore uniformly bounded third-order partial
derivatives of d(X ,Y). The first two conditions are satisfied
by the assumptions of the Theorem. The next two conditions
follow since all elements of B(x) are bounded for all
x (see the proof of Theorem 2). Moreover, due to the
positive stabilization constants C1 and C2, trace{B(x)}−1 is
clearly bounded. Finally, it was established in the proof of
Theorem 2 that the third-order derivatives of d(X ,Y) are
uniformly bounded. Thus, the proof now follows simply by
using (7) in (1).

3.1. Evaluating the SSIM Rate-Distortion Function. In this
section we propose a simplemethod for estimating the SSIM-
RDF in practice based on real images. Conveniently, we
do not need to encode the images in order to find their
corresponding high-resolution RDF. Thus, the results in this
section (as well as the results in the previous sections) are
independent of any specific coding architecture.

In practice, the source statistics are often not available
and must therefore be found empirically from the image
data. Towards that end, one may assume that the individual
vectors {x(i)}Mi=1 (where x(i) denotes the ith N ×N subblock
of the image and M denotes the total number of subblocks
in the image) of the image constitute approximately inde-
pendent realizations of a vector process. In this case, we
can approximate the expectation by the empirical arithmetic
mean, that is,

E
[
log2(det(B(X)))

]
≈ 1

M

M∑
i=1

(n− 1)log2(a(x(i)))

+ log2(a(x(i)) + b(x(i))n),

(8)

where a(x(i)) and b(x(i)) indicates that the functions a
and b defined in (5) and (6) are used on the ith subblock

Table 1: Estimated (1/2n)E[log2(det(B(X)))] + log2(N) values for
some 512× 512 8-bit grey images and block sizes n = N2,N = 4, 8,
and 16.

Image N = 4 N = 8 N = 16

Baboon −4.57 −4.77 −5.00
Pepper −3.16 −3.51 −4.12
Boat −3.66 −3.99 −4.45
Lena −3.13 −3.49 −4.08
F16 −2.83 −3.14 −3.65

Table 2: Estimated (1/n)h(x) (in bits/dim or equivalently bits per
pixel (bpp)) for different 512 × 512 8-bit grey images and block
sizes n = N2, N = 4, 8 and 16.

Image N = 4 N = 8 N = 16

Baboon 6.18 6.06 6.03

Pepper 4.75 4.55 4.49

Boat 5.10 4.92 4.88

Lena 4.63 4.41 4.38

F16 4.32 4.14 4.13

x(i). Several estimates of (1/2n)E[log2(det(B(X)))]+log2(N)
using (8) are shown in Table 1, for various images commonly
considered in the image processing literature.

In order to obtain the high-resolution RDF of the image,
according to Theorem 3, we also need the differential entropy
h(X) of the image, which is usually not known a priori in
practice. Thus, we need to numerically estimate h(X), for
example, by using the average empirical differential entropy
over all blocks of the image. In order to do this, we apply the
two-dimensional KLT on each of the subblocks of the image
in order to reduce the correlation within the subblocks(since
the KLT is an orthogonal transform, this operation will
not affect the differential entropy.) Then we use a nearest-
neighbor entropy-estimation approach to approximate the
marginal differential entropies of the elements within a
subblock [16]. Finally, we approximate h(X) by the sum of
the marginal differential entropies, which yields the values
presented in Table 2.

4. Simulations

In this section, we use the JPEG codec on the images and
measure the corresponding SSIM values of the reconstructed
images. In particular, we use the baseline JPEG coder
implementation available via the imwrite function in Matlab.
Then, we compare these operational results to the informa-
tion theoretic estimated high-resolution SSIM RDF obtained
as described in the previous section. We are interested
in the high-resolution region, which corresponds to small
d(x, y) values (i.e., values close to zero) or equivalently large
SSIM values (i.e., values close to one). Figure 1 shows the
high-resolution SSIM-RDF for d(x, y) values below 0.27,
corresponding to SSIM values above 0.73. Notice that the
rate becomes negative at large distortions (i.e., small rates),
which happens because the high-resolution assumption is
clearly not satisfied and the approximations are therefore
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Figure 1: High-resolution RDF under the similarity measure
d(x, y) = 1 − SSIM(x, y) for different images and using an 8 × 8
block size.

not accurate. Thus, it does not make sense to evaluate the
asymptotic SSIM-RDF of Theorem 3 at large distortions.

5. Discussion

The information-theoretic high-resolution RDF character-
ized by Theorem 3 constitutes a lower bound on the opera-
tionally achievableminimum rate for a given SSIMdistortion
value. As discussed in [17], achieving the high-resolution
RDF could require the use of optimal compounding, which
may not be feasible in some cases. Thus, the questions of
whether the RDF obtained in Theorem 3 is achievable and
how to achieve it, remain open. Nevertheless, we can obtain
a loose estimate of how close a practical coding scheme
could get to the high-resolution SSIM-RDF by evaluating the
operational performance of, for example, the baseline JPEG.
Figure 2 shows the operational RDF for the JPEG coder
used on the Lena image and using block sizes of 8 × 8. For
comparison, we have also shown the SSIM-RDF. It may be
noticed that the operational curve is up to 2 bpp above the
corresponding SSIM-RDF (a similar behavior is observed for
the other four images in the test set).

The gap between the SSIM-RDF and the operational RDF
based on JPEG encoding as can be observed in Figure 2 can
be explained by the following observations. First, the JPEG
coder aims at minimizing a frequency-weighted MSE rather
than maximizing the SSIM index. Second, JPEG is a practical
algorithm with reduced complexity and is therefore not rate-
distortion optimal even for the weighted MSE. Third, the
differential entropy as well as the expectation of the log
of the determinant of the sensitivity matrix are empirically
found—based on a finite amount of image data. Thus, they
are only estimates of the true values. Finally, the SSIM-RDF
becomes exact in the asymptotic limit where the coding rate
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Figure 2: Operational RDF using the JPEG coder on the Lena image
under the similarity measure d(x, y) = 1 − SSIM(x, y) for block
size 8 × 8. For comparison we have also shown the high-resolution
SSIM-RDF (thin line).

diverges towards infinity (i.e., for small distortions). At finite
coding rates, it is an approximation. Nevertheless, within
these limitations, the numerical evaluation of the SSIM-
RDF presented here suggests that significant compression
gains could be obtained by an SSIM-optimal image coder,
at least at high-rate regimes. To obtain further insight into
this question, the corresponding RDF under MSE distortion
(MSE-RDF) for the Lena image is shown in Figure 3. We can
see that the excess rate of JPEG with respect to the MSE-RDF
at high rates is not greater than 1.4 bpp. This suggests that
a JPEG-like algorithm aimed at minimizing SSIM distortion
could reduce at least a fraction of the bit rate gap seen in
Figure 2.

It is interesting to note that, in the MSE case, we have
B(x) = I , which implies that log2(|det(B(x))|) = 0.
Thus, the difference between the SSIM-RDF and the MSE-
RDF, under high-resolution assumptions, is constant (e.g.,
independent of the bit-rate). In fact, if the MSE is measured
per dimension, then the rate difference is given by the values
in Table 1, that is, (1/2n)E[log2(det(B(X)))] + log2(N). It
follows that the SSIM-RDF is simply a shifted version of the
MSE-RDF at high resolutions.Moreover, the gap between the
curves illustrates the fact that, in general, a representation of
an image which is MSE optimal is not necessarily also SSIM
optimal.

6. Conclusions

We have shown that, under high-resolution assumptions, the
RDF for a range of natural images under the commonly
used SSIM index has a simple form. In fact, the RDF only
depends upon the differential entropy of the source image
as well as the expected value of a function of the sensitivity
matrix of the image. Thus, it is independent of any specific
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Figure 3: Operational RDF using the JPEG coder on the Lena
image under the MSE distortion measure. For comparison we
have also shown the high-resolution MSE-RDF (thin line). The
horizontal axes on the top and the bottom show the PSNR andMSE,
respectively.

coding architecture. Moreover, we also provided a simple
method to estimate the SSIM-RDF in practice for a given
image. Finally, we compared the operational performance of
the baseline JPEG image coder to the SSIM-RDF and showed
by approximate numerical evaluations that potentially sig-
nificant perceptual rate-distortion improvements could be
obtained by using SSIM-optimal encoding techniques.

Appendix

Proof of Theorem 2

We need to show that the second-order terms of the Taylor
series of d(x, y) are dominating in the high-resolution limit
where y → x. In order to do this, we show that the Taylor
series coefficients of the zero- and first-order terms vanish
whereas the coefficients of the second- and third-order terms
are nonzero. Then, we upper bound the remainder due
to approximating d(x, y) by its second-order Taylor series.
This upper bound is established via the third-order partial
derivatives of d(x, y). We finally show that the second-order
terms decay more slowly towards zero than the remainder as
y tends to x.

Let us define f � ((2μxμy + C1)/(μ2x + μ2y + C1)) and g �
((2σxy + C2)/(σ2x + σ2y + C2)) and let h = f g. It follows that
d(x, y) = 1 − h and we note that the second-order partial
derivatives with respect to yi and yj for any i, j, are given by

∂2h

∂yi∂yj
= g

∂2 f

∂yi∂yj
+ f

∂2g

∂yi∂yj
+

∂ f

∂yi

∂g

∂yj
+

∂ f

∂yj

∂g

∂yi
.

(A.1)

Clearly f |y=x = g|y=x = 1, where (·)|y=x indicates that
the expression (·) is evaluated at the point y = x. Since
∂μy/∂yi = 1/n, ∂σ2y /∂yi = (2/(n−1))(yi−μy), and ∂σyx/∂yi =
(1/(n − 1))(xi − μx), it is easy to show that ∂ f /∂yi|y=x =
∂g/∂yi|y=x = 0, for all i. Thus, the coefficients of the zero-
and first-order terms of the Taylor series of d(x, y) are
zero. Moreover, it follows from (A.1) that ∂2h/∂yi∂yj|y=x =
∂2 f /∂yi∂yj|y=x + ∂2g/∂yi∂yj|y=x, for all i, j. With this, and
after some algebra, it can be shown that

∂2h

∂yi∂yj

∣∣∣∣∣
y=x

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 2
n2

1
2μ2x + C1

+
2

n(n− 1)
1

2σ2x + C2
if i /= j,

− 2
n2

1
2μ2x + C1

− 2
n

1
2σ2x + C2

if i = j.

(A.2)

We now let h(m) denote the mth partial derivative of h
with respect to some m variables and note that from Leibniz
generalized product rule [18] it follows that h(3) = g f (3) +
3g(1) f (2) + 3g(2) f (1) + g(3) f . When evaluated at y = x, this
reduces to h(3)|y=x = f (3)|y=x + g(3)|y=x since f (1)|y=x and
g(1)|y=x are both zero. For the third-order derivatives of f ,
we have, for all i, j, k,

∂3 f

∂yi∂yj∂yk

∣∣∣∣∣
y=x

= 12
n3

μx(
2μ2x + C1

)2 . (A.3)

Moreover, if i /= j /= k and i /= k, we obtain

∂3g

∂yi∂yj∂yk

∣∣∣∣∣
y=x

= − 4

n(n− 1)2
1(

2σ2x + C2
)2

×
[(
xi − μx

)
+
(
xj − μx

)
+
(
xk − μx

)]
,

(A.4)

whereas if any two indices are equal, for example, i /= j = k,
we obtain

∂3g

∂yi∂yj∂yj

∣∣∣∣∣
y=x

= − 8

n(n− 1)2
xj − μx(
2σ2x + C2

)2

+
4

(n− 1)2

(
xi − μx

)
(1− 1/n)(

2σ2x + C2
)2 .

(A.5)

Finally, if i = j = k, we obtain

∂3g

∂yi∂yi∂yi

∣∣∣∣∣
y=x

= 12

(n− 1)2

(
xi − μx

)
(1− 1/n)(

2σ2x + C2
)2 . (A.6)

LetB be an n-dimensional ball of radius ε centered at x,
let ξ = y − x, and let T2(ξ) be the second-order Taylor series
of d(x, x + ξ) centered at x (i.e., at ξ = 0). It follows that

T2(ξ) � −1
2

∑
i, j

∂2h
(
x, y

)
∂yi∂yj

∣∣∣∣∣∣
y=x

ξiξ j = ξTB(x)ξ, (A.7)
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where B(x) is given by half the second-order partial deriva-
tives of d(x, y), that is (see (A.2)),

B(x) = 1
n2

1
2μ2x + C1

⎡
⎢⎢⎢⎢⎣

1 · · · 1

...
. . .

...

1 · · · 1

⎤
⎥⎥⎥⎥⎦

− 1
n

1
2σ2x + C2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1
n− 1

· · · 1
n− 1

1
n− 1

−1 · · · 1
n− 1

...
...

. . .
...

1
n− 1

1
n− 1

· · · −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(A.8)

which has full rank and is well defined for 1 < n < ∞. This
can be rewritten as

B(x) = a(x)I + b(x)J , (A.9)

where I is the identity matrix, J is the all-ones matrix,

a(x) = 1
n− 1

1
2σ2x + C2

, (A.10)

b(x) = 1
n2

1
2μ2x + C1

− 1
n(n− 1)

1
2σ2x + C2

. (A.11)

Thus, B(x) has eigenvalues λ0 = a(x) + b(x)n and λi = a(x),
i = 1, . . . ,n− 1. Since B(x) is symmetric, the quadratic form
ξTB(x)ξ is lower bounded by

ξTB(x)ξ ≥ λmin
∥∥ξ∥∥2, (A.12)

where λmin = min{λi}n−1i=0 = min{a(x) + nb(x), a(x)} > 0,
which implies that B(x) is positive definite.

On the other hand, it is known from Taylor’s theorem
that for any y ∈B, the remainderR2(ξ), where

R2(ξ) � d(x, x + ξ)− T2(ξ), (A.13)

is upper bounded by

∣∣R2(ξ)
∣∣ < φ

∑
i, j,k

∣∣∣ξiξ jξk
∣∣∣, (A.14)

where

φ ≤ sup
y∈B

∣∣∣∣∣
∂3h

∂yi∂yj∂yk

∣∣∣∣∣, (A.15)

that is, φ is upper bounded by the supremum over the set of
third-order coefficients of the Taylor series of h. Since for real
images, the pixel values are finite, and since Ci > 0, i = 1, 2, it
follows from (A.3)–(A.6) that the third-order derivatives are
uniformly bounded and φ is therefore finite. Moreover, for

all ξ such that ‖ξ‖2 ≤ ε, it follows using (A.7), (A.12), and
(A.14) that

lim
‖ξ‖→ 0

∣∣R2(ξ)
∣∣∣∣T2(ξ)∣∣ ≤ lim

‖ξ‖→ 0

(
maxi∈{1,...,n}

∣∣ξi∣∣3
)
n3φ

λmin
∥∥ξ∥∥2 (A.16)

≤ lim
‖ξ‖→ 0

n3φ

λmin

∥∥ξ∥∥3∥∥ξ∥∥2 (A.17)

= lim
‖ξ‖→ 0

n3φ

λmin

∥∥ξ∥∥ = 0, (A.18)

where (A.16) follows since |ξiξ jξk| ≤ maxi∈{1,...,n}|ξi|3, and
the sum in (A.14) runs over all possible combinations of
third-order partial derivatives of a vector of length n, that is,∑

i, j,k 1 = n3. Furthermore, (A.17) follows by use of (A.12)

and the fact that |ξi|3 < ‖ξ‖3. Finally, (A.18) follows from
the fact that φ is bounded by (A.15). Since the limit of (A.18)
exists and is zero, we deduce that the second-order terms of
the Taylor series of d(x, y) are asymptotically dominating as
y tends to x. This completes the proof.
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