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Current methods for estimating event-related potentials (ERPs) assume stationarity of the signal. Empirical Mode Decomposition
(EMD) is a data-driven decomposition technique that does not assume stationarity. We evaluated an EMD-based method for
estimating the ERP. On simulated data, EMD substantially reduced background EEG while retaining the ERP. EMD-denoised
single trials also estimated shape, amplitude, and latency of the ERP better than raw single trials. On experimental data, EMD-
denoised trials revealed event-related differences between two conditions (condition A and B) more effectively than trials lowpass
filtered at 40 Hz. EMD also revealed event-related differences on both condition A and condition B that were clearer and of longer
duration than those revealed by low-pass filtering at 40 Hz. Thus, EMD-based denoising is a promising data-driven, nonstationary
method for estimating ERPs and should be investigated further.

1. Introduction

Event-related potentials (ERPs) are changes in the ongoing
electroencephalographic (EEG) signal related to processing
of a stimulus [1]. The amplitude of ERP is usually much
lower than that of the background EEG and is hard to
visualise at the level of single trials. Because of this low
signal-to-noise ratio, a number of single-trials time-locked
to the presentation of the stimulus are averaged to obtain
an estimate of the ERP. Single-subject averages are first
obtained, and then, the single-subject averages are averaged
across subjects to obtain a Grand Average. This procedure
has a number of disadvantages. Firstly, when the signal-to-
noise ratio (SNR) is particularly low, the number of single
trials per participant can be high, leading to long experiment
times and participant fatigue [2]. Secondly, the conventional
averaging procedure is often unable to detect effects when the
number of trials is low. An example of such a situation arises
when examining differences between ERPs from trials when
the subject responded correctly to when he/she responded
incorrectly, and so forth. Thirdly, averaging does not reveal
trial-to-trial variations in amplitude and/or latency of ERP.
Thus, there is a need for methods which improve the

SNR of single trials thereby enabling subtle effects between
conditions to be detected.

A number of methods have been proposed to perform
such a filtering function. Model-based approaches using
autoregressive models (AR) and autoregressive moving aver-
age models (ARMA) have been proposed [4, 5]. Approaches
based on linear transforms such as Independent Component
Analysis (ICA) and Principal Component Analysis (PCA)
have also been applied [6-8] as have neurofuzzy techniques
and methods based on the Wiener formalism [9, 10].
However, all these methods assume that the frequency
content of the ERP is stationary with respect to time, while
the ERP is recognised to actually be nonstationary in most
cases [11].

A few time-varying denoising methods have also been
proposed. de Weerd and Kap [12] introduced a time-varying
Wiener filter while [11, 13] use the wavelet transform to
obtain a multiresolution decomposition from which they
each employ different criteria to select the event-related
wavelet coefficients. Recently, [14] proposed a variant of
this approach by applying wavelet decomposition to phase-
space trajectories of raw single trials. While these methods
do not assume stationarity, they do implicitly assume



knowledge of meaningful temporal scales in the data. This
implicit knowledge is used to set the number of levels of
decomposition for the wavelet analysis. Since the EEG is
considered to contain energy at five different temporal scales
corresponding to the gamma, beta, alpha, delta, and theta
frequencies, the number of levels of wavelet decomposition
is usually set to five.

However, this partitioning of temporal scales is some-
what arbitrary. Finer distinct temporal scales such as upper-
alpha frequencies and lower-alpha frequencies have been
found [15]. Hence, there is a need for a method that is data
driven in that it decomposes the data according to time scales
intrinsic to the data itself rather than making assumptions
about meaningful temporal scales. In addition, the method
should allow for the signal to be nonstationary.

Empirical Mode Decomposition (EMD) is a data driven
method that has been used to analyse data from such diverse
domains as meteorology and finance [16, 17]. It allows
for the signal to be nonstationary. In biosignal analysis, it
has been used for the analysis of EMG (electromyographic
activity) in [18]. The possibility of denoising using partial
reconstructions of the EMD-based decomposition was first
proposed in [19]. In [20, 21] EMD-based denoising was
shown to compare favourably against mean and median
denoising and give better results than wavelet denoising for
some signal classes. The evaluations were done on different
classes of artificial signals and ECG (electrocardiographic)
data. In the field of neuroscience, it has been used to estimate
the ERP on high SNR Local Field Potentials (LFPs) data
[22]. It has also been used in conjunction with the Hilbert
Transform to detect transient periods of synchronisation in
neuronal activity [23]. A multichannel extension of EMD has
been applied to EEG responses from steady-state stimulation
and shown to be able to estimate onset and offset of the
steady-state response and also estimate the SSVEP (steady-
state visual evoked potential) due to the stimulation [24,
25]. Recently, [26] demonstrated promising results from
a procedure applying wavelet denoising to the individual
modes from an EMD-based decomposition. The current
paper presents results from a study evaluating the feasibility
of using EMD for denoising event-related potentials in a low
SNR environment.

Section 2 contains a description of the EMD technique.
Section 3 presents details of how the simulated data were
generated and how the experimental data were collected.
Further, it outlines the analyses to be conducted on simulated
and experimental data. Section 4 presents results of the
analyses on simulated and experimental data. Section 5
discusses the results obtained and their implications, and
Section 6 summarises the findings.

2. Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is a data driven
method which extracts oscillatory modes intrinsic to the
data by identifying time scales characteristic of individual
oscillatory modes. It decomposes a signal into a small
number of Intrinsic Mode Functions (IMFs) which represent
the oscillatory modes contained in the data. The counterpart
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of the IMF in Fourier analysis is the simple harmonic
component. However, the IMF is much more general than
the harmonic component since it can be modulated both
in amplitude and frequency while a harmonic component
has constant amplitude and frequency. The amplitude and
frequency modulations are possible because the decompo-
sition depends on the local characteristic time scale of the
data. Because of this flexible nature of the decomposition,
the IMFs are often physically meaningful. Also, because the
decomposition depends on the local characteristic time scale,
EMD is suitable for application to nonstationary signals. The
working of EMD is described in detail in [3].
An IMF is identified by two criteria.

(i) The number of extrema and number of zero-
crossings must differ at most by one. This criterion
eliminates riding waves and ensures a meaningful
instantaneous frequency.

(ii) At every discrete time point, the mean of the upper
and lower envelopes should be zero. This ensures that
the IMF is symmetric about the x-axis and eliminates
fluctuations in the instantaneous frequency that
might otherwise have been present.

IMFs are identified and extracted through a sifting process.
The sifting process consists of a number of steps:

(i) identify all extrema of the signal, X (t);

(ii) interpolate between all maxima to get upper enve-
lope;

(iii) interpolate between all minima to get lower envelope;

(iv) obtain the mean of the upper and lower envelopes,
mi.

The first component, h;, should be
hy = X(t) — m;. (1)

Ideally, h; should give the first IME, but in practise, there is
often overshoot or undershoot, and either or both criteria for
IMF are not satisfied. When this happens, h; is treated as the
data such that

h11 = ]’l] — Mmqi. (2)

This is repeated k times until iy is an IMF or until the
stopping criterion for the sifting process is reached

hik = hi-1) — mk. (3)

For the implementation of EMD that we used, the sifting
process was stopped based on a double threshold criterion.
The stopping criterion was formulated as a way of allowing
for locally large excursions in the mean while ensuring
globally small fluctuations. The criterion is described in
detail in [27].

Then, hyj is designated as the first IMF from the data:

1 = hlk- (4)
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Opverall, ¢; should contain the highest frequency component
of the signal. ¢; is then subtracted from the original signal,
X(t) to give the residual, 7;:

rn=X(t) —ci. (5)

Since r; might contain further IMFs, it is subject to the same
sifting process. This process can be iteratively applied to all
subsequent residuals such that

'n = Tp-1 — Cy. (6)

The extraction of IMFs stops when r,, becomes a monotonic
function from which no more IMFs can be extracted. Thus,
it follows that

X(t) = icj + 7. (7)
j=1

3. Methodology

3.1. Simulated Data. Tests were conducted on simulated
data, to evaluate the denoising performance of EMD. Since
the data were artificially generated, peak amplitude, peak
latency, and morphology of ERP are known. Hence, denois-
ing performance could be evaluated accurately.

3.1.1. Data Generation. For generating artificial ERP data,
the additive model of ERP generation was assumed, which
specifies that the ERP is additive to the background EEG
[28]. Background EEG has previously been shown to be
well modeled by an autoregressive (AR) process [29]. AR
coefficients for a 3rd-order AR process were estimated by the
Burg method, by fitting to a 1-second segment of background
EEG obtained from the dataset in [30]. An order of 3
was chosen since it marked the steepest fall when forward
prediction error was plotted against model order. The AR
process was described by

x(t) = 1.6x(t — 1) + L.1x(t — 2) + 0.4x(t — 3) + r(t), (8)

where x(t) was the AR-process and r(t) was the Gaussian
white noise process driving the AR system.

The ERP was a smoothed version of a P300 obtained by
averaging 48 target trials from a visual oddball experiment
[30]. The ERP was scaled such that its peak amplitude was
5 uV. Figure 1 displays the ERP over 1 second while Figure 2
shows a typical artificial raw single trial with the ERP added
to the background EEG.

100 raw single trials were generated in this way with the
standard deviation of the noise process adjusted to give an
overall SNR of 1. SNR was calculated as the ratio of the
variance of the ERP to the average variance of the 100 trials
of background EEG.

3.1.2. EMD Denoising. Each artificial raw single-trial was
decomposed using EMD. To obtain the EMD-denoised single
trial, it is necessary to identify those IMFs carrying event-
related energy and calculate their sum. Since the ERP is a
low-frequency signal, we included all IMFs having dominant
frequency below a threshold in the EMD-based single-trial
reconstruction. We call this the threshold frequency ( f;).
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Figure 1: Scaled and smoothed version of an ERP called the
P300 obtained by averaging 48 target trials from a visual oddball
experiment [3].
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FiGure 2: Typical artificial raw single-trial with ERP added onto
background EEG. SNR = 1. The P300 ERP is hardly visible.

Selecting Threshold Frequency (f;). To develop a quantitative
criterion for selecting a threshold frequency, we assumed a
signal model

u(t) = s(t) +n(t), )

where u(t) is a raw single trial and s(¢) is the event-related
potential (ERP) additive to the background EEG, n(t). The
performance of a denoising method has two aspects—
the amount by which it reduces variance due to noise
(background EEG) and the amount of variance due to signal
(ERP) it retains.

A measure of noise reduction, Ny, can be obtained by
calculating the reciprocal of average variance of the denoised
single trials, x;—;, n with higher values meaning better noise
reduction. Assuming that the ERP is fully present in every



denoised single trial, Ny reflects the variance due to the
background EEG removed by the denoising method

1

T UNSY, Var(x) (10)

Ny

A measure of signal retention, Sf, can be calculated as
ratio of variance of denoised average, Xp,, to variance of
raw average, Xy, with higher values meaning better signal
retention. Assuming that average of raw trials is the true ERP,
Sy reflects the variance due to ERP retained in a denoised
single trial

Var (X fo )
= . (11)

Var (X fR)
Note that for a denoising method which does not discrim-
inate between signal (ERP) and noise (background EEG),
Ny and Sy are opposed to each other—high (low) Ny would
imply a low (high) S¢. Thus, a measure of overall denoising
performance, Dy, is given by combining Ny and Sy through
multiplication

Dy = NySy. (12)

Dy reflects the extent to which the ERP has been retained
while also reducing the background EEG. It is a measure of
the ability of the denoising method to discriminate between
signal and noise.

This is illustrated by contrasting two situations—when
the denoising method attenuates a large proportion of signal
while retaining a large proportion of the noise, Ny and Sy will
be low and hence Dy will also be low. On the contrary, when
the denoising method attenuates noise and retains signal, Ny
and Sy will be high and hence Dy will also be high.

Based on this criterion, we chose f; as that corresponding
to maximum Dy for frequencies from 1 to 10 Hz. A range
from 1 to 10 Hz was chosen because the ERP is known to be
a low-frequency waveform [13]:

i = max(Dy-1. ). 13

For the simulated dataset, f; according to (13) was 1Hz
as can be seen from Table 1. Figure 3 shows a close
correspondence between EMD-denoised average and raw
average, suggesting that most of the variance due to the signal
has been retained in spite of the denoising

3.1.3. Analysis. To evaluate the performance of EMD-de-
noising on simulated data, with f; = 1 Hz, a number of tests
were conducted. The SNR of the dataset with raw trials was
compared to the SNR of the denoised dataset. To further
investigate denoising performance, we calculated measures
reflecting the two aspects of denoising—noise reduction and
signal retention.

(a) Noise Reduction Percentage. The average variance due to
noise on each raw single trial, NVg, can be calculated by
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TaBLE 1: Denoising performance as function of threshold fre-
quency.

Threshold frequency (Hz) Denoising performance (units)
1 0.133
0.129
0.119
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0.110
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0.104
0.101
0.099
0.097
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Ficure 3: EMD-denoised average superimposed on raw average.
Threshold frequency was 1 Hz, calculated according to the criterion
in (12).

subtracting the ERP from each raw single trial and calcu-
lating the average residual variance. The average variance
due to noise on each EMD-denoised single trial, NVp, can
be calculated by subtracting EMD-denoised average from
each EMD-denoised single trial and calculating the average
variance of the resultant residual. The noise reduction
percentage was calculated as

(14)

NR% = 100(1 - NVD).

NVg

(b) Signal Retention Percentage. The signal retention per-
centage was calculated as the ratio between variance of
denoised average, Xp, to variance of raw average, Xg, mul-
tiplied by 100

(15)

SR% = 100(Var(XD) )

Var(Xg)
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Since the ERP waveform was known for the simulated data,
Root Mean Square Error (RMSE), Amplitude deviation, and
Latency deviation were used to assess the method’s ability
to estimate shape, amplitude, and latency of the single-
trial ERP, respectively. Since the simulated data had similar
properties to experimental ERP data, it was considered that
these results would reflect the method’s ability to estimate
shape, amplitude, and latency of a single trial ERP on
experimental data as well.

(c) Root Mean Square Error (RMSE). Since in the simulated
data, we have knowledge about the time course of the ERP, we
used RMSE to evaluate the extent to which both the EMD-
denoised trials and raw single trials accurately represented
the ERP. If x is a single trial from either EMD or raw trials
and xr is the reference ERP,

M L 2
RMSE = \/Zi:l (XJIVI Xref) , (16)

where M is the number of samples for each single trial. Dis-
tributions corresponding to EMD and raw trials were then
compared using either paired-samples t-test or Wilcoxon
signed-rank test depending on whether both distributions
were normal or not. Normality was tested for using Lilliefors
test. Lower RMSE indicates better estimation of ERP time
course.

(d) Amplitude Deviation. The extent to which peak ampli-
tude is estimated correctly was measured for each EMD-
denoised single trial and raw single trial using the metric of
amplitude deviation

Oamp = |Xamp — k\amp > (17)

where X,mp is actual peak amplitude while Xymp is the
observed peak amplitude. Since this metric was calculated
on artificial data, xump was known to be 5 uV. fcamp was cal-
culated using peak-picking, choosing the maximum positive
voltage value. Distributions corresponding to EMD and raw
trials were then compared using either paired-samples t-test
or Wilcoxon signed-rank test depending on whether both
distributions were normal or not. Normality was tested for
using Lilliefors test. A smaller amplitude deviation indicates
better amplitude estimation.

(e) Latency Deviation. The extent to which peak latency is
estimated correctly was measured for each EMD-denoised
single trial and raw single trial using the metric of latency
deviation

Olat = |x1at - k\lat | > (18)

where xjy; is the actual peak latency while X, is the observed
peak latency. xj,, was known to be 486 ms while Xj, was
calculated as the latency corresponding to the observed peak
amplitude. Distributions corresponding to EMD and raw
trials were then compared using either paired-samples ¢-test
or Wilcoxon signed-rank test depending on whether both

distributions were normal or not. Normality was tested for
using Lilliefors test. A smaller latency deviation indicates
better latency estimation.

3.2. Experimental Data. In addition to comparing EMD-
denoised trials and raw trials on simulated data, we also
evaluated EMD on experimental data.

3.2.1. Data. The experimental data was from an ERP study
on language processing in the Basque language. Number of
participants was 25, all native Basque speakers. Condition
A contains grammatically correct sentences and is the
control condition. Condition B contains sentences in which
the licensor (e.g., negation) of a Negative Polarity Item
(NPI) is inaccessible. For each condition, 50 sentences were
presented to each subject word by word. At the end of each
sentence, participants were asked to indicate whether it was
grammatically correct. Participants response to the NPI of
each sentence was analysed.

ERP data was recorded on a 64-electrode array. The
sampling frequency was 250 Hz. All trials were baseline
corrected by subtracting value at each sample by mean of the
activity 200 ms prestimulus.

3.2.2. EMD Denoising

(a) Electrode Selection. The analysis was to be performed
on single-channel data, hence it was necessary to choose
an electrode which gives good separation between condition
A and condition B. To do this, mean effect size between
baseline-corrected raw trials from conditions A and B was
calculated for each electrode. The mean was calculated across
effect sizes for each sample from stimulus onset up to 1s
poststimulus.

Effect size, d, is calculated according to the formula

d="1"" (19)
s

where x, is average of the first sample of a given variable and
X is average of the second sample of the same variable. The

pooled standard deviation s is given by
. \/(”1 —D)si+(ny — 1)5%, (20)

(m +mny)

where n; is the number of items in the first sample of
standard deviation s; and n, is the number of items in the
second sample of standard deviation, s,.

Based on this criterion, the C2P electrode was identified
as providing the best separation between condition A and
condition B. Subsequent analysis was thus confined to C2P
electrode.

(b) Selecting Threshold Frequency ( f;). It is also necessary to
choose a threshold frequency (f;) as parameter for use by
EMD. EMD will include all IMFs with dominant frequencies
below this threshold frequency, for single-trial reconstruc-
tion. The approach to selecting threshold frequency was



similar to that applied on the simulated data as specified in
(13). However, since there are two conditions in this case,
denoising performance was calculated for each condition at
each threshold frequency between 1 and 10 Hz. The selected
threshold frequency was the one which had the highest
sum of values for denoising performance, Dy, which was
estimated for condition A and condition B separately. The
other difference from the selection of f; in simulated data
was that the 25 single-subject averages were used in this
case rather than using single trials. This was because single-
subject averages are of higher SNR, thereby potentially giving
more accurate estimation of optimal threshold frequency.
The selected threshold frequency was 3 Hz for this dataset.
As seen in Figure 6, there is a close correspondence between
EMD-denoised averages and averages of trials lowpass
filtered at 40 Hz.

3.2.3. Analysis

(a) Effect Size. For experimental data, the actual time course
of the ERP is unknown, and so, it is not possible to assess
the ability of EMD to estimate time course, amplitude, and
latency of the ERP. However, one can compare the ability
of EMD to separate the two conditions against that of the
conventional preprocessing method of lowpass filtering at
40 Hz. Since effect size is a measure of separation of responses
from two conditions, it is employed as a performance
measure to compare EMD against this baseline condition of
lowpass filtering.

From inspection of Figure 6, it seems that event-related
differences extend from time of stimulus onset up to 1s
poststimulus. Thus, for each of the 25 subjects, mean effect
size of each sample from stimulus onset to 1s poststimulus
was calculated for both EMD-denoised trials and trials
lowpass filtered at 40 Hz. Both EMD-denoised trials and low-
pass filtered trials had been baseline corrected with activity
200ms prestimulus. Distributions corresponding to EMD
and lowpass filter were then compared using either paired-
samples t-test or Wilcoxon signed-rank test depending on
whether both distributions were normal or not. Normality
was tested for using Lilliefors test.

(b) Comparison of Correct and Incorrect Trials. On both con-
dition A and condition B, participants correctly responded
to questions most of the time while responding incorrectly
on rare occasions. Due to the low number of incorrect
responses, any differences between correct and incorrect
responses will likely be hard to detect. Hence, it presents
a scenario suitable for evaluating effectiveness of denoising
methods.

For condition A, responses from all 25 participants were
included. In all, there were 1010 correct responses (84.7%)
and 183 incorrect responses (15.3%). For condition B, only
17 participants were included (subjects 9 to 25) since cor-
rect/incorrect information was available for this condition
only for these subjects. The number of correct responses
was 764 (95.7%), and number of incorrect responses was 34
(4.3%).
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The correct and incorrect responses for both conditions
were denoised using two methods—EMD and lowpass
filtering at 40 Hz. lowpass filtering at 40 Hz is a conventional
preprocessing procedure for ERP analysis. Then, correct and
incorrect responses from different methods were compared
using independent samples ¢-test, for each condition sepa-
rately. This was done on trials both from condition A and
condition B that had been baseline corrected with activity
200 ms prestimulus.

4. Results

Figure 4 shows an ERP image of the ensemble of raw single-
trials while Figure 5 shows an ERP image of an ensemble
of EMD-denoised single trials. An ERP image, introduced
in [31], is a convenient way of visualising an ensemble of
single trials, with time on the x-axis, trial number on the y-
axis, and normalised amplitude represented as colour. From
the smoother ERP image of Figure 5, it is seen that EMD-
denoising reveals the ERP much more clearly.

This suggests that EMD-denoised single trials could
reveal trial-trial variations in amplitude or latency of the
single-trial ERPs as a function of some behavioural or
experimental variable. For example, in [6], Jung et al. used
an ERP image to reveal that the peak latency of the P3 ERP
component from a visual selective attention experiment was
a function of reaction time.

4.1. Simulated Data. SNR of the denoised dataset was 4.3
compared to 1 for that of the raw dataset. Table 2 gives
details about performance of the denoising method on two
important criteria. On artificial data, EMD is able to reduce
variance due to background EEG by as much as 77% and
retains almost all variance due to the ERP (99.5%).

At least one of the two distributions (corresponding
to EMD and raw trials) was found to be significantly
nonnormal according to Lilliefors test for RMSE, ampli-
tude deviation, and latency deviation comparisons. Hence,
Wilcoxon signed-rank test was used for all comparisons.

EMD performs significantly better than the baseline
condition of raw single trials for RMSE, amplitude deviation,
and latency deviation. As shown in Figure 7, EMD (mean =
1.33) has significantly lower RMSE than raw single trials
(mean =2.53),Z = —-8.7, P < .001.

EMD also has lower amplitude deviation (mean = 1.19)
than raw single trials (mean = 4.57) Z = —8.5, P < .001.
Further, it has lower latency deviation (mean = 0.04) than
raw single trials (mean = 0.07), Z = -5, P < .001, as
shown in Figure 9. Thus, EMD gives a significantly better
estimate of the shape, peak amplitude, and peak latency of
the ERP compared to raw single trials. In terms of decibels,
the performance improvement due to EMD-denoising is
—5.6dB for RMSE and —11.7dB for amplitude deviation,
with negative values due to denoised values being lower than
raw values. Performance improvement of latency deviation
cannot be expressed in decibels as it is measured in ms.

4.2. Experimental Data. On experimental data, EMD-
denoising was compared with lowpass filtering at 40 Hz
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F1GURE 4: ERP image of ensemble of raw single trials.
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F1GURE 5: ERP image of ensemble of EMD-denoised single trials.

TABLE 2: Denoising performance of EMD.

Noise reduction (%) Signal retention (%)
77 99.5

for its ability to differentiate between two conditions, as
measured by effect size. According to Lilliefors test, both
distributions (corresponding to EMD and lowpass filtering)
are normal distributions. Hence, paired-samples ¢-test was
used for the comparison. As illustrated in Figure 10, EMD-
denoised trials (mean = 0.33) were found to have a higher
effect size than trials lowpass filtered at 40 Hz (mean = 0.26),
t(24) = 5.15, P < .001 suggesting that it is able to better
discriminate between conditions. Performance improvement
in effect size due to EMD-denoising cannot be expressed in
decibels as it is a dimensionless quantity.

When comparing correct and incorrect trials on con-
dition A, EMD reveals a significant difference in a time
window from 436ms to 528 ms poststimulus, as shown
in Figure 11. On condition B, EMD-denoised trials reveal
significant differences between correct and incorrect trials

Amplitude (uV)

1.2

—— LPF (40 Hz)-condition A
--~- LPF (40 Hz)-condition B

—— EMD-condition A
--- EMD-condition B

FiGUrRe 6: EMD-denoised averages for conditions A and B are
superimposed onto corresponding averages of trials lowpass filtered
at 40 Hz. Threshold frequency is 3 Hz, calculated according to the
criteria in (13).

RMSE

Microvolts (1V)
&

EMD Raw

FIGURE 7: Bar graph comparison of RMSE for EMD-based and raw
single trials. Lower RMSE indicates better performance.

from 348 ms to 616 ms and again from 884 ms to 1000 ms,
as shown in Figure 12.

Figure 13 shows the comparison for trials lowpass filtered
at 40 Hz for condition A. The windows of significance occur
sporadically and are of much shorter length, none longer
than 20ms (488 ms to 508 ms). For the equivalent EMD
comparison, the longest window of significance is 92 ms
(from 436 ms to 528 ms). For trials lowpass filtered at 40 Hz
on trials from condition B, clear differences are revealed
between correct and incorrect trials as shown in Figure 14.
However, the windows of significance also occur sporadically
and are of shorter duration than for the equivalent EMD
comparison. The window of longest duration for trials
lowpass filtered at 40Hz was 112ms (from 436 ms to
548 ms) while it was 268 ms (from 348 ms to 616 ms) for the
equivalent EMD comparison.
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FIGURE 8: Bar graph comparison of amplitude deviation for EMD-
based and raw single trials. Lower amplitude deviation indicates
better performance.
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FIGURE 9: Bar graph comparison of latency deviation for EMD-
based and raw single trials. Lower latency deviation indicates better
performance.

5. Discussion

EMD is a promising data driven method for denoising ERP
data. It has an advantage over other denoising methods
because its data driven nature allows it to decompose a
time series according to intrinsic time scales. Specifically, the
decomposition is done according to the local characteristic
temporal scale, and hence, EMD can estimate signals which
are nonstationary in nature.

5.1. Simulated Data. On artificial data, EMD showed the
ability to reduce noise substantially while retaining the signal.
It also showed the ability to estimate the shape, amplitude,
and latency of the ERP with low error. Its ability to estimate
the amplitude and latency of the ERP with low error on a
single-trial basis lends itself to being used to track trial-trial
variations in the amplitude and/or latency of the ERP which
could then be related to some aspect of cognitive processing.
Some examples of these applications are given in [32]. The
ability to estimate latency more accurately than from raw
trials can also be used to improve performance of latency-
corrected averaging proposed by Woody in [33].

5.2. Experimental Data. EMD was also shown in our study
to increase the effect size between two conditions, showing
that it can be used to increase the discriminability between
two different conditions. This ability translates to requiring
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FiGure 10: Bar graph comparison of effect size for EMD-based and
trials lowpass filtered at 40 Hz. Higher Effect size indicates better
performance.
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Figure 11: Comparison between averages of correct and incorrect
EMD-denoised trials, from condition A. Dotted vertical line
indicates time points at which difference between two conditions
was significant (P <.05).

fewer stimulus presentations to obtain a significant difference
between two conditions. This in turn could lead to shorter
experimental times and less participation fatigue. The level of
denoising offered by EMD also makes it possible to conduct
experiments and analyse data from single subjects rather
than averaging across large groups of subjects. This opens
up the possibility of investigating brain dysfunction in brain-
impaired populations on a single-subject basis. The noise
reduction offered by EMD should also make it possible
to clearly detect effects with only a few trials that were
hitherto detected only weakly or not detected at all using
conventional processing procedures. One example of this is
the differences in event-related activity revealed by EMD
on condition A, between correct and incorrect trials, when
subjects were asked to assess grammatical correctness of
a sentence. Another potential application is a comparison
between responses categorised according to reaction time as
“fast” and “slow.”
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Figure 12: Comparison between averages of correct and incorrect
EMD-denoised trials, from condition B. Dotted vertical line
indicates time points at which difference between two conditions
was significant (P < .05).

5.3. Physical Meaningfulness of EMD-Based Decomposition.
The ability of EMD to decompose the data in such a way that
small groups of IMFs are event related might or might not be
because individual IMFs are physically meaningful. It might
be that since EMD tends to decompose a signal into IMFs of
progressively lower frequencies and the ERP contains mostly
low frequency energy, forming a partial reconstruction from
just low-frequency IMFs would naturally perform a denois-
ing function. Hence, the good performance of EMD need not
be due to physical meaningfulness of IMFs. There is reason
to expect, however, that the EMD decomposition does in fact
produce physically meaningful IMFs. EMD assumes that an
input time series is a superposition of intrinsic oscillatory
modes. This incidentally corresponds to our understanding
of EEG/ERP data—that oscillations of different frequency
ranges (alpha, beta, gamma, delta, and theta) are functionally
distinct and superimposed on each other. In fact, Wang et
al. showed in [34] that when EMD was applied to EEG data
and the IMFs were clustered, distinct clusters were formed
whose frequency spectra corresponded to the naturally
occuring frequency bands mentioned above. However, to
tully understand whether the EMD decomposition of ERP
data is physically meaningful or not, further investigations
on simulated should be conducted.

5.4. Limitations of EMD-Based Denoising. The proposed
denoising methods does have its limitations. One of these
is that it is not parameter-free, but rather requires the
setting of a parameter, the threshold frequency (f;). The
decomposition also does not lend itself to being guided
according to a priori knowledge, within a regularization
framework, as is the case for the ICA-based decomposition
proposed in [35].
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FiGure 13: Comparison between averages of correct and incorrect
trials lowpass filtered at 40 Hz, from condition A. Dotted vertical
lines indicate time points at which difference between two condi-
tions was significant (P < .05).

Further, the EMD technique by itself has some draw-
backs. Its theoretical foundations are not yet well under-
stood, hence making it difficult to interpret the results of
decomposition within any formal theoretical framework.
It also suffers from border effects which can propagate
towards the center especially when trial lengths are short,
as mentioned in [24]. The efficacy of the decomposition
also depends to a large extent on the suitability of the
interpolation scheme which forms the upper and lower
envelopes. Cubic spline interpolation is used most often,
but other types have also been tried, sometimes with poor
results. The stopping criterion for the “sifting process” has
also been the subject of much debate, and a number of
approaches have been proposed. Also, because of its high
dependence on identifying extrema, a certain amount of
oversampling is required. Finally, it has been shown that
when two oscillatory modes are superimposed with certain
combinations of frequencies and relative amplitudes, EMD
is not able to separate them [27]. In spite of these limitations
though, EMD does decompose the data into physically
meaningful components—the primary reason for growing
interest in this technique.

5.5. Comparing with Previous EMD-Based Studies. Itis useful
to compare our study with those by [24, 25]. In that
case, a multichannel version of EMD has been used but
more importantly, they have applied EMD to a special
class of evoked potentials, called SSVEPs (steady-state visual
evoked potentials). SSVEPs are different from conventional
ERPs in a number of ways. For example, SSVEPs are
periodic and stationary, and the method for choosing event-
related IMFs exploits prior knowledge about this periodic,
stationary character of SSVEPs. By contrast, when applying
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Figure 14: Comparison between averages of correct and incorrect
trials lowpass filtered at 40 Hz, from condition B. Dotted vertical
line indicates time points at which difference between two condi-
tions was significant (P < .05).

EMD to single-channel ERP analysis, we do not make any
assumptions about periodicity or stationarity of the signal.
In fact, EMD-based denoising provides a potential benefit
compared to other methods because it allows for non-
stationarity of the signal. Thus, although our method and the
method described in [24, 25] both use EMD, they are used in
different ways to solve different types of filtering problems.

5.6. Future Work. As a next step, it is crucial to compare the
denoising performance of EMD with other methods, espe-
cially nonstationary methods like that based on the Wavelet
Transform (WT), recently proposed by Quian Quiroga and
Garcia [11]. It is also important to consider alternative
ways of selecting event-related IMFs, for example, by using
their statistical properties as proposed in [19] or by using
measures such as Cumulative Mean Square Error (CMSE)
as proposed in [20, 21]. Finally, investigations into the
functional significance of IMFs might be useful, for example,
by assessing the ability of EMD to reveal event-related effects
on higher-frequency IMFs not normally included in the
EMD-denoised single trial.

6. Conclusion

EMD is a promising data driven, nonstationary method for
estimating ERPs. For single-trial analysis, it could be used
to study trial-trial variations in amplitude and/or latency of
the ERP and relate it to some aspect of cognitive processing.
For few-trial analysis, and it can be used to detect effects
by comparing averages of only a few EMD-denoised trials.
Often, these effects would not be revealed by averaging a
few trials that have been processed by conventional means.
For the full potential of EMD to be exploited, however, it is
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important to understand the functional significance of the
IMFs, thereby potentially facilitating our understanding of
event-related dynamics in the context of ongoing EEG.
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